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1. Introduction and statement of main results

We denoteN, Z, R, C by the set of all natural numbers, integers, real, and complex num-
bers, respectively. For a,b∈Z, define Z(a)={a,a+1, . . .}, Z(a,b)={a,a+1, . . . ,b} when
a≤ b.

Consider the nonautonomous first-order discrete Hamiltonian systems

JΔx(n) +∇H(n,Lx(n))= 0, n∈ Z, (1.1)

where J = ( 0 −IN
IN 0

)
, x(n) = ( x1(n)x2(n)

)
, xi(n) ∈ RN , i = 1,2,N is a given positive integer and

IN denotes the N ×N identity matrix, Δx(n)= x(n+1)− x(n), Lx(n)= ( x1(n+1)x2(n)

)
, for all

n∈ Z, and H ∈ C1(Z×R2N ,R). For a given integer T > 0, we suppose that H(n+T ,z)=
H(n,z) for all n ∈ Z and z ∈ R2N , and ∇H(n,z) denotes the gradient of H(n,z) in z ∈
R2N .

Our purpose is to establish the existence of T-periodic solutions of (1.1) where H is
subquadratic.
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Let H(n,Lx(n)) =H(n,x1(n+ 1),x2(n)) = (1/2)|x1(n+ 1)|2 +V(n,x2(n)) with x1(n+
1)= Δx2(n), where V ∈ C1(Z×RN ,R) is T-periodic in n, and∇V(n,z) denotes the gra-
dient of V(n,z) in z ∈RN . Then, from (1.1) we obtain

Δ2x2(n− 1)+∇V(n,x2(n)
)= 0, n∈ Z, x2(n)∈RN . (1.2)

As the author knows, in the past two decades, there has been a large number of papers
devoted to the existence of periodic and subharmonic solutions for subquadratic first-
order (see [1–3]) or second-order (see [4–8]) continuous Hamiltonian systems by using
the critical point theory.

On the other hand, in the last five years, by using the critical point theory, the study
of existence conditions of periodic and subharmonic solutions for discrete Hamiltonian
systems developed rapidly, such as the superquadratic condition for (1.1) (see [9, 10])
or (1.2) (see [11, 12]), the subquadratic condition for (1.1) in [13] or (1.2) in [14, 15],
neither superquadratic nor subquadratic condition for (1.2) in [16]. As for the existence
of positive solutions of (1.2) with boundary value condition, we can refer to [17, 18].

Recently, in [19] Xue and Tang established the existence of periodic solution for the
second-order subquadratic discrete Hamiltonian system (1.2) and generalized the results
in [14]. Here, we extend their results to the first-order subquadratic discrete Hamiltonian
system (1.1). Our results are more general than those in the literature [13].

Now, we state our main results below.

Theorem 1.1. Suppose that H(n,z) satisfies the following.
(H1) There exists an integer T > 0 such thatH(n+T ,z)=H(n,z) for all (n,z)∈ Z×R2N ,
(H2) there are constantsM0 > 0,M1 > 0, and 0≤ α < 1 such that

∣
∣∇H(n,z)

∣
∣≤M0|z|α +M1, ∀(n,z)∈ Z×R2N , (1.3)

(H3) |z|−2α
∑T

n=1H(n,z)→ +∞ as |z| →∞.
Then problem (1.1) possesses at least one T-periodic solution.

Remark 1.2. Theorem 1.1 extends [13, Theorem 1.1] which is the special case of this
theorem by letting α= 0.

Corollary 1.3. If H(n,z) satisfies (H1)-(H2) and
(H′

3) |z|−2α
∑T

n=1H(n,z)→−∞ as |z| →∞,
then the conclusion of Theorem 1.1 holds.

Remark 1.4. Corollary 1.3 extends [13, Corollary 1.1] which is the special case of this
corollary by letting α= 0.

Theorem 1.5. Suppose that H(n,z) satisfies (H1) and
(H4) lim|z|→∞(H(n,z)/|z|2)= 0 for all n∈ Z(1,T),
(H5) lim|z|→∞[(∇H(n,z),z)− 2H(n,z)]=−∞ for all n∈ Z(1,T).

Then problem (1.1) has at least one T-periodic solution.

Corollary 1.6. If H(n,z) satisfies (H1), (H4), and
(H′

5) lim|z|→∞[(∇H(n,z),z)− 2H(n,z)]= +∞ for all n∈ Z(1,T),
then the conclusion of Theorem 1.5 holds.



Xiaoqing Deng 3

Corollary 1.7. If H(n,z) satisfies (H1), (H5), or (H′5), and
(H′

4) lim|z|→∞(|∇H(n,z)|/|z|)= 0 for all n∈ Z(1,T),
then the conclusion of Theorem 1.5 holds.

Corollary 1.8. If H(n,z) satisfies (H1) and
(H6) there exist constants 0 < β < 2 and R1 > 0 such that for all (n,z)∈ Z×R2N ,

(∇H(n,z),z
)≤ βH(n,z), ∀|z| ≥ R1, (1.4)

(H7) H(n,z)→ +∞ as |z| →∞ for all n∈ Z(1,T),
then the conclusion of Theorem 1.5 holds.

Remark 1.9. Comparing [13, Theorem 1.3] with Corollary 1.8, we extend the interval in
which β is and delete the constraint of (∇H(n,z),z) > 0. Furthermore, condition (H7) is
more general than condition (H6) of [13, Theorem 1.3].

2. Variational structure and some lemmas

In order to apply critical point theory, we need to state the corresponding Hilbert space
and to construct a variational functional. Then we reduce the problem of finding the
T-periodic solutions of (1.1) to the one of seeking the critical points of the functional.

First we give some notations. Let N be a given positive integer, and

S=
{

x = {x(n)} : x(n)=
(
x1(n)
x2(n)

)

∈R2N , xi(n)∈RN , i= 1,2, n∈ Z

}

. (2.1)

For any x, y ∈ S, a,b ∈R, ax+ by is defined by

ax+ by �
{
ax(n) + by(n)

}
. (2.2)

Then S is a vector space.
For any given positive integer T > 0, ET is defined as a subspace of S by

ET =
{
x = {x(n)}∈ S : x(n+T)= x(n), n∈ Z

}
(2.3)

with the inner product 〈·,·〉 and norm ‖ · ‖ as follows:

〈x, y〉 =
T∑

n=1

(
x(n), y(n)

)
, ‖x‖ =

( T∑

n=1

∣
∣x(n)

∣
∣2
)1/2

, ∀x, y ∈ ET , (2.4)

where (·,·) and | · | denote the usual inner product and norm in R2N , respectively.
It is easy to see that (ET ,〈·,·〉) is a finite dimensional Hilbert space with dimen-

sion 2NT , which can be identified with R2NT . For convenience, we identify x ∈ ET with
x = (xτ(1),xτ(2), . . . ,xτ(T))τ , where x(n) = ( x1(n)x2(n)

) ∈ R2N , n ∈ Z(1,T), and (·)τ is the
transpose of a vector or a matrix.

Define another norm in ET as

‖x‖r =
( T∑

n=1

∣
∣x(n)

∣
∣r
)1/r

, ∀x ∈ ET (2.5)
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for r > 1. Obviously, ‖x‖2 = ‖x‖ and (ET ,‖ · ‖) is equivalent to (ET ,‖ · ‖r). Hence there
exist C1 > 0 and C2 ≥ C1 > 0 such that

C1‖x‖r ≤ ‖x‖ ≤ C2‖x‖r , ∀x ∈ ET. (2.6)

Let C1 = T−1, C2 = T , one can see that the above inequality holds. In fact, define
‖x‖∞ = supn∈Z(1,T) |x(n)|, since T is a positive integer and r > 1, one can get that

‖x‖∞ ≤ ‖x‖r ≤ T1/r‖x‖∞ ≤ T‖x‖∞. (2.7)

Then we can obtain

‖x‖∞ ≤ ‖x‖ ≤
√
T‖x‖∞ ≤ T‖x‖∞ ≤ T‖x‖r ,

T−1‖x‖r ≤ ‖x‖∞ ≤ ‖x‖.
(2.8)

For T > 0, we define the functional F(x) on ET as

F(x)= 1
2

T∑

n=1

(
JΔLx(n− 1),x(n)

)
+

T∑

n=1
H
(
n,Lx(n)

)
, ∀x ∈ ET. (2.9)

Then we have F ∈ C1(ET ,R) and

〈
F′(x), y

〉=
T∑

n=1

(
JΔLx(n− 1), y(n)

)
+

T∑

n=1

(∇H(n,Lx(n)),Ly(n))

=
T∑

n=1

(
JΔx(n),Ly(n)

)
+

T∑

n=1

(∇H(n,Lx(n)),Ly(n))
(2.10)

for all x, y ∈ ET . Obviously, for any x ∈ ET , F′(x)= 0 if and only if

JΔx(n) +∇H(n,Lx(n))= 0 (2.11)

for all n∈ Z(1,T). Therefore, the problem of finding the T-periodic solution for (1.1) is
reduced to the one of seeking the critical point of functional F.

Next, we construct a variational structure by using the operator theory which is differ-
ent from the one in [9, 10, 13].

Consider the eigenvalue problem

JΔLx(n− 1)= λx(n), x(n+T)= x(n). (2.12)

Setting

A(λ)=
(

IN λIN
−λIN

(
1− λ2

)
IN

)

, (2.13)

then the problem (2.12) is equivalent to

x(n+1)= A(λ)x(n), x(n+T)= x(n). (2.14)
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As we all know, the solution of problem (2.14) is denoted by x(n)= μnC with C = x(0)∈
R2N , where μ is the eigenvalue of A(λ) and μT = 1. Then it follows from μTk = 1 and
|A(λk)−μkI2N | = 0 that μk = exp(kωi) with ω = 2π/T and λk = 2sin(kπ/T) with λT−k =
λk for all k ∈ Z(−[T/2],[T/2]), where [·] is Gauss function.

Now we give some lemmas which will be important in the proofs of the results of the
paper.

Lemma 2.1. Set Hk = {x ∈ ET : JΔLx(n− 1)= λkx(n) for all k ∈ Z(−[T/2],[T/2])}. Then

Hk ⊥Hj , ∀k, j ∈ Z
(
−
[
T

2

]
,
[
T

2

])
, k �= j, (2.15)

ET =
[T/2]⊕

k=−[T/2]
Hk. (2.16)

Proof. For all x ∈Hk, y ∈Hj , we have

λk〈x, y〉 =
T∑

n=1

(
λkx(n), y(n)

)=
T∑

n=1

(
JΔLx(n− 1), y(n)

)

=
T∑

n=1

(
x(n), JΔLy(n− 1)

)= λj〈x, y〉.
(2.17)

Since λk �= λj , we have 〈x, y〉 = 0, that is, Hk ⊥Hj , then (2.15) holds.
Next we consider the elements of Hk for all k ∈ Z(−[T/2],[T/2]).

Case 1. For all x ∈H0, it follows from μ0 = 1 that

H0 =
{
x ∈ ET : x(n)≡ x(0)= C ∈R2N}, (2.18)

and dimH0 = 2N .

Case 2. T is even. For k = [T/2] = T/2, it follows from λT/2 = 2, μT/2 = −1, and (A(2) +
IN )C = 0 that C = (ρτ ,−ρτ)τ with ρ ∈RN . Therefore,

H[T/2] =
{
x ∈ ET : x(n)= (−1)n(ρτ ,−ρτ)τ , ρ ∈RN

}
, (2.19)

and dimH[T/2] =N . Similarly, for k =−[T/2]=−T/2, we have

H−[T/2] =
{
x ∈ ET : x(n)= (−1)n(ρτ ,ρτ)τ , ρ∈RN

}
, (2.20)

and dimH−[T/2] =N .

T is odd. Similarly, for k = [T/2]= (T − 1)/2, we have

H[T/2] =
{
x ∈ ET : x(n)= exp

(
n(T − 1)πi

T

)(
ρτ ,−exp

(
− πi

2T

)
ρτ
)τ
, ρ∈ CN

}
,

(2.21)
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and dimH[T/2] = 2N . For k =−[T/2]=−(T − 1)/2, we have

H−[T/2] =
{
x ∈ ET : x(n)= exp

(
− n(T − 1)πi

T

)(
ρτ , exp

(
πi

2T

)
ρτ
)τ
, ρ∈ CN

}
,

(2.22)

and dimH−[T/2] = 2N .

Case 3. For k ∈ Z(1,[T/2]− 1)∪ Z(−[T/2] + 1,−1), it follows from λk = 2sin(kπ/T),
μk = exp(2kπi/T), and (A(λk)−μkI2N )C = 0 that

Hk =
{
x ∈ ET : x(n)= exp

(
2knπi
T

)(
ρτ ,−exp

(
−
(
π

2
− kπ

T

)
i
)
ρτ
)τ
, ρ∈ CN

}
,

(2.23)

and dimHk = 2N .

Thus, from Cases 1, 2, and 3, we have

dim
[T/2]⊕

k=−[T/2]
Hk = 2N +2

([
T

2

]
− 1
)
× 2N +N +N = 2NT (2.24)

when T is even, and

dim
[T/2]⊕

k=−[T/2]
Hk = 2N +2

[
T

2

]
× 2N = 2NT (2.25)

when T is odd.
Since dimET = 2NT and

⊕[T/2]
k=−[T/2]Hk ⊆ ET , ET =

⊕[T/2]
k=−[T/2]Hk. Lemma 2.1 is com-

pleted. �

Let E0
T = H0, E+

T =
⊕[T/2]

k=1 Hk, and E−T =
⊕−1

k=−[T/2]Hk, then it is easy to obtain the
following lemma.

Lemma 2.2.

T∑

n=1

(
JΔLx(n− 1),x(n)

)= 0, ∀x ∈ E0
T ,

λ1‖x‖2 ≤
T∑

n=1

(
JΔLx(n− 1),x(n)

)≤ λ[T/2]‖x‖2, ∀x ∈ E+
T ,

−λ[T/2]‖x‖2 ≤
T∑

n=1

(
JΔLx(n− 1),x(n)

)≤−λ1‖x‖2, ∀x ∈ E−T ,

(2.26)

where 0 < λ1 < λ2 < ··· < λ[T/2].
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3. Proofs of the main theorems

Proof of Theorem 1.1. Let F(x) be defined as (2.9), clearly, F ∈ C1(ET ,R).
We will first show that F satisfies the Palais-Smale condition, that is, any sequence

{x(k)} ⊂ ET for which |F(x(k))| ≤M2 with constant M2 > 0 and F′(x(k))→ 0 (k →∞)
possesses a convergent subsequence in ET . Recall that ET is identified with R2NT . Conse-
quently, in order to prove that F satisfies Palais-Smale condition, we only need to prove
that {x(k)} is bounded.

Suppose that {x(k)} is unbounded, then we can assume, going to a subsequence if
necessary, that ‖x(k)‖→∞ as k→∞.

Let x(k) = u(k) + v(k) +w(k) = y(k) +w(k), where u(k) ∈ E+
T , v

(k) ∈ E−T , w(k) ∈ E0
T with

w(k)(n)≡ C(k) for all n∈ Z.
In view of (H2), we have

∣
∣
∣
∣
∣

T∑

n=1

[
H
(
n,Lx(k)(n)

)−H
(
n,Lw(k)(n)

)]
∣
∣
∣
∣
∣

≤
T∑

n=1

∫ 1

0

∣
∣∇H(n,Lw(k)(n) + sLy(k)(n)

)∣∣
∣
∣Ly(k)(n)

∣
∣ds

≤
T∑

n=1

∫ 1

0

[
M0
∣
∣Lw(k)(n) + sLy(k)(n)

∣
∣α +M1

]∣∣Ly(k)(n)
∣
∣ds

≤ 2M0

T∑

n=1

(∣∣Lw(k)(n)
∣
∣α +

∣
∣Ly(k)(n)

∣
∣α)
∣
∣Ly(k)(n)

∣
∣+

T∑

n=1
M1
∣
∣Ly(k)(n)

∣
∣

≤ 2M2
0

λ1

T∑

n=1

∣
∣Lw(k)(n)

∣
∣2α +

M0λ1
2M0

T∑

n=1

∣
∣Ly(k)(n)

∣
∣2

+ 2M0

T∑

n=1

∣
∣Ly(k)(n)

∣
∣α+1 +

T∑

n=1
M1
∣
∣Ly(k)(n)

∣
∣

≤ 2M2
0T

λ1

∣
∣C(k)

∣
∣2α +

λ1
2

∥
∥y(k)

∥
∥2 +

2M0

Cα+1
1

∥
∥y(k)

∥
∥α+1 +M1

√
T
∥
∥y(k)

∥
∥.

(3.1)

By using the same method, we can obtain

∣
∣
∣
∣
∣

T∑

n=1

(∇H(n,Lx(k)(n)),Lu(k)(n))
∣
∣
∣
∣
∣≤

2M2
0

λ1C
2α
1

∥
∥x(k)

∥
∥2α +

λ1
2

∥
∥u(k)

∥
∥2 +M1

√
T
∥
∥u(k)

∥
∥, (3.2)

∣
∣
∣
∣
∣

T∑

n=1

(∇H(n,Lx(k)(n)),Lv(k)(n))
∣
∣
∣
∣
∣≤

2M2
0

λ1C
2α
1

∥
∥x(k)

∥
∥2α +

λ1
2

∥
∥v(k)

∥
∥2 +M1

√
T
∥
∥v(k)

∥
∥. (3.3)

It follows from inequality (3.2) and

〈
F′(x), y

〉=
T∑

n=1

(
JΔLx(n− 1), y(n)

)
+

T∑

n=1

(∇H(n,Lx(n)),Ly(n)), ∀x, y ∈ ET (3.4)
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that

λ1
∥
∥u(k)

∥
∥2 ≤

T∑

n=1

(
JΔLx(k)(n− 1),u(k)(n)

)

= 〈F′(x(k)),u(k)〉−
T∑

n=1

(∇H(n,Lx(k)(n)),Lu(k)(n))

≤ ∥∥u(k)∥∥+ 2M2
0

λ1C
2α
1

∥
∥x(k)

∥
∥2α +

λ1
2

∥
∥u(k)

∥
∥2 +M1

√
T
∥
∥u(k)

∥
∥

(3.5)

for sufficiently large k. That is,

λ1
2

∥
∥u(k)

∥
∥2−

(
1+M1

√
T
)∥
∥u(k)

∥
∥≤ 2M2

0

λ1C
2α
1

∥
∥x(k)

∥
∥2α (3.6)

for k large enough. Since ‖x(k)‖ →∞ as k→∞, we can assume that ‖x(k)‖ ≥ 1 for suffi-
ciently large k. Therefore, for sufficiently large k, from the above inequality (3.6), there
exists a constantM3 > 0 such that

∥
∥u(k)

∥
∥≤M3

∥
∥x(k)

∥
∥α. (3.7)

In fact, if (3.7) is false, then there exists some subsequence of {x(k)}, still denoted by
{x(k)}, such that

∥
∥x(k)

∥
∥α

∥
∥u(k)

∥
∥ −→ 0, k −→∞. (3.8)

Thanks to the inequality (3.6), one has

λ1
2
≤ 2M2

0

λ1C
2α
1

(∥∥x(k)
∥
∥α

∥
∥u(k)

∥
∥

)2
+
1+M1

√
T

∥
∥u(k)

∥
∥ (3.9)

for k large enough. Obviously, the above two inequalities imply that ‖x(k)‖ is bounded
for sufficiently large k, which is contradictory with the assumption that ‖x(k)‖ → ∞ as
k→∞.

Therefore, (3.7) is true, and then we have
∥
∥u(k)

∥
∥

∥
∥x(k)

∥
∥ −→ 0, k −→∞. (3.10)

Similarly, from inequality (3.3) and equality (2.10), there exists a constantM′
3 > 0 such

that
∥
∥v(k)

∥
∥≤M′

3

∥
∥x(k)

∥
∥α (3.11)

for sufficiently large k, and then
∥
∥v(k)

∥
∥

∥
∥x(k)

∥
∥ −→ 0, k −→∞. (3.12)
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It follows from (3.10) and (3.12) that
∥
∥w(k)

∥
∥

∥
∥x(k)

∥
∥ −→ 1, k −→∞, (3.13)

and then (3.7) and (3.11) mean that there existsM4 > 0 such that
∥
∥y(k)

∥
∥= ∥∥u(k)∥∥+∥∥v(k)∥∥≤ 2M4T

α/2
∣
∣C(k)

∣
∣α (3.14)

for sufficiently large k. Therefore, from (3.1), we have

∣
∣
∣
∣
∣

T∑

n=1

[
H
(
n,Lx(k)(n)

)−H
(
n,Lw(k)(n)

)]
∣
∣
∣
∣
∣

≤
(
2M2

0T

λ1
+ 2λ1M2

4T
α
)∣
∣C(k)

∣
∣2α +

2α+2M0M
α+1
4 Tα(α+1)/2

Cα+1
1

∣
∣C(k)

∣
∣α(α+1)

+ 2M1M4T
(α+1)/2

∣
∣C(k)

∣
∣α.

(3.15)

Then there existsM5 > 0 such that

∣
∣C(k)

∣
∣−2α

∣
∣
∣
∣
∣

T∑

n=1

[
H
(
n,Lx(k)(n)

)−H
(
n,Lw(k)(n)

)]
∣
∣
∣
∣
∣≤M5 (3.16)

as |C(k)| →∞.
By using Lemma 2.2 and the boundedness of F(x(k)), we have

M2 ≥ F
(
x(k)
)= 1

2

T∑

n=1

[(
JΔLx(k)(n− 1),x(k)(n)

)
+H

(
n,Lx(k)(n)

)]

= 1
2

T∑

n=1

(
JΔLu(k)(n− 1),u(k)(n)

)
+
1
2

T∑

n=1

(
JΔLv(k)(n− 1),v(k)(n)

)

+
T∑

n=1

[
H
(
n,Lx(k)(n)

)−H
(
n,Lw(k)(n)

)]
+

T∑

n=1
H
(
n,Lw(k)(n)

)

≥ λ1
2

∥
∥u(k)

∥
∥2− λ[T/2]

2

∥
∥v(k)

∥
∥2 +

T∑

n=1

[
H
(
n,Lx(k)(n)

)−H
(
n,Lw(k)(n)

)]

+
T∑

n=1
H
(
n,Lw(k)(n)

)
.

(3.17)

It follows from (3.14) and (3.16), by multiplying |C(k)|−2α with both sides of above in-
equality, that there existsM6 > 0 such that

∣
∣LC(k)

∣
∣−2α

T∑

n=1
H
(
n,LC(k))= ∣∣C(k)

∣
∣−2α

T∑

n=1
H
(
n,Lw(k)(n)

)≤M6 (3.18)

as |C(k)| → ∞. This is a contradiction with (H3), consequently, ‖x(k)‖ is bounded. Thus
we conclude that the Palais-Smale condition is satisfied.
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In order to use the saddle point theorem (see [20, Theorem 4.6]), we only need to
verify the following:

(F1) F(x)→−∞ as ‖x‖→∞ in X1 = E−T ,
(F2) F(x)→ +∞ as ‖x‖→∞ in X2 = E0

T ⊕E+
T .

In fact, for v ∈ E−T , there existsM7 > 0 such that

F(v)= 1
2

T∑

n=1

(
JΔLv(n− 1),v(n)

)
+

T∑

n=1

[
H
(
n,Lv(n)

)−H(n,0)
]
+

T∑

n=1
H(n,0)

≤−λ1
2
‖v‖2 +

T∑

n=1

∫ 1

0

∣
∣∇H(n,sLv(n))∣∣ ·∣∣Lv(n)∣∣ds+

T∑

n=1
H(n,0)

≤−λ1
2
‖v‖2 + M0

Cα+1
1
‖v‖α+1 +M1

√
T‖v‖+M7 −→−∞

(3.19)

as ‖v‖→∞. Thus (F1) is verified.
Next, for all u+w ∈ E+

T ⊕E0
T , we have

F(u+w)

= 1
2

T∑

n=1

(
JΔLu(n− 1),u(n)

)
+

T∑

n=1

[
H
(
n,Lu(n) +Lw(n)

)−H
(
n,Lw(n)

)]

+
T∑

n=1
H
(
n,Lw(n)

)

≥ λ1
2
‖u‖2−

T∑

n=1

∫ 1

0

∣
∣∇H(n,Lw(n) + sLu(n)

)∣∣ ·∣∣Lu(n)∣∣ds+
T∑

n=1
H
(
n,Lw(n)

)

≥ λ1
4
‖u‖2− M0

Cα+1
1
‖u‖α+1−M1

√
T‖u‖− 4M2

0T

λ1
|C|2α +

T∑

n=1
H(n,LC).

(3.20)

Since 1≤ α+1 < 2,

λ1
4
‖u‖2− 2M0

Cα+1
1
‖u‖α+1−M1

√
T‖u‖ −→ +∞, ‖u‖ −→∞. (3.21)

By (H3) we have

|LC|−2α
[ T∑

n=1
H(n,LC)− 4M2

0T

λ1
|C|2α

]

= |LC|−2α
T∑

n=1
H(n,LC)− 4M2

0T

λ1
−→ +∞, |C| −→∞.

(3.22)
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Then we have

T∑

n=1
H(n,LC)− 4M2

0T

λ1
|C|2α

= |LC|2α|LC|−2α
[ T∑

n=1
H(n,LC)− 4M2

0T

λ1
|C|2α

]

−→ +∞, |C| −→∞.

(3.23)

Since ‖u+w‖→∞ is equivalent to ‖u‖2 +T|C|2→∞, we have

F(u+w)−→ +∞, ‖u+w‖ −→∞, (3.24)

which implies that (F2) is verified. Then the proof of Theorem 1.1 is finished. �

Proof of Corollary 1.3. Let G(x)=−F(x), by a similar argument to the proof of Theorem
1.1, we can prove that G satisfies the Palais-Smale condition and G(x)→ +∞ as ‖x‖→∞
in X2 = E0

T ⊕E−T and G(x)→−∞ as ‖x‖→∞ in X1 = E+
T . Corollary 1.3 is completed. �

Proof of Theorem 1.5. As we all know, a deformation lemma can be proved with the weak-
er (C) condition which is introduced in [21] replacing the usual Palais-Smale condition,
and the saddle point theorem holds true under (C) condition.

First, we prove that F satisfied (C) condition, that is, any sequence {x(k)} ⊂ ET for
which F(x(k)) is bounded and (1+‖x(k)‖)‖F′(x(k))‖→ 0 (k→∞) possesses a convergent
subsequence in ET .

Then there exists constant C3 > 0 such that

∣
∣F
(
x(k)
)∣∣≤ C3,

(
1+
∥
∥x(k)

∥
∥)
∥
∥F′
(
x(k)
)∥∥≤ C3. (3.25)

Thus

−3C3 ≤−
(
1+
∥
∥x(k)

∥
∥)
∥
∥F′
(
x(k)
)∥∥− 2

∣
∣F
(
x(k)
)∣∣

≤ 〈F′(x(k)),x(k)〉− 2F
(
x(k)
)

=
T∑

n=1

[(∇H(n,x(k)(n)),Lx(k)(n))− 2H
(
n,Lx(k)(n)

)]
.

(3.26)

Consequently, by (H5) and (3.26), ‖x(k)‖ is bounded.
In fact, if ‖x(k)‖ is unbounded, without loss of generality, there exist integer n1 > 0

and constant C4 > 0 such that |x(k)(n)| → ∞ for all T ≥ n > n1 and |x(k)(n)| ≤ C4 for all
1≤ n≤ n1.

When T ≥ n > n1, by (H5), one can obtain

(∇H(n,x(k)(n)),Lx(k)(n))− 2H
(
n,Lx(k)(n)

)−→−∞. (3.27)

When 1≤ n≤ n1, by the differential of H(n,z) in z, there exists constant C5 > 0 such that

∣
∣(∇H(n,x(k)(n)),Lx(k)(n))− 2H

(
n,Lx(k)(n)

)∣∣≤ C5. (3.28)



12 Advances in Difference Equations

Then we have

T∑

n=1

[(∇H(n,x(k)(n)),Lx(k)(n))− 2H
(
n,Lx(k)(n)

)]−→−∞, (3.29)

which is contrary to (3.26), so ‖x(k)‖ is bounded.
Then as a consequence in finite dimensional space ET , {x(k)} has a convergent subse-

quence and thus (C) condition is verified.
Next we show that F satisfies (F1) and (F2).
By (H4), there exists C6 > 0 such that

∣
∣H(n,z)

∣
∣≤ λ1

4
|z|2 +C6, ∀(n,z)∈ Z×R2N . (3.30)

Then

F(v)= 1
2

T∑

n=1

(
JΔLv(n− 1),v(n)

)
+

T∑

n=1
H
(
n,Lv(n)

)

≤−λ1
2
‖v‖2 + λ1

4
‖v‖2 +TC6 −→−∞

(3.31)

as ‖v‖→∞ for v ∈ X1 = E−T . Therefore, (F1) is verified.
Conditions (H4) and (H5) imply that H(n,z)→ +∞ as |z| →∞ for all n∈ Z(1,T).
In fact, let s > 1, from (H5), for all ε > 0 there exists constant C7 > 0 such that

(∇H(n,sz),sz
)− 2H(n,sz)≤−1

ε
, ∀|z| ≥ C7, (3.32)

then we have

d

ds

(
H(n,sz)

s2

)
= (∇H(n,sz),sz

)− 2H(n,sz)
s3

≤− 1
εs3

= d

ds

(
1

2εs2

)
, ∀|z| ≥ C7.

(3.33)

By integrating both sides of the above inequality from 1 to s, we can obtain

H(n,sz)
s2

−H(n,z)≤ 1
2εs2

− 1
2ε

, ∀|z| ≥ C7. (3.34)

By (H4), we have

H(n,sz)
s2

−→ 0, s−→∞. (3.35)

Then

H(n,z)≥ 1
2ε

, ∀|z| ≥ C7. (3.36)
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From the arbitrariness of ε, one can conclude that

H(n,z)−→ +∞, |z| −→∞ (3.37)

for all n∈ Z(1,T).
Thus, thanks to Lemma 2.2, one has

F(u+w)≥
T∑

n=1
H
(
n,Lu(n) +Lw(n)

)−→ +∞ (3.38)

as ‖u+w‖ →∞ for u+w ∈ X2 = E+
T ⊕E0

T , which implies that (F2) is verified. The proof
of Theorem 1.5 is finished. �

Proof of Corollary 1.6. Let G(x)=−F(x), X1 = E+
T , and X2 = E−T ⊕E0

T , by a similar argu-
ment to the proof of Theorem 1.5, we can prove that Corollary 1.6 holds. �

Proof of Corollary 1.7. By (H′
4), for all ε > 0 there exist θ ∈ (0,1), R2 > 0, and C8 > 0 such

that

H(n,z)=H(n,0) +
∫ 1

0

(∇H(n,θz),z
)
dθ

≤
∫ 1

0

∣
∣∇H(n,θz)

∣
∣ · |z|dθ +C8

≤
∫ 1

0
εθ|z|2dθ +C8

≤ ε|z|2 +C8, |z| ≥ R2

θ
> R2,

(3.39)

which implies that (H4) holds. Then it follows from Theorem 1.5 and Corollary 1.6 that
Corollary 1.7 holds. �

Proof of Corollary 1.8. From (H7), there exists C9 > 0 such that

H(n,z) > 0, ∀|z| ≥ C9, ∀n∈ Z(1,T). (3.40)

Setting R2 =max{R1,C9}, by (H6), we have

(∇H(n,z)
H(n,z)

,
z

|z|
)
≤ β

|z| , ∀n∈ Z(1,T), |z| ≥ R2. (3.41)

Then

d lnH(n,z)
d|z| ≤ β

|z| , ∀n∈ Z(1,T), |z| ≥ R2, (3.42)

which implies

d

d|z|
(
lnH(n,z)−β ln|z|)≤ 0, ∀n∈ Z(1,T), |z| ≥ R2. (3.43)
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Let I =max{lnH(n,z)−β ln|z| : |z| = R2}, by (3.43),

lnH(n,z)−β ln|z| ≤ I , ∀n∈ Z(1,T), |z| ≥ R2. (3.44)

That is,

0 <H(n,z)≤ C10|z|β, ∀n∈ Z(1,T), |z| ≥ R2, (3.45)

where C10 = eI . Thus we have

0 <
H(n,z)
|z|2 ≤ C10|z|β

|z|2 , ∀n∈ Z(1,T), |z| ≥ R2. (3.46)

Since β ∈ (0,2), from above inequality, we can conclude that

H(n,z)
|z|2 −→ 0 (3.47)

as |z| →∞, which implies (H4).
Since β ∈ (0,2), it follows from (H6) and (H7) that

(∇H(n,z),z
)− 2H(n,z)≤ (β− 2)H(n,z)−→−∞ (3.48)

as |z| →∞ for all n∈ Z(1,T), which implies (H5). �

Then the result of Corollary 1.8 holds by using Theorem 1.5.
Finally, we give two examples to illustrate our conclusions.

Example 3.1. Consider the system (1.1) with

H(n,z)= |z|4/3 + (e(n),z), n∈ Z, z ∈R2N , (3.49)

where e(n+T)= e(n)∈R2N .
Let e =maxn∈Z(1,T) |e(n)|, α= 1/3, then we have

∣
∣∇H(n,z)

∣
∣≤ 4

3
|z|1/3 + e, ∀(n,z)∈ Z×R2N ,

|z|−2/3
T∑

n=1
H(n,z)=

T∑

n=1
|z|2/3 +

T∑

n=1
|z|−2/3(e(n),z)≥ T

(|z|2/3− e|z|1/3)−→ +∞
(3.50)

as |z| →∞.
Thus it follows from Theorem 1.1 that (1.1) with H as defined in (3.49) possesses at

least one T-periodic solution.

Example 3.2. Consider the system (1.1) with

H(n,z)= (g(n) + |z|) ln(1+ |z|2)+ (h(n),z), ∀(n,z)∈ Z×R2N , (3.51)

where g(n+T)= g(n)∈R2N , g(n) > 0, and h(n+T)= h(n)∈R2N for all n∈ Z.
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It is easy to see that H(n,z)/|z|2 → 0 as |z| → ∞, which implies that condition (H4)
holds.

At last, we have

(∇H(n,z),z
)− 2H(n,z)

=−(2g(n) + |z|) ln(1+ |z|2)+ 2
(
g(n) + |z|)|z|2
1+ |z|2 − (h(n),z)

≤−(2g(n) + |z|) ln(1+ |z|2)+2
(
g(n) + |z|)− (h(n),z)−→−∞

(3.52)

as |z| →∞. So (H5) holds.

Thus, it follows from Theorem 1.5 that (1.1) with H as defined in (3.51) possesses at
least one T-periodic solution.
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