Research Article
 Periodic Solutions for Subquadratic Discrete Hamiltonian Systems

Xiaoqing Deng
Received 4 February 2007; Accepted 26 April 2007
Recommended by Ondrej Dosly

Some existence conditions of periodic solutions are obtained for a class of nonautonomous subquadratic first-order discrete Hamiltonian systems by the minimax methods in the critical point theory.

Copyright © 2007 Xiaoqing Deng. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction and statement of main results

We denote $\mathbb{N}, \mathbb{Z}, \mathbb{R}, \mathbb{C}$ by the set of all natural numbers, integers, real, and complex numbers, respectively. For $a, b \in \mathbb{Z}$, define $\mathbb{Z}(a)=\{a, a+1, \ldots\}, \mathbb{Z}(a, b)=\{a, a+1, \ldots, b\}$ when $a \leq b$.

Consider the nonautonomous first-order discrete Hamiltonian systems

$$
\begin{equation*}
J \Delta x(n)+\nabla H(n, L x(n))=0, \quad n \in \mathbb{Z} \tag{1.1}
\end{equation*}
$$

where $J=\left(\begin{array}{cc}0 & -I_{N} \\ I_{N} & 0\end{array}\right), x(n)=\binom{x_{1}(n)}{x_{2}(n)}, x_{i}(n) \in \mathbb{R}^{N}, i=1,2, N$ is a given positive integer and I_{N} denotes the $N \times N$ identity matrix, $\Delta x(n)=x(n+1)-x(n), L x(n)=\binom{x_{1}(n+1)}{x_{2}(n)}$, for all $n \in \mathbb{Z}$, and $H \in C^{1}\left(\mathbb{Z} \times \mathbb{R}^{2 N}, \mathbb{R}\right)$. For a given integer $T>0$, we suppose that $H(n+T, z)=$ $H(n, z)$ for all $n \in \mathbb{Z}$ and $z \in \mathbb{R}^{2 N}$, and $\nabla H(n, z)$ denotes the gradient of $H(n, z)$ in $z \in$ $\mathbb{R}^{2 N}$.

Our purpose is to establish the existence of T-periodic solutions of (1.1) where H is subquadratic.

Let $H(n, L x(n))=H\left(n, x_{1}(n+1), x_{2}(n)\right)=(1 / 2)\left|x_{1}(n+1)\right|^{2}+V\left(n, x_{2}(n)\right)$ with $x_{1}(n+$ $1)=\Delta x_{2}(n)$, where $V \in C^{1}\left(\mathbb{Z} \times \mathbb{R}^{N}, \mathbb{R}\right)$ is T-periodic in n, and $\nabla V(n, z)$ denotes the gradient of $V(n, z)$ in $z \in \mathbb{R}^{N}$. Then, from (1.1) we obtain

$$
\begin{equation*}
\Delta^{2} x_{2}(n-1)+\nabla V\left(n, x_{2}(n)\right)=0, \quad n \in \mathbb{Z}, x_{2}(n) \in \mathbb{R}^{N} \tag{1.2}
\end{equation*}
$$

As the author knows, in the past two decades, there has been a large number of papers devoted to the existence of periodic and subharmonic solutions for subquadratic firstorder (see [1-3]) or second-order (see [4-8]) continuous Hamiltonian systems by using the critical point theory.

On the other hand, in the last five years, by using the critical point theory, the study of existence conditions of periodic and subharmonic solutions for discrete Hamiltonian systems developed rapidly, such as the superquadratic condition for (1.1) (see [9, 10]) or (1.2) (see [11, 12]), the subquadratic condition for (1.1) in [13] or (1.2) in [14, 15], neither superquadratic nor subquadratic condition for (1.2) in [16]. As for the existence of positive solutions of (1.2) with boundary value condition, we can refer to [17, 18].

Recently, in [19] Xue and Tang established the existence of periodic solution for the second-order subquadratic discrete Hamiltonian system (1.2) and generalized the results in [14]. Here, we extend their results to the first-order subquadratic discrete Hamiltonian system (1.1). Our results are more general than those in the literature [13].

Now, we state our main results below.
Theorem 1.1. Suppose that $H(n, z)$ satisfies the following.
$\left(\mathrm{H}_{1}\right)$ There exists an integer $T>0$ such that $H(n+T, z)=H(n, z)$ for all $(n, z) \in \mathbb{Z} \times \mathbb{R}^{2 N}$,
$\left(\mathrm{H}_{2}\right)$ there are constants $M_{0}>0, M_{1}>0$, and $0 \leq \alpha<1$ such that

$$
\begin{equation*}
|\nabla H(n, z)| \leq M_{0}|z|^{\alpha}+M_{1}, \quad \forall(n, z) \in \mathbb{Z} \times \mathbb{R}^{2 N} \tag{1.3}
\end{equation*}
$$

$\left(\mathrm{H}_{3}\right)|z|^{-2 \alpha} \sum_{n=1}^{T} H(n, z) \rightarrow+\infty$ as $|z| \rightarrow \infty$.
Then problem (1.1) possesses at least one T-periodic solution.
Remark 1.2. Theorem 1.1 extends [13, Theorem 1.1] which is the special case of this theorem by letting $\alpha=0$.

Corollary 1.3. If $H(n, z)$ satisfies $\left(H_{1}\right)-\left(H_{2}\right)$ and
$\left(\mathrm{H}_{3}^{\prime}\right)|z|^{-2 \alpha} \sum_{n=1}^{T} H(n, z) \rightarrow-\infty$ as $|z| \rightarrow \infty$,
then the conclusion of Theorem 1.1 holds.
Remark 1.4. Corollary 1.3 extends [13, Corollary 1.1] which is the special case of this corollary by letting $\alpha=0$.

Theorem 1.5. Suppose that $H(n, z)$ satisfies $\left(H_{1}\right)$ and
$\left(H_{4}\right) \lim _{|z| \rightarrow \infty}\left(H(n, z) /|z|^{2}\right)=0$ for all $n \in \mathbb{Z}(1, T)$,
$\left(H_{5}\right) \lim _{|z| \rightarrow \infty}[(\nabla H(n, z), z)-2 H(n, z)]=-\infty$ for all $n \in \mathbb{Z}(1, T)$.
Then problem (1.1) has at least one T-periodic solution.
Corollary 1.6. If $H(n, z)$ satisfies $\left(H_{1}\right),\left(H_{4}\right)$, and $\left(\mathrm{H}_{5}^{\prime}\right) \lim _{|z| \rightarrow \infty}[(\nabla H(n, z), z)-2 H(n, z)]=+\infty$ for all $n \in \mathbb{Z}(1, T)$, then the conclusion of Theorem 1.5 holds.

Corollary 1.7. If $H(n, z)$ satisfies $\left(H_{1}\right),\left(H_{5}\right)$, or $\left(H_{5}^{\prime}\right)$, and
$\left(\mathrm{H}_{4}^{\prime}\right) \lim _{|z| \rightarrow \infty}(|\nabla H(n, z)| /|z|)=0$ for all $n \in \mathbb{Z}(1, T)$,
then the conclusion of Theorem 1.5 holds.
Corollary 1.8. If $H(n, z)$ satisfies $\left(H_{1}\right)$ and
$\left(\mathrm{H}_{6}\right)$ there exist constants $0<\beta<2$ and $R_{1}>0$ such that for all $(n, z) \in \mathbb{Z} \times \mathbb{R}^{2 N}$,

$$
\begin{equation*}
(\nabla H(n, z), z) \leq \beta H(n, z), \quad \forall|z| \geq R_{1} \tag{1.4}
\end{equation*}
$$

$\left(\mathrm{H}_{7}\right) H(n, z) \rightarrow+\infty$ as $|z| \rightarrow \infty$ for all $n \in \mathbb{Z}(1, T)$,
then the conclusion of Theorem 1.5 holds.
Remark 1.9. Comparing [13, Theorem 1.3] with Corollary 1.8, we extend the interval in which β is and delete the constraint of $(\nabla H(n, z), z)>0$. Furthermore, condition $\left(\mathrm{H}_{7}\right)$ is more general than condition $\left(\mathrm{H}_{6}\right)$ of [13, Theorem 1.3].

2. Variational structure and some lemmas

In order to apply critical point theory, we need to state the corresponding Hilbert space and to construct a variational functional. Then we reduce the problem of finding the T-periodic solutions of (1.1) to the one of seeking the critical points of the functional.

First we give some notations. Let N be a given positive integer, and

$$
\begin{equation*}
S=\left\{x=\{x(n)\}: x(n)=\binom{x_{1}(n)}{x_{2}(n)} \in \mathbb{R}^{2 N}, x_{i}(n) \in \mathbb{R}^{N}, i=1,2, n \in \mathbb{Z}\right\} . \tag{2.1}
\end{equation*}
$$

For any $x, y \in S, a, b \in \mathbb{R}, a x+b y$ is defined by

$$
\begin{equation*}
a x+b y \triangleq\{a x(n)+b y(n)\} . \tag{2.2}
\end{equation*}
$$

Then S is a vector space.
For any given positive integer $T>0, E_{T}$ is defined as a subspace of S by

$$
\begin{equation*}
E_{T}=\{x=\{x(n)\} \in S: x(n+T)=x(n), n \in \mathbb{Z}\} \tag{2.3}
\end{equation*}
$$

with the inner product $\langle\cdot, \cdot\rangle$ and norm $\|\cdot\|$ as follows:

$$
\begin{equation*}
\langle x, y\rangle=\sum_{n=1}^{T}(x(n), y(n)), \quad\|x\|=\left(\sum_{n=1}^{T}|x(n)|^{2}\right)^{1 / 2}, \quad \forall x, y \in E_{T} \tag{2.4}
\end{equation*}
$$

where (\cdot, \cdot) and $|\cdot|$ denote the usual inner product and norm in $\mathbb{R}^{2 N}$, respectively.
It is easy to see that $\left(E_{T},\langle\cdot, \cdot\rangle\right)$ is a finite dimensional Hilbert space with dimension $2 N T$, which can be identified with $\mathbb{R}^{2 N T}$. For convenience, we identify $x \in E_{T}$ with $x=\left(x^{\tau}(1), x^{\tau}(2), \ldots, x^{\tau}(T)\right)^{\tau}$, where $x(n)=\binom{x_{1}(n)}{x_{2}(n)} \in \mathbb{R}^{2 N}, n \in \mathbb{Z}(1, T)$, and $(\cdot)^{\tau}$ is the transpose of a vector or a matrix.

Define another norm in E_{T} as

$$
\begin{equation*}
\|x\|_{r}=\left(\sum_{n=1}^{T}|x(n)|^{r}\right)^{1 / r}, \quad \forall x \in E_{T} \tag{2.5}
\end{equation*}
$$

4 Advances in Difference Equations

for $r>1$. Obviously, $\|x\|_{2}=\|x\|$ and $\left(E_{T},\|\cdot\|\right)$ is equivalent to $\left(E_{T},\|\cdot\|_{r}\right)$. Hence there exist $C_{1}>0$ and $C_{2} \geq C_{1}>0$ such that

$$
\begin{equation*}
C_{1}\|x\|_{r} \leq\|x\| \leq C_{2}\|x\|_{r}, \quad \forall x \in E_{T} \tag{2.6}
\end{equation*}
$$

Let $C_{1}=T^{-1}, C_{2}=T$, one can see that the above inequality holds. In fact, define $\|x\|_{\infty}=\sup _{n \in \mathbb{Z}(1, T)}|x(n)|$, since T is a positive integer and $r>1$, one can get that

$$
\begin{equation*}
\|x\|_{\infty} \leq\|x\|_{r} \leq T^{1 / r}\|x\|_{\infty} \leq T\|x\|_{\infty} \tag{2.7}
\end{equation*}
$$

Then we can obtain

$$
\begin{gather*}
\|x\|_{\infty} \leq\|x\| \leq \sqrt{T}\|x\|_{\infty} \leq T\|x\|_{\infty} \leq T\|x\|_{r}, \\
T^{-1}\|x\|_{r} \leq\|x\|_{\infty} \leq\|x\| . \tag{2.8}
\end{gather*}
$$

For $T>0$, we define the functional $F(x)$ on E_{T} as

$$
\begin{equation*}
F(x)=\frac{1}{2} \sum_{n=1}^{T}(J \Delta L x(n-1), x(n))+\sum_{n=1}^{T} H(n, L x(n)), \quad \forall x \in E_{T} . \tag{2.9}
\end{equation*}
$$

Then we have $F \in C^{1}\left(E_{T}, \mathbb{R}\right)$ and

$$
\begin{align*}
\left\langle F^{\prime}(x), y\right\rangle & =\sum_{n=1}^{T}(J \Delta L x(n-1), y(n))+\sum_{n=1}^{T}(\nabla H(n, L x(n)), L y(n)) \\
& =\sum_{n=1}^{T}(J \Delta x(n), L y(n))+\sum_{n=1}^{T}(\nabla H(n, L x(n)), L y(n)) \tag{2.10}
\end{align*}
$$

for all $x, y \in E_{T}$. Obviously, for any $x \in E_{T}, F^{\prime}(x)=0$ if and only if

$$
\begin{equation*}
J \Delta x(n)+\nabla H(n, L x(n))=0 \tag{2.11}
\end{equation*}
$$

for all $n \in \mathbb{Z}(1, T)$. Therefore, the problem of finding the T-periodic solution for (1.1) is reduced to the one of seeking the critical point of functional F.

Next, we construct a variational structure by using the operator theory which is different from the one in $[9,10,13]$.

Consider the eigenvalue problem

$$
\begin{equation*}
J \Delta L x(n-1)=\lambda x(n), \quad x(n+T)=x(n) \tag{2.12}
\end{equation*}
$$

Setting

$$
A(\lambda)=\left(\begin{array}{cc}
I_{N} & \lambda I_{N} \tag{2.13}\\
-\lambda I_{N} & \left(1-\lambda^{2}\right) I_{N}
\end{array}\right)
$$

then the problem (2.12) is equivalent to

$$
\begin{equation*}
x(n+1)=A(\lambda) x(n), \quad x(n+T)=x(n) \tag{2.14}
\end{equation*}
$$

As we all know, the solution of problem (2.14) is denoted by $x(n)=\mu^{n} C$ with $C=x(0) \in$ $\mathbb{R}^{2 N}$, where μ is the eigenvalue of $A(\lambda)$ and $\mu^{T}=1$. Then it follows from $\mu_{k}^{T}=1$ and $\left|A\left(\lambda_{k}\right)-\mu_{k} I_{2 N}\right|=0$ that $\mu_{k}=\exp (k \omega i)$ with $\omega=2 \pi / T$ and $\lambda_{k}=2 \sin (k \pi / T)$ with $\lambda_{T-k}=$ λ_{k} for all $k \in \mathbb{Z}(-[T / 2],[T / 2])$, where $[\cdot]$ is Gauss function.

Now we give some lemmas which will be important in the proofs of the results of the paper.

Lemma 2.1. Set $H_{k}=\left\{x \in E_{T}: J \Delta L x(n-1)=\lambda_{k} x(n)\right.$ for all $\left.k \in \mathbb{Z}(-[T / 2],[T / 2])\right\}$. Then

$$
\begin{gather*}
H_{k} \perp H_{j}, \quad \forall k, j \in \mathbb{Z}\left(-\left[\frac{T}{2}\right],\left[\frac{T}{2}\right]\right), k \neq j, \tag{2.15}\\
E_{T}=\bigoplus_{k=-[T / 2]}^{[T / 2]} H_{k} . \tag{2.16}
\end{gather*}
$$

Proof. For all $x \in H_{k}, y \in H_{j}$, we have

$$
\begin{align*}
\lambda_{k}\langle x, y\rangle & =\sum_{n=1}^{T}\left(\lambda_{k} x(n), y(n)\right)=\sum_{n=1}^{T}(J \Delta L x(n-1), y(n)) \\
& =\sum_{n=1}^{T}(x(n), J \Delta L y(n-1))=\lambda_{j}\langle x, y\rangle . \tag{2.17}
\end{align*}
$$

Since $\lambda_{k} \neq \lambda_{j}$, we have $\langle x, y\rangle=0$, that is, $H_{k} \perp H_{j}$, then (2.15) holds.
Next we consider the elements of H_{k} for all $k \in \mathbb{Z}(-[T / 2],[T / 2])$.
Case 1. For all $x \in H_{0}$, it follows from $\mu_{0}=1$ that

$$
\begin{equation*}
H_{0}=\left\{x \in E_{T}: x(n) \equiv x(0)=C \in \mathbb{R}^{2 N}\right\}, \tag{2.18}
\end{equation*}
$$

and $\operatorname{dim} H_{0}=2 N$.
Case 2. T is even. For $k=[T / 2]=T / 2$, it follows from $\lambda_{T / 2}=2, \mu_{T / 2}=-1$, and $(A(2)+$ $\left.I_{N}\right) C=0$ that $C=\left(\rho^{\tau},-\rho^{\tau}\right)^{\tau}$ with $\rho \in \mathbb{R}^{N}$. Therefore,

$$
\begin{equation*}
H_{[T / 2]}=\left\{x \in E_{T}: x(n)=(-1)^{n}\left(\rho^{\tau},-\rho^{\tau}\right)^{\tau}, \rho \in \mathbb{R}^{N}\right\}, \tag{2.19}
\end{equation*}
$$

and $\operatorname{dim} H_{[T / 2]}=N$. Similarly, for $k=-[T / 2]=-T / 2$, we have

$$
\begin{equation*}
H_{-[T / 2]}=\left\{x \in E_{T}: x(n)=(-1)^{n}\left(\rho^{\tau}, \rho^{\tau}\right)^{\tau}, \rho \in \mathbb{R}^{N}\right\}, \tag{2.20}
\end{equation*}
$$

and $\operatorname{dim} H_{-[T / 2]}=N$.
T is odd. Similarly, for $k=[T / 2]=(T-1) / 2$, we have

$$
\begin{equation*}
H_{[T / 2]}=\left\{x \in E_{T}: x(n)=\exp \left(\frac{n(T-1) \pi i}{T}\right)\left(\rho^{\tau},-\exp \left(-\frac{\pi i}{2 T}\right) \rho^{\tau}\right)^{\tau}, \rho \in \mathbb{C}^{N}\right\} \tag{2.21}
\end{equation*}
$$

and $\operatorname{dim} H_{[T / 2]}=2 N$. For $k=-[T / 2]=-(T-1) / 2$, we have

$$
\begin{equation*}
H_{-[T / 2]}=\left\{x \in E_{T}: x(n)=\exp \left(-\frac{n(T-1) \pi i}{T}\right)\left(\rho^{\tau}, \exp \left(\frac{\pi i}{2 T}\right) \rho^{\tau}\right)^{\tau}, \rho \in \mathbb{C}^{N}\right\} \tag{2.22}
\end{equation*}
$$

and $\operatorname{dim} H_{-[T / 2]}=2 N$.
Case 3. For $k \in \mathbb{Z}(1,[T / 2]-1) \cup \mathbb{Z}(-[T / 2]+1,-1)$, it follows from $\lambda_{k}=2 \sin (k \pi / T)$, $\mu_{k}=\exp (2 k \pi i / T)$, and $\left(A\left(\lambda_{k}\right)-\mu_{k} I_{2 N}\right) C=0$ that

$$
\begin{equation*}
H_{k}=\left\{x \in E_{T}: x(n)=\exp \left(\frac{2 k n \pi i}{T}\right)\left(\rho^{\tau},-\exp \left(-\left(\frac{\pi}{2}-\frac{k \pi}{T}\right) i\right) \rho^{\tau}\right)^{\tau}, \rho \in \mathbb{C}^{N}\right\} \tag{2.23}
\end{equation*}
$$

and $\operatorname{dim} H_{k}=2 N$.
Thus, from Cases 1, 2, and 3, we have

$$
\begin{equation*}
\operatorname{dim} \bigoplus_{k=-[T / 2]}^{[T / 2]} H_{k}=2 N+2\left(\left[\frac{T}{2}\right]-1\right) \times 2 N+N+N=2 N T \tag{2.24}
\end{equation*}
$$

when T is even, and

$$
\begin{equation*}
\operatorname{dim} \bigoplus_{k=-[T / 2]}^{[T / 2]} H_{k}=2 N+2\left[\frac{T}{2}\right] \times 2 N=2 N T \tag{2.25}
\end{equation*}
$$

when T is odd.
Since $\operatorname{dim} E_{T}=2 N T$ and $\bigoplus_{k=-[T / 2]}^{[T / 2]} H_{k} \subseteq E_{T}, E_{T}=\bigoplus_{k=-[T / 2]}^{[T / 2]} H_{k}$. Lemma 2.1 is completed.

Let $E_{T}^{0}=H_{0}, E_{T}^{+}=\bigoplus_{k=1}^{[T / 2]} H_{k}$, and $E_{T}^{-}=\bigoplus_{k=-[T / 2]}^{-1} H_{k}$, then it is easy to obtain the following lemma.

Lemma 2.2.

$$
\begin{gather*}
\sum_{n=1}^{T}(J \Delta L x(n-1), x(n))=0, \quad \forall x \in E_{T}^{0}, \\
\lambda_{1}\|x\|^{2} \leq \sum_{n=1}^{T}(J \Delta L x(n-1), x(n)) \leq \lambda_{[T / 2]}\|x\|^{2}, \quad \forall x \in E_{T}^{+}, \tag{2.26}\\
-\lambda_{[T / 2]}\|x\|^{2} \leq \sum_{n=1}^{T}(J \Delta L x(n-1), x(n)) \leq-\lambda_{1}\|x\|^{2}, \quad \forall x \in E_{T}^{-},
\end{gather*}
$$

where $0<\lambda_{1}<\lambda_{2}<\cdots<\lambda_{[T / 2]}$.

3. Proofs of the main theorems

Proof of Theorem 1.1. Let $F(x)$ be defined as (2.9), clearly, $F \in C^{1}\left(E_{T}, \mathbb{R}\right)$.
We will first show that F satisfies the Palais-Smale condition, that is, any sequence $\left\{x^{(k)}\right\} \subset E_{T}$ for which $\left|F\left(x^{(k)}\right)\right| \leq M_{2}$ with constant $M_{2}>0$ and $F^{\prime}\left(x^{(k)}\right) \rightarrow 0(k \rightarrow \infty)$ possesses a convergent subsequence in E_{T}. Recall that E_{T} is identified with $\mathbb{R}^{2 N T}$. Consequently, in order to prove that F satisfies Palais-Smale condition, we only need to prove that $\left\{x^{(k)}\right\}$ is bounded.

Suppose that $\left\{x^{(k)}\right\}$ is unbounded, then we can assume, going to a subsequence if necessary, that $\left\|x^{(k)}\right\| \rightarrow \infty$ as $k \rightarrow \infty$.

Let $x^{(k)}=u^{(k)}+v^{(k)}+w^{(k)}=y^{(k)}+w^{(k)}$, where $u^{(k)} \in E_{T}^{+}, v^{(k)} \in E_{T}^{-}, w^{(k)} \in E_{T}^{0}$ with $w^{(k)}(n) \equiv C^{(k)}$ for all $n \in \mathbb{Z}$.

In view of $\left(\mathrm{H}_{2}\right)$, we have

$$
\begin{align*}
& \left|\sum_{n=1}^{T}\left[H\left(n, L x^{(k)}(n)\right)-H\left(n, L w^{(k)}(n)\right)\right]\right| \\
& \quad \leq \sum_{n=1}^{T} \int_{0}^{1}\left|\nabla H\left(n, L w^{(k)}(n)+s L y^{(k)}(n)\right)\right|\left|L y^{(k)}(n)\right| d s \\
& \leq \\
& \leq \sum_{n=1}^{T} \int_{0}^{1}\left[M_{0}\left|L w^{(k)}(n)+s L y^{(k)}(n)\right|^{\alpha}+M_{1}\right]\left|L y^{(k)}(n)\right| d s \tag{3.1}\\
& \leq \\
& \leq \\
& \leq \frac{2 M_{0} \sum_{n=1}^{T}\left(\left|L w^{(k)}(n)\right|^{\alpha}+\left|L y^{(k)}(n)\right|^{\alpha}\right)\left|L y^{(k)}(n)\right|+\sum_{n=1}^{T} M_{1}\left|L y^{(k)}(n)\right|}{\lambda_{1}}\left|L w^{(k)}(n)\right|^{2 \alpha}+\frac{M_{0} \lambda_{1}}{2 M_{0}} \sum_{n=1}^{T}\left|L y^{(k)}(n)\right|^{2} \\
& \quad+2 M_{0} \sum_{n=1}^{T}\left|L y^{(k)}(n)\right|^{\alpha+1}+\sum_{n=1}^{T} M_{1}\left|L y^{(k)}(n)\right| \\
& \leq \\
& \leq \frac{2 M_{0}^{2} T}{\lambda_{1}}\left|C^{(k)}\right|^{2 \alpha}+\frac{\lambda_{1}}{2}\left\|y^{(k)}\right\|^{2}+\frac{2 M_{0}}{C_{1}^{\alpha+1}}\left\|y^{(k)}| |^{\alpha+1}+M_{1} \sqrt{T}\right\| y^{(k)} \| .
\end{align*}
$$

By using the same method, we can obtain

$$
\begin{align*}
& \left|\sum_{n=1}^{T}\left(\nabla H\left(n, L x^{(k)}(n)\right), L u^{(k)}(n)\right)\right| \leq \frac{2 M_{0}^{2}}{\lambda_{1} C_{1}^{2 \alpha}}\left\|x^{(k)}\right\|^{2 \alpha}+\frac{\lambda_{1}}{2}\left\|u^{(k)}\right\|^{2}+M_{1} \sqrt{T}\left\|u^{(k)}\right\| \tag{3.2}\\
& \left|\sum_{n=1}^{T}\left(\nabla H\left(n, L x^{(k)}(n)\right), L v^{(k)}(n)\right)\right| \leq \frac{2 M_{0}^{2}}{\lambda_{1} C_{1}^{2 \alpha}}\left\|x^{(k)}\right\|^{2 \alpha}+\frac{\lambda_{1}}{2}\left\|v^{(k)}\right\|^{2}+M_{1} \sqrt{T}\left\|v^{(k)}\right\| \tag{3.3}
\end{align*}
$$

It follows from inequality (3.2) and

$$
\begin{equation*}
\left\langle F^{\prime}(x), y\right\rangle=\sum_{n=1}^{T}(J \Delta L x(n-1), y(n))+\sum_{n=1}^{T}(\nabla H(n, L x(n)), L y(n)), \quad \forall x, y \in E_{T} \tag{3.4}
\end{equation*}
$$

that

$$
\begin{align*}
\lambda_{1}\left\|u^{(k)}\right\|^{2} & \leq \sum_{n=1}^{T}\left(J \Delta L x^{(k)}(n-1), u^{(k)}(n)\right) \\
& =\left\langle F^{\prime}\left(x^{(k)}\right), u^{(k)}\right\rangle-\sum_{n=1}^{T}\left(\nabla H\left(n, L x^{(k)}(n)\right), L u^{(k)}(n)\right) \tag{3.5}\\
& \leq\left\|u^{(k)}\right\|+\frac{2 M_{0}^{2}}{\lambda_{1} C_{1}^{2 \alpha}}\left\|x^{(k)}\right\|^{2 \alpha}+\frac{\lambda_{1}}{2}\left\|u^{(k)}\right\|^{2}+M_{1} \sqrt{T}\left\|u^{(k)}\right\|
\end{align*}
$$

for sufficiently large k. That is,

$$
\begin{equation*}
\frac{\lambda_{1}}{2}\left\|u^{(k)}\right\|^{2}-\left(1+M_{1} \sqrt{T}\right)\left\|u^{(k)}\right\| \leq \frac{2 M_{0}^{2}}{\lambda_{1} C_{1}^{2 \alpha}}\left\|x^{(k)}\right\|^{2 \alpha} \tag{3.6}
\end{equation*}
$$

for k large enough. Since $\left\|x^{(k)}\right\| \rightarrow \infty$ as $k \rightarrow \infty$, we can assume that $\left\|x^{(k)}\right\| \geq 1$ for sufficiently large k. Therefore, for sufficiently large k, from the above inequality (3.6), there exists a constant $M_{3}>0$ such that

$$
\begin{equation*}
\left\|u^{(k)}\right\| \leq M_{3}\left\|x^{(k)}\right\|^{\alpha} \tag{3.7}
\end{equation*}
$$

In fact, if (3.7) is false, then there exists some subsequence of $\left\{x^{(k)}\right\}$, still denoted by $\left\{x^{(k)}\right\}$, such that

$$
\begin{equation*}
\frac{\left\|x^{(k)}\right\|^{\alpha}}{\left\|u^{(k)}\right\|} \longrightarrow 0, \quad k \longrightarrow \infty \tag{3.8}
\end{equation*}
$$

Thanks to the inequality (3.6), one has

$$
\begin{equation*}
\frac{\lambda_{1}}{2} \leq \frac{2 M_{0}^{2}}{\lambda_{1} C_{1}^{2 \alpha}}\left(\frac{\left\|x^{(k)}\right\|^{\alpha}}{\left\|u^{(k)}\right\|}\right)^{2}+\frac{1+M_{1} \sqrt{T}}{\left\|u^{(k)}\right\|} \tag{3.9}
\end{equation*}
$$

for k large enough. Obviously, the above two inequalities imply that $\left\|x^{(k)}\right\|$ is bounded for sufficiently large k, which is contradictory with the assumption that $\left\|x^{(k)}\right\| \rightarrow \infty$ as $k \rightarrow \infty$.

Therefore, (3.7) is true, and then we have

$$
\begin{equation*}
\frac{\left\|u^{(k)}\right\|}{\left\|x^{(k)}\right\|} \longrightarrow 0, \quad k \longrightarrow \infty . \tag{3.10}
\end{equation*}
$$

Similarly, from inequality (3.3) and equality (2.10), there exists a constant $M_{3}^{\prime}>0$ such that

$$
\begin{equation*}
\left\|v^{(k)}\right\| \leq M_{3}^{\prime}\left\|x^{(k)}\right\|^{\alpha} \tag{3.11}
\end{equation*}
$$

for sufficiently large k, and then

$$
\begin{equation*}
\frac{\left\|v^{(k)}\right\|}{\left\|x^{(k)}\right\|} \longrightarrow 0, \quad k \longrightarrow \infty \tag{3.12}
\end{equation*}
$$

It follows from (3.10) and (3.12) that

$$
\begin{equation*}
\frac{\left\|w^{(k)}\right\|}{\left\|x^{(k)}\right\|} \longrightarrow 1, \quad k \longrightarrow \infty \tag{3.13}
\end{equation*}
$$

and then (3.7) and (3.11) mean that there exists $M_{4}>0$ such that

$$
\begin{equation*}
\left\|y^{(k)}\right\|=\left\|u^{(k)}\right\|+\left\|v^{(k)}\right\| \leq 2 M_{4} T^{\alpha / 2}\left|C^{(k)}\right|^{\alpha} \tag{3.14}
\end{equation*}
$$

for sufficiently large k. Therefore, from (3.1), we have

$$
\begin{align*}
\mid \sum_{n=1}^{T}[& \left.H\left(n, L x^{(k)}(n)\right)-H\left(n, L w^{(k)}(n)\right)\right] \mid \\
& \leq \tag{3.15}\\
& \left(\frac{2 M_{0}^{2} T}{\lambda_{1}}+2 \lambda_{1} M_{4}^{2} T^{\alpha}\right)\left|C^{(k)}\right|^{2 \alpha}+\frac{2^{\alpha+2} M_{0} M_{4}^{\alpha+1} T^{\alpha(\alpha+1) / 2}}{C_{1}^{\alpha+1}}\left|C^{(k)}\right|^{\alpha(\alpha+1)} \\
& +2 M_{1} M_{4} T^{(\alpha+1) / 2}\left|C^{(k)}\right|^{\alpha} .
\end{align*}
$$

Then there exists $M_{5}>0$ such that

$$
\begin{equation*}
\left|C^{(k)}\right|^{-2 \alpha}\left|\sum_{n=1}^{T}\left[H\left(n, L x^{(k)}(n)\right)-H\left(n, L w^{(k)}(n)\right)\right]\right| \leq M_{5} \tag{3.16}
\end{equation*}
$$

as $\left|C^{(k)}\right| \rightarrow \infty$.
By using Lemma 2.2 and the boundedness of $F\left(x^{(k)}\right)$, we have

$$
\begin{align*}
M_{2} \geq & F\left(x^{(k)}\right)=\frac{1}{2} \sum_{n=1}^{T}\left[\left(J \Delta L x^{(k)}(n-1), x^{(k)}(n)\right)+H\left(n, L x^{(k)}(n)\right)\right] \\
= & \frac{1}{2} \sum_{n=1}^{T}\left(J \Delta L u^{(k)}(n-1), u^{(k)}(n)\right)+\frac{1}{2} \sum_{n=1}^{T}\left(J \Delta L v^{(k)}(n-1), v^{(k)}(n)\right) \\
& +\sum_{n=1}^{T}\left[H\left(n, L x^{(k)}(n)\right)-H\left(n, L w^{(k)}(n)\right)\right]+\sum_{n=1}^{T} H\left(n, L w^{(k)}(n)\right) \tag{3.17}\\
\geq & \frac{\lambda_{1}}{2}\left\|u^{(k)}\right\|^{2}-\frac{\lambda_{[T / 2]}}{2}\left\|v^{(k)}\right\|^{2}+\sum_{n=1}^{T}\left[H\left(n, L x^{(k)}(n)\right)-H\left(n, L w^{(k)}(n)\right)\right] \\
& +\sum_{n=1}^{T} H\left(n, L w^{(k)}(n)\right) .
\end{align*}
$$

It follows from (3.14) and (3.16), by multiplying $\left|C^{(k)}\right|^{-2 \alpha}$ with both sides of above inequality, that there exists $M_{6}>0$ such that

$$
\begin{equation*}
\left|L C^{(k)}\right|^{-2 \alpha} \sum_{n=1}^{T} H\left(n, L C^{(k)}\right)=\left|C^{(k)}\right|^{-2 \alpha} \sum_{n=1}^{T} H\left(n, L w^{(k)}(n)\right) \leq M_{6} \tag{3.18}
\end{equation*}
$$

as $\left|C^{(k)}\right| \rightarrow \infty$. This is a contradiction with $\left(\mathrm{H}_{3}\right)$, consequently, $\left\|x^{(k)}\right\|$ is bounded. Thus we conclude that the Palais-Smale condition is satisfied.

In order to use the saddle point theorem (see [20, Theorem 4.6]), we only need to verify the following:
$\left(\mathrm{F}_{1}\right) F(x) \rightarrow-\infty$ as $\|x\| \rightarrow \infty$ in $X_{1}=E_{T}^{-}$,
$\left(\mathrm{F}_{2}\right) F(x) \rightarrow+\infty$ as $\|x\| \rightarrow \infty$ in $X_{2}=E_{T}^{0} \oplus E_{T}^{+}$.
In fact, for $v \in E_{T}^{-}$, there exists $M_{7}>0$ such that

$$
\begin{align*}
F(v) & =\frac{1}{2} \sum_{n=1}^{T}(J \Delta L v(n-1), v(n))+\sum_{n=1}^{T}[H(n, L v(n))-H(n, 0)]+\sum_{n=1}^{T} H(n, 0) \\
& \leq-\frac{\lambda_{1}}{2}\|v\|^{2}+\sum_{n=1}^{T} \int_{0}^{1}|\nabla H(n, s L v(n))| \cdot|L v(n)| d s+\sum_{n=1}^{T} H(n, 0) \tag{3.19}\\
& \leq-\frac{\lambda_{1}}{2}\|v\|^{2}+\frac{M_{0}}{C_{1}^{\alpha+1}}\|v\|^{\alpha+1}+M_{1} \sqrt{T}\|v\|+M_{7} \longrightarrow-\infty
\end{align*}
$$

as $\|v\| \rightarrow \infty$. Thus $\left(\mathrm{F}_{1}\right)$ is verified.
Next, for all $u+w \in E_{T}^{+} \oplus E_{T}^{0}$, we have

$$
\begin{align*}
F(u+ & w) \\
= & \frac{1}{2} \sum_{n=1}^{T}(J \Delta L u(n-1), u(n))+\sum_{n=1}^{T}[H(n, L u(n)+L w(n))-H(n, L w(n))] \\
& +\sum_{n=1}^{T} H(n, L w(n)) \\
\geq & \frac{\lambda_{1}}{2}\|u\|^{2}-\sum_{n=1}^{T} \int_{0}^{1}|\nabla H(n, L w(n)+s L u(n))| \cdot|L u(n)| d s+\sum_{n=1}^{T} H(n, L w(n)) \\
& \geq \frac{\lambda_{1}}{4}\|u\|^{2}-\frac{M_{0}}{C_{1}^{\alpha+1}}\|u\|^{\alpha+1}-M_{1} \sqrt{T}\|u\|-\frac{4 M_{0}^{2} T}{\lambda_{1}}|C|^{2 \alpha}+\sum_{n=1}^{T} H(n, L C) . \tag{3.20}
\end{align*}
$$

Since $1 \leq \alpha+1<2$,

$$
\begin{equation*}
\frac{\lambda_{1}}{4}\|u\|^{2}-\frac{2 M_{0}}{C_{1}^{\alpha+1}}\|u\|^{\alpha+1}-M_{1} \sqrt{T}\|u\| \longrightarrow+\infty, \quad\|u\| \longrightarrow \infty . \tag{3.21}
\end{equation*}
$$

By $\left(\mathrm{H}_{3}\right)$ we have

$$
\begin{align*}
& |L C|^{-2 \alpha}\left[\sum_{n=1}^{T} H(n, L C)-\frac{4 M_{0}^{2} T}{\lambda_{1}}|C|^{2 \alpha}\right] \\
& \quad=|L C|^{-2 \alpha} \sum_{n=1}^{T} H(n, L C)-\frac{4 M_{0}^{2} T}{\lambda_{1}} \longrightarrow+\infty, \quad|C| \longrightarrow \infty . \tag{3.22}
\end{align*}
$$

Then we have

$$
\begin{align*}
& \sum_{n=1}^{T} H(n, L C)-\frac{4 M_{0}^{2} T}{\lambda_{1}}|C|^{2 \alpha} \tag{3.23}\\
& \quad=|L C|^{2 \alpha}|L C|^{-2 \alpha}\left[\sum_{n=1}^{T} H(n, L C)-\frac{4 M_{0}^{2} T}{\lambda_{1}}|C|^{2 \alpha}\right] \longrightarrow+\infty, \quad|C| \longrightarrow \infty .
\end{align*}
$$

Since $\|u+w\| \rightarrow \infty$ is equivalent to $\|u\|^{2}+T|C|^{2} \rightarrow \infty$, we have

$$
\begin{equation*}
F(u+w) \longrightarrow+\infty, \quad\|u+w\| \longrightarrow \infty \tag{3.24}
\end{equation*}
$$

which implies that $\left(\mathrm{F}_{2}\right)$ is verified. Then the proof of Theorem 1.1 is finished.
Proof of Corollary 1.3. Let $G(x)=-F(x)$, by a similar argument to the proof of Theorem 1.1, we can prove that G satisfies the Palais-Smale condition and $G(x) \rightarrow+\infty$ as $\|x\| \rightarrow \infty$ in $X_{2}=E_{T}^{0} \oplus E_{T}^{-}$and $G(x) \rightarrow-\infty$ as $\|x\| \rightarrow \infty$ in $X_{1}=E_{T}^{+}$. Corollary 1.3 is completed.

Proof of Theorem 1.5. As we all know, a deformation lemma can be proved with the weaker (C) condition which is introduced in [21] replacing the usual Palais-Smale condition, and the saddle point theorem holds true under (C) condition.

First, we prove that F satisfied (C) condition, that is, any sequence $\left\{x^{(k)}\right\} \subset E_{T}$ for which $F\left(x^{(k)}\right)$ is bounded and $\left(1+\left\|x^{(k)}\right\|\right)\left\|F^{\prime}\left(x^{(k)}\right)\right\| \rightarrow 0(k \rightarrow \infty)$ possesses a convergent subsequence in E_{T}.

Then there exists constant $C_{3}>0$ such that

$$
\begin{equation*}
\left|F\left(x^{(k)}\right)\right| \leq C_{3}, \quad\left(1+\left\|x^{(k)}\right\|\right)\left\|F^{\prime}\left(x^{(k)}\right)\right\| \leq C_{3} . \tag{3.25}
\end{equation*}
$$

Thus

$$
\begin{align*}
-3 C_{3} & \leq-\left(1+\left\|x^{(k)}\right\|\right)\left\|F^{\prime}\left(x^{(k)}\right)\right\|-2\left|F\left(x^{(k)}\right)\right| \\
& \leq\left\langle F^{\prime}\left(x^{(k)}\right), x^{(k)}\right\rangle-2 F\left(x^{(k)}\right) \\
& =\sum_{n=1}^{T}\left[\left(\nabla H\left(n, x^{(k)}(n)\right), L x^{(k)}(n)\right)-2 H\left(n, L x^{(k)}(n)\right)\right] . \tag{3.26}
\end{align*}
$$

Consequently, by $\left(\mathrm{H}_{5}\right)$ and (3.26), $\left\|x^{(k)}\right\|$ is bounded.
In fact, if $\left\|x^{(k)}\right\|$ is unbounded, without loss of generality, there exist integer $n_{1}>0$ and constant $C_{4}>0$ such that $\left|x^{(k)}(n)\right| \rightarrow \infty$ for all $T \geq n>n_{1}$ and $\left|x^{(k)}(n)\right| \leq C_{4}$ for all $1 \leq n \leq n_{1}$.

When $T \geq n>n_{1}$, by $\left(\mathrm{H}_{5}\right)$, one can obtain

$$
\begin{equation*}
\left(\nabla H\left(n, x^{(k)}(n)\right), L x^{(k)}(n)\right)-2 H\left(n, L x^{(k)}(n)\right) \longrightarrow-\infty . \tag{3.27}
\end{equation*}
$$

When $1 \leq n \leq n_{1}$, by the differential of $H(n, z)$ in z, there exists constant $C_{5}>0$ such that

$$
\begin{equation*}
\left|\left(\nabla H\left(n, x^{(k)}(n)\right), L x^{(k)}(n)\right)-2 H\left(n, L x^{(k)}(n)\right)\right| \leq C_{5} . \tag{3.28}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\sum_{n=1}^{T}\left[\left(\nabla H\left(n, x^{(k)}(n)\right), L x^{(k)}(n)\right)-2 H\left(n, L x^{(k)}(n)\right)\right] \longrightarrow-\infty \tag{3.29}
\end{equation*}
$$

which is contrary to (3.26), so $\left\|x^{(k)}\right\|$ is bounded.
Then as a consequence in finite dimensional space $E_{T},\left\{x^{(k)}\right\}$ has a convergent subsequence and thus (C) condition is verified.

Next we show that F satisfies $\left(\mathrm{F}_{1}\right)$ and $\left(\mathrm{F}_{2}\right)$.
By $\left(\mathrm{H}_{4}\right)$, there exists $\mathrm{C}_{6}>0$ such that

$$
\begin{equation*}
|H(n, z)| \leq \frac{\lambda_{1}}{4}|z|^{2}+C_{6}, \quad \forall(n, z) \in \mathbb{Z} \times \mathbb{R}^{2 N} \tag{3.30}
\end{equation*}
$$

Then

$$
\begin{align*}
F(v) & =\frac{1}{2} \sum_{n=1}^{T}(J \Delta L v(n-1), v(n))+\sum_{n=1}^{T} H(n, L v(n)) \tag{3.31}\\
& \leq-\frac{\lambda_{1}}{2}\|v\|^{2}+\frac{\lambda_{1}}{4}\|v\|^{2}+T C_{6} \longrightarrow-\infty
\end{align*}
$$

as $\|v\| \rightarrow \infty$ for $v \in X_{1}=E_{T}^{-}$. Therefore, $\left(\mathrm{F}_{1}\right)$ is verified.
Conditions $\left(\mathrm{H}_{4}\right)$ and $\left(\mathrm{H}_{5}\right)$ imply that $H(n, z) \rightarrow+\infty$ as $|z| \rightarrow \infty$ for all $n \in \mathbb{Z}(1, T)$.
In fact, let $s>1$, from $\left(\mathrm{H}_{5}\right)$, for all $\epsilon>0$ there exists constant $C_{7}>0$ such that

$$
\begin{equation*}
(\nabla H(n, s z), s z)-2 H(n, s z) \leq-\frac{1}{\epsilon}, \quad \forall|z| \geq C_{7} \tag{3.32}
\end{equation*}
$$

then we have

$$
\begin{align*}
\frac{d}{d s}\left(\frac{H(n, s z)}{s^{2}}\right) & =\frac{(\nabla H(n, s z), s z)-2 H(n, s z)}{s^{3}} \\
& \leq-\frac{1}{\epsilon s^{3}}=\frac{d}{d s}\left(\frac{1}{2 \epsilon s^{2}}\right), \quad \forall|z| \geq C_{7} . \tag{3.33}
\end{align*}
$$

By integrating both sides of the above inequality from 1 to s, we can obtain

$$
\begin{equation*}
\frac{H(n, s z)}{s^{2}}-H(n, z) \leq \frac{1}{2 \epsilon s^{2}}-\frac{1}{2 \epsilon}, \quad \forall|z| \geq C_{7} . \tag{3.34}
\end{equation*}
$$

By $\left(\mathrm{H}_{4}\right)$, we have

$$
\begin{equation*}
\frac{H(n, s z)}{s^{2}} \longrightarrow 0, \quad s \longrightarrow \infty \tag{3.35}
\end{equation*}
$$

Then

$$
\begin{equation*}
H(n, z) \geq \frac{1}{2 \epsilon}, \quad \forall|z| \geq C_{7} . \tag{3.36}
\end{equation*}
$$

From the arbitrariness of ϵ, one can conclude that

$$
\begin{equation*}
H(n, z) \longrightarrow+\infty, \quad|z| \longrightarrow \infty \tag{3.37}
\end{equation*}
$$

for all $n \in \mathbb{Z}(1, T)$.
Thus, thanks to Lemma 2.2, one has

$$
\begin{equation*}
F(u+w) \geq \sum_{n=1}^{T} H(n, L u(n)+L w(n)) \longrightarrow+\infty \tag{3.38}
\end{equation*}
$$

as $\|u+w\| \rightarrow \infty$ for $u+w \in X_{2}=E_{T}^{+} \oplus E_{T}^{0}$, which implies that $\left(\mathrm{F}_{2}\right)$ is verified. The proof of Theorem 1.5 is finished.

Proof of Corollary 1.6. Let $G(x)=-F(x), X_{1}=E_{T}^{+}$, and $X_{2}=E_{T}^{-} \oplus E_{T}^{0}$, by a similar argument to the proof of Theorem 1.5, we can prove that Corollary 1.6 holds.

Proof of Corollary 1.7. By $\left(\mathrm{H}_{4}^{\prime}\right)$, for all $\varepsilon>0$ there exist $\theta \in(0,1), R_{2}>0$, and $C_{8}>0$ such that

$$
\begin{align*}
H(n, z) & =H(n, 0)+\int_{0}^{1}(\nabla H(n, \theta z), z) d \theta \\
& \leq \int_{0}^{1}|\nabla H(n, \theta z)| \cdot|z| d \theta+C_{8} \tag{3.39}\\
& \leq \int_{0}^{1} \varepsilon \theta|z|^{2} d \theta+C_{8} \\
& \leq \varepsilon|z|^{2}+C_{8}, \quad|z| \geq \frac{R_{2}}{\theta}>R_{2}
\end{align*}
$$

which implies that $\left(\mathrm{H}_{4}\right)$ holds. Then it follows from Theorem 1.5 and Corollary 1.6 that Corollary 1.7 holds.

Proof of Corollary 1.8. From $\left(\mathrm{H}_{7}\right)$, there exists $\mathrm{C}_{9}>0$ such that

$$
\begin{equation*}
H(n, z)>0, \quad \forall|z| \geq C_{9}, \quad \forall n \in \mathbb{Z}(1, T) \tag{3.40}
\end{equation*}
$$

Setting $R_{2}=\max \left\{R_{1}, C_{9}\right\}$, by $\left(\mathrm{H}_{6}\right)$, we have

$$
\begin{equation*}
\left(\frac{\nabla H(n, z)}{H(n, z)}, \frac{z}{|z|}\right) \leq \frac{\beta}{|z|}, \quad \forall n \in \mathbb{Z}(1, T),|z| \geq R_{2} . \tag{3.41}
\end{equation*}
$$

Then

$$
\begin{equation*}
\frac{d \ln H(n, z)}{d|z|} \leq \frac{\beta}{|z|}, \quad \forall n \in \mathbb{Z}(1, T),|z| \geq R_{2}, \tag{3.42}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\frac{d}{d|z|}(\ln H(n, z)-\beta \ln |z|) \leq 0, \quad \forall n \in \mathbb{Z}(1, T),|z| \geq R_{2} \tag{3.43}
\end{equation*}
$$

Let $I=\max \left\{\ln H(n, z)-\beta \ln |z|:|z|=R_{2}\right\}$, by (3.43),

$$
\begin{equation*}
\ln H(n, z)-\beta \ln |z| \leq I, \quad \forall n \in \mathbb{Z}(1, T),|z| \geq R_{2} . \tag{3.44}
\end{equation*}
$$

That is,

$$
\begin{equation*}
0<H(n, z) \leq C_{10}|z|^{\beta}, \quad \forall n \in \mathbb{Z}(1, T),|z| \geq R_{2}, \tag{3.45}
\end{equation*}
$$

where $C_{10}=e^{I}$. Thus we have

$$
\begin{equation*}
0<\frac{H(n, z)}{|z|^{2}} \leq \frac{C_{10}|z|^{\beta}}{|z|^{2}}, \quad \forall n \in \mathbb{Z}(1, T),|z| \geq R_{2} . \tag{3.46}
\end{equation*}
$$

Since $\beta \in(0,2)$, from above inequality, we can conclude that

$$
\begin{equation*}
\frac{H(n, z)}{|z|^{2}} \longrightarrow 0 \tag{3.47}
\end{equation*}
$$

as $|z| \rightarrow \infty$, which implies $\left(\mathrm{H}_{4}\right)$.
Since $\beta \in(0,2)$, it follows from $\left(\mathrm{H}_{6}\right)$ and $\left(\mathrm{H}_{7}\right)$ that

$$
\begin{equation*}
(\nabla H(n, z), z)-2 H(n, z) \leq(\beta-2) H(n, z) \longrightarrow-\infty \tag{3.48}
\end{equation*}
$$

as $|z| \rightarrow \infty$ for all $n \in \mathbb{Z}(1, T)$, which implies $\left(\mathrm{H}_{5}\right)$.
Then the result of Corollary 1.8 holds by using Theorem 1.5.
Finally, we give two examples to illustrate our conclusions.
Example 3.1. Consider the system (1.1) with

$$
\begin{equation*}
H(n, z)=|z|^{4 / 3}+(e(n), z), \quad n \in \mathbb{Z}, z \in \mathbb{R}^{2 N} \tag{3.49}
\end{equation*}
$$

where $e(n+T)=e(n) \in \mathbb{R}^{2 N}$.
Let $\bar{e}=\max _{n \in \mathbb{Z}(1, T)}|e(n)|, \alpha=1 / 3$, then we have

$$
\begin{gather*}
|\nabla H(n, z)| \leq \frac{4}{3}|z|^{1 / 3}+\bar{e}, \quad \forall(n, z) \in \mathbb{Z} \times \mathbb{R}^{2 N}, \\
|z|^{-2 / 3} \sum_{n=1}^{T} H(n, z)=\sum_{n=1}^{T}|z|^{2 / 3}+\sum_{n=1}^{T}|z|^{-2 / 3}(e(n), z) \geq T\left(|z|^{2 / 3}-\bar{e}|z|^{1 / 3}\right) \longrightarrow+\infty \tag{3.50}
\end{gather*}
$$

as $|z| \rightarrow \infty$.
Thus it follows from Theorem 1.1 that (1.1) with H as defined in (3.49) possesses at least one T-periodic solution.

Example 3.2. Consider the system (1.1) with

$$
\begin{equation*}
H(n, z)=(g(n)+|z|) \ln \left(1+|z|^{2}\right)+(h(n), z), \quad \forall(n, z) \in \mathbb{Z} \times \mathbb{R}^{2 N}, \tag{3.51}
\end{equation*}
$$

where $g(n+T)=g(n) \in \mathbb{R}^{2 N}, g(n)>0$, and $h(n+T)=h(n) \in \mathbb{R}^{2 N}$ for all $n \in \mathbb{Z}$.

It is easy to see that $H(n, z) /|z|^{2} \rightarrow 0$ as $|z| \rightarrow \infty$, which implies that condition $\left(\mathrm{H}_{4}\right)$ holds.

At last, we have

$$
\begin{align*}
& (\nabla H(n, z), z)-2 H(n, z) \\
& \quad=-(2 g(n)+|z|) \ln \left(1+|z|^{2}\right)+\frac{2(g(n)+|z|)|z|^{2}}{1+|z|^{2}}-(h(n), z) \tag{3.52}\\
& \quad \leq-(2 g(n)+|z|) \ln \left(1+|z|^{2}\right)+2(g(n)+|z|)-(h(n), z) \longrightarrow-\infty
\end{align*}
$$

as $|z| \rightarrow \infty$. So (H_{5}) holds.
Thus, it follows from Theorem 1.5 that (1.1) with H as defined in (3.51) possesses at least one T-periodic solution.

Acknowledgments

The author would like to thank the referee for valuable suggestions. This project is supported by National Natural Science Foundation of China (no. 10471029).

References

[1] A. Daouas and M. Timoumi, "Subharmonics for not uniformly coercive Hamiltonian systems," Nonlinear Analysis: Theory, Methods \& Applications, vol. 66, no. 3, pp. 571-581, 2007.
[2] P. H. Rabinowitz, "On subharmonic solutions of Hamiltonian systems," Communications on Pure and Applied Mathematics, vol. 33, no. 5, pp. 609-633, 1980.
[3] E. A. Silva, "Subharmonic solutions for subquadratic Hamiltonian systems," Journal of Differential Equations, vol. 115, no. 1, pp. 120-145, 1995.
[4] Q. Jiang and C.-L. Tang, "Periodic and subharmonic solutions of a class of subquadratic secondorder Hamiltonian systems," Journal of Mathematical Analysis and Applications, vol. 328, no. 1, pp. 380-389, 2007.
[5] C.-L. Tang, "Periodic solutions for nonautonomous second order systems with sublinear nonlinearity," Proceedings of the American Mathematical Society, vol. 126, no. 11, pp. 3263-3270, 1998.
[6] C.-L. Tang and X.-P. Wu, "Periodic solutions for a class of nonautonomous subquadratic second order Hamiltonian systems," Journal of Mathematical Analysis and Applications, vol. 275, no. 2, pp. 870-882, 2002.
[7] C.-L. Tang and X.-P. Wu, "Notes on periodic solutions of subquadratic second order systems," Journal of Mathematical Analysis and Applications, vol. 285, no. 1, pp. 8-16, 2003.
[8] C.-L. Tang and X.-P. Wu, "Subharmonic solutions for nonautonomous sublinear second order Hamiltonian systems," Journal of Mathematical Analysis and Applications, vol. 304, no. 1, pp. 383-393, 2005.
[9] Z. Guo and J. Yu, "Periodic and subharmonic solutions for superquadratic discrete Hamiltonian systems," Nonlinear Analysis: Theory, Methods \& Applications, vol. 55, no. 7-8, pp. 969-983, 2003.
[10] J. Yu, H. Bin, and Z. Guo, "Multiple periodic solutions for discrete Hamiltonian systems," Nonlinear Analysis: Theory, Methods \& Applications, vol. 66, no. 7, pp. 1498-1512, 2007.
[11] Z. Guo and J. Yu, "Existence of periodic and subharmonic solutions for second-order superlinear difference equations," Science in China. Series A, vol. 46, no. 4, pp. 506-515, 2003.
[12] J. Yu, X. Deng, and Z. Guo, "Periodic solutions of a discrete Hamiltonian system with a change of sign in the potential," Journal of Mathematical Analysis and Applications, vol. 324, no. 2, pp. 1140-1151, 2006.
[13] Z. Zhou, J. Yu, and Z. Guo, "The existence of periodic and subharmonic solutions to subquadratic discrete Hamiltonian systems," The ANZIAM Journal, vol. 47, no. 1, pp. 89-102, 2005.
[14] Z. Guo and J. Yu, "The existence of periodic and subharmonic solutions of subquadratic second order difference equations," Journal of the London Mathematical Society, vol. 68, no. 2, pp. 419430, 2003.
[15] J. Rodriguez and D. L. Etheridge, "Periodic solutions of nonlinear second-order difference equations," Advances in Difference Equations, vol. 2005, no. 2, pp. 173-192, 2005.
[16] Z. Zhou, J. Yu, and Z. Guo, "Periodic solutions of higher-dimensional discrete systems," Proceedings of the Royal Society of Edinburgh. Section A, vol. 134, no. 5, pp. 1013-1022, 2004.
[17] R. P. Agarwal, K. Perera, and D. O'Regan, "Multiple positive solutions of singular and nonsingular discrete problems via variational methods," Nonlinear Analysis: Theory, Methods \& Applications, vol. 58, no. 1-2, pp. 69-73, 2004.
[18] R. P. Agarwal, K. Perera, and D. O'Regan, "Multiple positive solutions of singular discrete pLaplacian problems via variational methods," Advances in Difference Equations, vol. 2005, no. 2, pp. 93-99, 2005.
[19] Y.-F. Xue and C.-L. Tang, "Existence of a periodic solution for subquadratic second-order discrete Hamiltonian system," Nonlinear Analysis: Theory, Methods \& Applications, vol. 67, no. 7, pp. 2072-2080, 2007.
[20] J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, vol. 74 of Applied Mathematical Sciences, Springer, New York, NY, USA, 1989.
[21] G. Cerami, "An existence criterion for the critical points on unbounded manifolds," Istituto Lombardo. Accademia di Scienze e Lettere. Rendiconti. A, vol. 112, no. 2, pp. 332-336, 1978 (Italian).

Xiaoqing Deng: College of Mathematics and Econometrics, Hunan University, Changsha 410082, China; Department of Information, Hunan Business College, Changsha 410205, China
Email address: dengxq924@163.com

