
Hindawi Publishing Corporation
Advances in Difference Equations
Volume 2007, Article ID 26196, 16 pages
doi:10.1155/2007/26196

Research Article
Linear Impulsive Periodic System with Time-Varying Generating
Operators on Banach Space

JinRong Wang, X. Xiang, and W. Wei

Received 3 May 2007; Accepted 28 August 2007

Recommended by Paul W. Eloe

A class of the linear impulsive periodic system with time-varying generating operators
on Banach space is considered. By constructing the impulsive evolution operator, the
existence of T0-periodic PC-mild solution for homogeneous linear impulsive periodic
system with time-varying generating operators is reduced to the existence of fixed point
for a suitable operator. Further the alternative results on T0-periodic PC-mild solution
for nonhomogeneous linear impulsive periodic system with time-varying generating op-
erators are established and the relationship between the boundness of solution and the
existence of T0-periodic PC-mild solution is shown. The impulsive periodic motion con-
trollers that are robust to parameter drift are designed for a given periodic motion. An
example is given for demonstration.
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1. Introduction

It is well known that periodic motion is a very important and special phenomenon not
only in natural science, but also in social science. The periodic solution theory of dy-
namic equations has been developed over the last decades. We refer the readers to [1–11]
for infinite dimensional cases, to [12–15] for finite dimensional cases. Especially, there are
many results of periodic solutions (such as existence, the relationship between bounded
solutions and periodic solutions, stability, and robustness) for non-autonomous impul-
sive periodic system on finite dimensional spaces (see [12, 14, 15]). There are also some
relative results of periodic solutions for periodic systems with time-varying generating
operators on infinite dimensional spaces (see [3, 8, 11, 16, 17]).
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On the other hand, in order to describe dynamics of populations subject to abrupt
changes as well as other phenomena such as harvesting, diseases, and so forth, some au-
thors have used impulsive differential systems to describe the model since the last century.
For the basic theory on impulsive differential equations on finite dimensional spaces, the
reader can refer to Yang’s book and Lakshmikantham’s book (see [15, 18]). For the basic
theory on impulsive differential equations on infinite dimensional spaces, the reader can
refer to Ahmed’s paper, Liu’s paper and Xiang’s papers (see [4, 8, 11, 19–22]).

Impulsive periodic differential equations serve as basic periodic models to study the
dynamics of processes that are subject to sudden changes in their states. To the best of our
knowledge, few papers discuss the impulsive periodic systems with time-varying generat-
ing operators on infinite dimensional spaces. In this paper, we pay attention to impulsive
periodic systems with time-varying generating operators. We consider the following ho-
mogeneous linear impulsive periodic system with time-varying generating operators:

ẋ(t)=A(t)x(t) + f (t), t �= τk,

Δx
(
τk
)= Bkx

(
τk
)
+ ck, t = τk,

(1.1)

in the parabolic case on infinite dimensional Banach space X , where {A(t), t ∈ [0,T0]} is
a family of closed densely defined linear unbounded operators on X and the resolvent of
the unbounded operator A(t) is compact. 0 = τ0 < τ1 < τ2 < ··· < τk . . ., limk→∞τk =∞,
τk+δ = τk +T0, D̃ = {τ1,τ2, . . . ,τδ} ⊂ (0,T0),�x(τk)= x(τ+k )− x(τ−k ), where k ∈ Z+

0 , T0 is
a fixed positive number. f (t+T0)= f (t), Bk+δ = Bk and ck+δ = ck.

First, we construct a new impulsive evolution operator corresponding to the homoge-
neous linear impulsive periodic system with time-varying generating operators and in-
troduce the suitable definition of T0-periodic PC-mild solution for homogeneous linear
impulsive periodic system with time-varying generating operators. The impulsive evo-
lution operator can be used to reduce the existence of T0-periodic PC-mild solution for
nonhomogeneous linear impulsive periodic system with time-varying generating oper-
ators to the existence of fixed points for an operator equation. Using the Fredholm al-
ternative theorem, we exhibit the alternative results on T0-periodic PC-mild solution for
homogeneous linear impulsive periodic system with time-varying generating operators
and nonhomogeneous linear impulsive periodic systemwith time-varying generating op-
erators. At the same time, we show several Massera-type criterias for nonhomogeneous
linear impulsive periodic system with time-varying generating operators which conclude
the relationship between the boundness of solution and the existence of T0-periodic PC-
mild solution. At last, impulsive periodic motion controllers that are robust to parameter
drift are designed for given a periodic motion. This work is fundamental for further dis-
cussion about nonlinear impulsive periodic system with time-varying generating opera-
tors on infinite dimensional spaces.

This paper is organized as follows. In Section 2, the impulsive evolution operator is
constructed and alternative results on T0-periodic PC-mild solution for homogeneous
linear impulsive periodic system with time-varying generating operators are proved. In
Section 3, alternative results on T0-periodic PC-mild solution for nonhomogeneous lin-
ear impulsive periodic system with time-varying generating operators are obtained.
Massera-type criteria are given to show the relationship between bounded solution and
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T0-periodic PC-mild solution for nonhomogeneous linear impulsive periodic system
with time-varying generating operators. In Section 4, impulsive periodic motion con-
trollers that are robust to parameter drift are designed, given T0-periodic PC-mild solu-
tion for nonhomogeneous linear impulsive periodic system with time-varying generating
operators. At last, an example is given to demonstrate the applicability of our result.

2. Homogeneous linear impulsive periodic system with time-varying
generating operators

Let Lb(X) be the space of bounded linear operators in the Banach space X . Define
PC([0,T0];X)≡ {x : [0,T0]→ X | x is continuous at t ∈ [0,T0]\D̃, x is continuous from
left and has right hand limits at t ∈ D̃} and PC1([0,T0];X) ≡ {x ∈ PC([0,T0];X) | ẋ ∈
PC([0,T0];X)}. Set

‖x‖PC =max

{

sup
t∈[0,T0]

∥
∥x(t+0)

∥
∥, sup

t∈[0,T0]

∥
∥x(t− 0)

∥
∥
}

, ‖x‖PC1 = ‖x‖PC +‖ẋ‖PC.
(2.1)

It can be seen that endowed with the norm ‖ · ‖PC (‖ · ‖PC1 ), PC([0,T0];X) (PC1([0,T0];
X)) is a Banach space.

Consider the following homogeneous linear impulsive periodic system with time-
varying generating operators (THLIPS):

ẋ(t)= A(t)x(t), t �= τk,

Δx
(
τk
)= Bkx

(
τk
)
, t = τk,

(2.2)

in the Banach space X , {A(t), t ∈ [0,T0]} is a family of closed densely defined linear
unbounded operators on X satisfying the following assumption.

Assumption 2.1 (see [23], page 158). For t ∈ [0,T0] one has the following.
(P1) The domain D(A(t))=D is independent of t and is dense in X .
(P2) For t ≥ 0, the resolvent R(λ,A(t)) = (λI −A(t))−1 exists for all λ with Reλ ≤ 0,

and there is a constantM independent of λ and t such that

∥
∥R
(
λ,A(t)

)∥∥≤M
(
1+ |λ|)−1 for Reλ≤ 0. (2.3)

(P3) There exist constants L > 0 and 0 < α≤ 1 such that

∥
∥(A(t)−A(θ)

)
A−1(τ)

∥
∥≤ L|t− θ|α for t,θ,τ ∈ [0,T0

]
. (2.4)

Lemma 2.2 (see [23], page 159). Under Assumption 2.1, the Cauchy problem

ẋ(t) +A(t)x(t)= 0, t ∈ (0,T0
]
with x(0)= x0 (2.5)

has a unique evolution system {U(t,θ) | 0≤ θ ≤ t ≤ T0} in X satisfying the following prop-
erties:

(1) U(t,θ)∈ Lb(X), for 0≤ θ ≤ t ≤ T0;
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(2) U(t,r)U(r,θ)=U(t,θ), for 0≤ θ ≤ r ≤ t ≤ T0;
(3) U(·,·)x ∈ C(Δ,X), for x ∈ X , Δ= {(t,θ)∈ [0,T0]× [0,T0] | 0≤ θ ≤ t ≤ T0};
(4) for 0≤ θ < t ≤ T0, U(t,θ): X →D and t→U(t,θ) is strongly differentiable in X . The

derivative (∂/∂t)U(t,θ)∈ Lb(X) and it is strongly continuous on 0≤ θ < t ≤ T0; moreover,

∂

∂t
U(t,θ)=−A(t)U(t,θ) for 0≤ θ < t ≤ T0,

∥
∥
∥
∥
∂

∂t
U(t,θ)

∥
∥
∥
∥
Lb(X)

= ∥∥A(t)U(t,θ)
∥
∥
Lb(X) ≤

C

t− θ
,

∥
∥A(t)U(t,θ)A(θ)−1

∥
∥
Lb(X)

≤ C for 0≤ θ ≤ t ≤ T0;

(2.6)

(5) for every v ∈D and t ∈ (0,T0],U(t,θ)v is differentiable with respect to θ on 0≤ θ ≤
t ≤ T0

∂

∂θ
U(t,θ)v =U(t,θ)A(θ)v. (2.7)

And, for each x0 ∈ X , the Cauchy problem (2.5) has a unique classical solution x ∈
C1([0,T0];X) given by

x(t)=U(t,0)x0, t ∈ [0,T0
]
. (2.8)

In addition to Assumption 2.1, we introduce the following assumptions.

Assumption 2.3. There exists T0 > 0 such that A(t+T0)= A(t) for t ∈ [0,T0].

Assumption 2.4. For t ≥ 0, the resolvent R(λ,A(t)) is compact.

Then we have

Lemma 2.5 (see [5], page 105). Assumptions 2.1, 2.3, and 2.4 hold. Then evolution system
{U(t,θ) | 0≤ θ ≤ t ≤ T0} in X also satisfying the following two properties:

(6) U(t+T0,θ +T0)=U(t,θ) for 0≤ θ ≤ t ≤ T0;
(7) U(t,θ) is compact operator for 0≤ θ < t ≤ T0.

In order to construct an impulsive evolution operator and investigate its properties,
we need the following assumption.

Assumption 2.6. For each k ∈ Z+
0 , Bk ∈ Lb(X), there exists δ ∈ N such that τk+δ = τk +

T0 and Bk+δ = Bk.

First consider the following Cauchy problem:

ẋ(t)= A(t)x(t), t ∈ [0,T0
]\D̃,

Δx
(
τk
)= Bkx

(
τk
)
, k = 1,2, . . . ,δ,

x(0)= x0.

(2.9)

For every x0 ∈ X , D is an invariant subspace of Bk, using Lemma 2.2, step by step, one
can verify that the Cauchy problem (2.9) has a unique classical solution x∈PC1([0,T0]; X)



JinRong Wang et al. 5

represented by x(t)=�(t,0)x0, where �(·,·) : Δ→ X given by

�(t,θ)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

U(t,θ), τk−1 ≤ θ ≤ t ≤ τk,

U
(
t,τ+k

)(
I +Bk

)
U
(
τk,θ

)
, τk−1 ≤ θ<τk <t≤τk+1,

U
(
t,τ+k

)
[
∏

θ<τj<t

(
I+Bj

)
U
(
τj ,τ+j−1

)
]
(
I +Bi

)
U
(
τi,θ
)
, τi−1≤θ<τi≤···<τk <t ≤ τk+1.

(2.10)

The operator �(t,θ) ((t,θ) ∈ Δ) is called impulsive evolution operator associated with
{Bk; τk}∞k=1.

The following lemma on the properties of the impulsive evolution operator �(t,θ)
((t,θ)∈ Δ) associated with {Bk;τk}∞k=1 is widely used in this paper.

Lemma 2.7. Assumptions 2.1, 2.3, 2.4, and 2.6 hold. The impulsive evolution operator
�(t,θ) ((t,θ)∈ Δ) has the following properties:

(1) �(t,θ)∈ Lb(X), for 0≤ θ ≤ t ≤ T0;
(2) for 0≤ θ ≤ t ≤ T0, �(t+T0, θ +T0)=�(t,θ);
(3) for 0≤ t ≤ T0, �(t+T0,0)=�(t,0)�(T0,0);
(4) �(t,θ) is compact operator, for 0≤ θ < t ≤ T0.

Proof. By (1) of Lemma 2.2 and Assumption 2.6, �(t,θ) ∈ Lb(X), for 0 ≤ θ ≤ t ≤ T0.
By (6) of Lemma 2.5 and Assumption 2.6, �(t + T0,θ + T0) = �(t,θ), for 0 ≤ θ ≤ t ≤
T0. By (2) of Lemma 2.2, (6) of Lemma 2.5 and Assumption 2.6, �(t + T0,0) = �(t +
T0,T0)�(T0,0)=�(t,0)S(T0,0), for 0≤ θ ≤ t ≤ T0. By (7) of Lemma 2.5 and Assumption
2.6, one can obtain that �(t,θ) is compact operator, for 0≤ θ < t ≤ T0. �

Now we can introduce the PC-mild solution of Cauchy problem (2.9) and T0-periodic
PC-mild solution of the THLIPS (2.2).

Definition 2.8. For every x0 ∈ X , the function x ∈ PC([0,T0];X) given by x(t)=�(t,0)x0
is said to be the PC-mild solution of the Cauchy problem (2.9).

Definition 2.9. A function x ∈ PC([0,+∞);X) is said to be a T0-periodic PC-mild solu-
tion of THLIPS (2.2) if it is a PC-mild solution of Cauchy problem (2.9) corresponding
to some x0 and x(t+T0)= x(t), for t ≥ 0.

The following theorem implies that the existence of periodic solution is equivalent to
a fixed point of operator.

Theorem 2.10. Assumptions 2.1, 2.3, and 2.6 hold. THLIPS (2.2) has a T0-periodic PC-
mild solution x if and only if �(T0,0) has a fixed point.

Proof. If THLIPS (2.2) has a T0-periodic PC-mild solution x, then we have x(T0) =
�(T0,0)x(0) = x(0) where x(0) = x0 is a fixed point of �(T0,0). On the other hand, if
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x is a fixed point of �(T0,0), consider the following Cauchy problem:

ẋ(t)= A(t)x(t), t ∈ [0,T0
]\D̃,

Δx
(
τk
)= Bkx

(
τk
)
, t = τk,

x(0)= x.

(2.11)

Using Lemma 2.2, step by step, one can verify that the above impulsive Cauchy problem
has a PC-mild solution given by x(t)=�(t,0)x. By (3) of Lemma 2.7, we have

x
(
t+T0

)=�(t,0)�
(
T0,0

)
x =�(t,0)x = x(t). (2.12)

This implies that x is a T0-periodic PC-mild solution of THLIPS (2.2). �

Further, we can give the following theorem of the alternative result on periodic solu-
tion.

Theorem 2.11. Assumptions 2.1, 2.3, 2.4, and 2.6 hold. Then either the THLIPS (2.2) has
a unique trivial T0-periodic PC-mild solution or it has finitely many linearly independent
nontrivial T0-periodic PC-mild solutions in PC([0,+∞);X).

Proof. By Assumptions 2.1 and 2.4 and Lemma 2.7(4), �(T0,0) is a compact operator. By
the Fredholm alternative theorem, either (i) �(T0,0)x0 = x0 only has trivial T0-periodic
PC-mild solution and [I −�(T0,0)]−1 exists or (ii) �(T0,0)x0 = x0 has nontrivial T0-
periodic PC-mild solutions which form a finite dimensional subspace ofX . In fact, opera-
tor equation [I − �(T0,0)]x0 = 0 has m linearly independent nontrivial solutions
x10,x

2
0, . . . ,x

m
0 . Thus, �(T0,0) has fixed points x10,x

2
0, . . . ,x

m
0 . By Theorem 2.10, we know that

the PC-mild solution of Cauchy problem (2.9) corresponding to initial value xi0 given by
xi(t)=�(t,0)xi0, i= 1,2, . . . ,m is T0-periodic. Thus THLIPS (2.2) hasm linearly indepen-
dent T0-periodic PC-mild solutions x1,x2, . . . ,xm. By linearity of THLIPS (2.2), one can
easily verify every T0-periodic PC-mild solution of THLIPS (2.2) can be written as

x(t)=
m∑

i=1
αi�(t,0)xi0, (2.13)

wherem is finite and α1,α2, . . . ,αm are constants. �

3. Nonhomogeneous linear impulsive periodic system with
time-varying generating operators

Consider the following nonhomogeneous linear impulsive periodic system with time-
varying generating operators (TNLIPS)

ẋ(t)=A(t)x(t) + f (t), t �= τk,

Δx
(
τk
)= Bkx

(
τk
)
+ ck, t = τk,

(3.1)
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and the Cauchy problem:

ẋ(t)= A(t)x(t) + f (t), t ∈ [0,T0]\D̃,
Δx
(
τk
)= Bkx

(
τk
)
+ ck, k = 1,2, . . . ,δ,

x(0)= x0.

(3.2)

In addition to Assumptions 2.1, 2.3, 2.4, and 2.6, we make following assumption.

Assumption 3.1. (1) Input f ∈ L1([0,T0];X) and there exists T0 > 0 such that f (t+T0)=
f (t). (2) For each k ∈ Z+

0 and ck ∈ X , there exists δ ∈N such that ck+δ = ck.

Now we can introduce the PC-mild solution of Cauchy problem (3.2) and T0-periodic
PC-mild solution of the TNLIPS (3.1).

Definition 3.2. For every x0 ∈ X , f ∈ L1([0,T0];X), the function x ∈ PC([0,T0];X) given
by

x(t)=�(t,0)x0 +
∫ t

0
�(t,θ) f (θ)dθ +

∑

0≤τk<t
�
(
t,τ+k

)
ck, for t ∈ [0,T0

]
, (3.3)

is said to be a PC-mild solution of the Cauchy problem (3.2).

Definition 3.3. A function x ∈ PC([0,+∞);X) is said to be a T0-periodic PC-mild solu-
tion of TNLIPS (3.1) if it is a PC-mild solution of Cauchy problem (3.2) corresponding
to some x0 and x(t+T0)= x(t), for t ≥ 0.

Theorem 3.4. Assumptions 2.1, 2.3, 2.4, 2.6, and 3.1 hold. If THLIPS (2.2) has no non-
trivial T0-periodic PC-mild solution, then TNLIPS (3.1) has a unique T0-periodic PC-mild
solution given by

xT0 (t)=�(t,0)
[
I −�

(
T0,0

)]−1
z+
∫ t

0
�(t,θ) f (θ)dθ +

∑

0≤τk<t
�
(
t,τ+k

)
ck, (3.4)

where

z =
∫ T0

0
�
(
T0,θ

)
f (θ)dθ +

∑

0≤τk<T0

�
(
T0,τ+k

)
ck. (3.5)

Further, one has the following estimate:

∥
∥xT0 (t)

∥
∥
X ≤ L1

(
L1L2 + 1

)
[
‖ f ‖L1([0,T0];X) + δ max

1≤k≤δ
∥
∥ck
∥
∥
X

]
, (3.6)

where L1 = sup0≤θ≤t≤T0
‖�(t,θ)‖ and L2 = ‖[I −�(T0,0)]−1‖.

Proof. By Lemma 2.7, �(t,θ)((t,θ)∈ Δ) is a compact operator. In addition, THLPS (2.2)
has no nontrivial T0-periodic PC-mild solution, by the Fredholm alternative theorem,
[I −�(T0,0)]−1 exists and is bounded. By the operator equation [I −�(T0,0)]x = z is
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solvable and has a unique solution x = [I −�(T0,0)]−1z. Consider the following Cauchy
problem:

ẋ(t)= Ax(t) + f (t), t ∈ [0,T0
]\D̃,

Δx
(
τk
)= Bkx

(
τk
)
+ ck, t = τk,

x(0)= x.

(3.7)

It has a PC-mild solution xT0 (·) given by

xT0 (t)=�(t,0)x+
∫ t

0
�(t,θ) f (θ)dθ +

∑

0≤τk<t
�
(
t,τ+k

)
ck. (3.8)

It follows from Lemma 2.7 that

xT0

(
t+T0

)=�(t,0)
(
�
(
T0,0

)
x+ z

)
+
∫ t

0
�(t,θ) f (θ)dθ +

∑

0≤τk<t
�
(
t,τ+k

)
ck = xT0 (t).

(3.9)

This implies that xT0 (·) is just the unique T0-periodic PC-mild solution of TNLIPS (3.1).
Further
∥
∥xT0 (t)

∥
∥≤(∥∥�(t,0)

[
I −�

(
T0,0

)]−1∥∥+1
)‖z‖

≤∥∥�(t,θ)
∥
∥(
∥
∥�(t,0)

∥
∥
∥
∥[I−�

(
T0,0

)]−1∥∥+1
)
[∫ T0

0

∥
∥ f (θ)

∥
∥
Xdθ +

∑

0≤τk<T0

∥
∥ck
∥
∥
X

]
.

(3.10)

The estimation (3.6) is immediately obtained. �

Corollary 3.5. Assumptions 2.1, 2.3, 2.4, 2.6, and 3.1 hold. If ‖�(T0,0)‖<1 then THLIPS
(2.2) has no nontrivial T0-periodic PC-mild solution and TNLIPS (3.1) has a unique T0-
periodic PC-mild solution. The unique T0-periodic PC-mild solution of TNLIPS (3.1) is
given by the expression (3.4) which satisfies

∥
∥xT0 (t)

∥
∥
X ≤

L1
1−L1

[
‖ f ‖L1([0,T0];X) + δ max

1≤k≤δ
∥
∥ck
∥
∥
X

]
. (3.11)

Suppose that X is a Hilbert space. Consider the following Cauchy problem:

ẏ(t)=−A∗(t)y(t), t ∈ [0,T0
]\D̃,

Δy
(
τk
)=−B∗k y

(
τ+k
)
, k = 1,2, . . . ,δ,

y
(
T0
)= y0 ∈ X∗,

(3.12)

where A∗(t), B∗k are the adjoint operators of A(t), Bk, respectively. By Assumptions 2.3
and 2.6,A∗(t)=A∗(t+T0) and for each k ∈ Z+

0 , B
∗
k ∈ Lb(X∗) and B∗k+δ = B∗k . LetU

∗(·,·)
be the adjoint operator of U(·,·). It is well known that U∗(·,·), due to the convexity of
X∗, satisfies some properties similar to U(·,·).
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Similar to the discussion on Cauchy problem of homogenous linear impulsive system
with time-varying generating operators, the PC-mild solution of Cauchy problem (3.12)
can be given by

y(θ)=�∗(T0,θ
)
y0, θ < T0, (3.13)

where

�∗(T0,θ
)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

U∗(T0,θ
)
, τk−1 < θ ≤ T0,

U∗(τk−1,θ
)(
I +B∗k

)
U∗(T0,τk−1

)
, τk−2<θ≤τk−1<T0,

U∗(τi,θ
)(
I+B∗i

)
[
∏

θ<τj<T0

(
I+Bj

)
U
(
τj ,τj−1

)
]∗

U∗(T0,τk−1
)
, τi−1<θ≤τi <··· < T0.

(3.14)

Theorem 3.6. Assumptions 2.1, 2.3, 2.4, 2.6, and 3.1 hold. Suppose X be a Hilbert space
and [I −�(T0,0)]−1 does not exist. Then one has that

(1) the adjoint equation of THLIPS (2.2) (TAHLIPS)

ẏ(t)=−A∗(t)y(t), t �= τk,

Δy
(
τk
)=−B∗k y

(
τ+k
)
, t = τk,

(3.15)

hasm linearly independent T0-periodic PC-mild solutions y1, y2, . . . , ym;
(2) the TNLIPS (3.1) has a T0-periodic PC-mild solution if and only if

〈
yi0,z

〉
X∗,X = 0, i= 1,2, . . . ,m, (3.16)

which is equivalent to

∫ T0

0

〈
f (θ), yi(θ)

〉
X ,X∗dθ +

∑

0≤τk<T0

〈
ck, yi

(
τk
)〉

X ,X∗ = 0. (3.17)

Otherwise, TNLIPS (3.1) has no T0-periodic PC-mild solution.

Proof. It comes from the compactness of �(T0,0) that �∗(T0,0) is compact and
dimker[I −�∗(T0,0)] = dimker[I −�(T0,0)] = m < +∞. The operator equation [I −
�∗(T0,0)]y0 = 0 has m nontrivial linearly independent solutions {yi0}mi=1. Let yi be the
PC-mild solution of Cauchy problem (3.2) corresponding to initial value yi0 (i=1,2, . . . ,m)

ẏ(t)=−A∗y(t), t �= τk,

−Δy(τk
)= B∗k y(τ

+
k ), t = τk,

y(0)= yi0.

(3.18)

By Theorem 2.10, the PC-mild solution yi (i= 1,2, . . . ,m) is just a T0-periodic PC-mild
solution of TAHLIPS (3.15).
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It is well known that the operator equation

[
I −�

(
T0,0

)]
x = z (3.19)

has a solution if and only if

〈
yi0,z

〉
X∗,X = 0, i= 1,2, . . . ,m, (3.20)

which is equivalent to

0= 〈z, yi0
〉
X ,X∗ =

∫ T0

0

〈
�
(
T0,θ

)
f (θ), yi0

〉
dθ +

∑

0≤τk<T0

〈
�
(
T0,τk

)
ck, yi0

〉

=
∫ T0

0

〈
f (θ),�∗(T0,θ

)
yi0
〉
X ,X∗dθ +

∑

0≤τk<T0

〈
ck,�∗(T0,τk

)
yi0
〉
X ,X∗

=
∫ T0

0

〈
f (θ), yi(θ)

〉
X ,X∗dθ +

∑

0≤τk<T0

〈
ck, yi

(
τk
)〉

X ,X∗ .

(3.21)

Suppose that x is the solution of operator equation (3.19). By Theorem 2.10, one can
verify that the PC-mild solution of Cauchy problem (3.2) corresponding to initial value x

ẋ(t)=A(t)x(t) + f (t), t ∈ [0,T0
]\D̃,

Δx
(
τk
)= Bkx

(
τk
)
+ ck, k = 1,2, . . . ,δ,

x(0)= x,

(3.22)

is just the T0-periodic PC-mild solution of TNLIPS (3.1). Furthermore, by linearity of
TNLIPS (3.1), one can verify that every T0-periodic PC-mild solution of TNLIPS (3.1)
can be given by

x(t)= xT0 (t) +
m∑

i=1
αix

i(t), (3.23)

where xT0 (·) is a T0-periodic PC-mild solution of TNLIPS (3.1), x1,x2, . . . ,xm are m lin-
early independent T0-periodic PC-mild solutions of THLIPS (2.2) and α1, . . . ,αm are con-
stants. �

The following result shows the relationship between bounded solutions and periodic
solutions.

Theorem 3.7. If TNLIPS (3.1) has a bounded solution, then it has at least one T0-periodic
PC-mild solution.

Proof. By contradiction, we assume TNLIPS (3.1) has no T0-periodic PC-mild solution.
This means the following operator equation

[
I −�

(
T0,0

)]
x(0)= z (3.24)



JinRong Wang et al. 11

has no solution. By the Fredholm alternative theorem, there is a y ∈ X∗ such that

[
I −�∗(T0,0

)]
y = 0, 〈y,z〉 ≡ γ �= 0. (3.25)

Further

[
�∗(T0,0

)]i
y = y, i= 1,2, . . . ,m. (3.26)

Hence

x
(
mT0

)=�m
(
T0,0

)
x(0)+

m−1∑

i=0
�i
(
T0,0

)
z,

〈
y,x
(
mT0

)〉= 〈y,�m
(
T0,0

)
x(0)

〉
+

〈

y,
m−1∑

i=0
�i
(
T0,0

)
z

〉

= 〈(�∗(T0,0
))m

y,x(0)
〉
+

〈m−1∑

i=0

[
�∗(T0,0

)]i
y,z

〉

= 〈y,x(0)〉+mγ.

(3.27)

This implies limm→∞〈y,x(mT0)〉 = ∞. This contradicts the boundedness of x. The
proof is completed. �

Corollary 3.8. (1) Suppose that TNLIPS (3.1) has no T0-periodic PC-mild solution, then
all the PC-mild solutions of TNLIPS (3.1) are unbounded for t ≥ 0. (2) Suppose that TNLIPS
(3.1) has a unique bounded PC-mild solution, for t ≥ 0, the PC-mild solution is just T0-
periodic.

4. Parameter perturbationmethods and robustness varying with time

Define

PCT0

(
[0,∞);X

)= {x ∈ PC
(
[0,∞);X

) | x(t+T0
)= x(t), for t ∈ [0,∞)

}
. (4.1)

Set

‖x‖PCT0
=max

{

sup
t∈[0,T0]

∥
∥x(t+0)

∥
∥, sup

t∈[0,T0]

∥
∥x(t− 0)

∥
∥
}

. (4.2)

It can be seen that endowed with the norm ‖ · ‖PCT0
PCT0 ([0,T0];X) is a Banach space.

Denote

Sρ =
{
x ∈ PC

(
[0,+∞);X

) | ‖x‖PC < ρ
}

�
(
xT0 ,ρ1

)= {x ∈ PCT0

(
[0,∞);X

) | ∥∥x− xT0

∥
∥
PCT0

≤ ρ1
}
,

(4.3)
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where

ρ= L1
(
L1L2 + 1

)
[

‖ f ‖L1([0,T0];X) + 2
(
T0 + δ

)
sup
|ξ|≤ξ̃

χ(ξ) + δ max
1≤k≤δ

∥
∥ck
∥
∥
X

]

+2,

ρ1 = 2L1
(
L1L2 + 1

)(
T0 + δ

)
sup
|ξ|≤ξ̃

χ(ξ),
(4.4)

and χ is a nonnegative function.
Consider the following impulsive control system with parameter perturbations

(TPNLIPS)

ẋ(t)=A(t)x(t) + f (t) + p(t,x,ξ), t �= τk,

Δx
(
τk
)= Bkx

(
τk
)
+ ck + qk(x,ξ), t = τk,

(4.5)

and the Cauchy problem:

ẋ(t)=A(t)x(t) + f (t) + p(t,x,ξ), t ∈ [0,T0
]\D̃,

Δx
(
τk
)= Bkx

(
τk
)
+ ck + qk(x,ξ), t = τk,

x(0)= x0,

(4.6)

where x ∈ Sρ, ξ ∈Λ≡ (−ξ̃, ξ̃)(ξ̃ > 0) is a small parameter perturbation thatmay be caused
by some adaptive impulsive control algorithms or parameter drift.

In addition to Assumptions 2.1, 2.3, 2.4, 2.6, and 3.1, we introduce the following as-
sumption.

Assumption 4.1. (1) p : [0,+∞)× Sρ ×Λ→ X is measurable for t and p(t + T0,x,ξ) =
p(t,x,ξ).

(2) qk : Sρ×Λ→ X and qk+δ(x,ξ)= qk(x,ξ).
(3) There exists a nonnegative function � such that limξ→0�(ξ) = �(0) = 0 and for

any t ≥ 0, x, y ∈ Sρ and ξ ∈Λ such that

∥
∥p(t,x,ξ)− p(t, y,ξ)

∥
∥≤ �(ξ)‖x− y‖, ∥

∥qk(x,ξ)− qk(y,ξ)
∥
∥≤ �(ξ)‖x− y‖. (4.7)

(4) There exists a nonnegative function χ such that limξ→0 χ(ξ)= χ(0)= 0 and for any
t ≥ 0, x ∈ Sρ, and ξ ∈Λ such that

∥
∥p(t,x,ξ)

∥
∥≤ χ(ξ),

∥
∥qk(x,ξ)

∥
∥≤ χ(ξ). (4.8)

We introduce PC-mild solution of Cauchy problem (4.6) and T0-periodic PC-mild
solution of TPNLIPS (4.5).

Definition 4.2. For every x0 ∈ X , the function x ∈ PC([0,T0];X) is said to be the PC-mild
solution of the Cauchy problem (4.6) if x satisfies the following integral equation:

x(t)=�(t,0)x0 +
∫ t

0
�(t,θ)

[
f (θ) + p

(
θ,x(θ),ξ

)]
dθ +

∑

0≤τk<t
�
(
t,τ+k

)[
ck + qk

(
x
(
τ+k
)
,ξ
)]
.

(4.9)
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Definition 4.3. A function x ∈ PC([0,+∞);X) is said to be a T0-periodic PC-mild solu-
tion of TPNLIPS (4.5) if it is a PC-mild solution of Cauchy problem (4.6) corresponding
to some x0 and x(t+T0)= x(t), for t ≥ 0.

The following result shows that given a periodic motion we can design impulsive pe-
riodic motion controllers that are robust to parameter drift.

Theorem 4.4. Assumptions 2.1, 2.3, 2.4, 2.6, 3.1, and 4.1 hold and THLIPS (2.2) has no
trivial T0-periodic PC-mild solution. Then there is a ξ0 ∈ (0, ξ̃) such that for |ξ| ≤ ξ0, TPN-

LIPS (4.5) has a unique T0-periodic PC-mild solution xξT0
satisfying

∥
∥xξT0

− xT0

∥
∥
PCT0

≤ ρ1,

limξ→0x
ξ
T0
(t)= xT0 (t)

(4.10)

uniformly on t ∈ [0,+∞) where xT0 is the T0-periodic PC-mild solution of TNLIPS (3.1).

Proof. Let

x0=
[
I −�

(
T0,0

)]−1
[

z+
∫ T0

0
�
(
T0,θ

)
p
(
θ,x(θ),ξ

)
dθ +

∑

0≤τk<T0

�
(
T0,τ+k

)
qk
(
x
(
τ+k
)
,ξ
)
]

∈X

(4.11)

be fixed. Define the map � on �(xT0 ,ρ1) which is given by

(�x)(t)=�(t,0)x0 +
∫ t

0
�(t,θ)

[
f (θ) + p

(
θ,x(θ),ξ

)]
dθ

+
∑

0≤τk<t
�
(
t,τ+k

)[
ck + qk

(
x
(
τ+k
)
,ξ
)]
.

(4.12)

It is not difficult to verify that (�x)(t+T0)= (�x)(t), for t > 0 and �x ∈ PCT0 ([0,∞);X).
By Assumption 4.1, we can choose a ξ0 ∈ (0, ξ̃) such that

2L1
(
L1L2 + 1

)(
T0 + δ

)
sup
|ξ|≤ξ0

χ(ξ)≤ ρ1, η = L1
(
L1L2 + 1

)(
T0 + δ

)
sup
|ξ|≤ξ0

�(ξ) < 1.

(4.13)

For ξ ∈ (−ξ0,ξ0) and provided x, y ∈�(xT0 ,ρ1), one can verify that

∥
∥�x− xT0

∥
∥
PCT0

≤ 2L1
(
L1L2 + 1

)(
T0 + δ

)
sup
|ξ|≤ξ0

χ(ξ)≤ ρ1, (4.14)

∥
∥�x−�y

∥
∥
PCT0

≤ η‖x− y‖PCT0
. (4.15)
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This implies that � is a contraction mapping on �(xT0 ,ρ1). By Banach’s fixed point theo-

rem, operator � has a unique fixed point xξT0
∈�(xT0 ,ρ1) given by

xξT0
(t)=�(t,0)x0 +

∫ t

0
�(t,θ)

[
f (θ) + p

(
θ,xξT0

(θ),ξ
)]
dθ

+
∑

0≤τk<t
�
(
t,τ+k

)[
ck + qk

(
xξT0

(
τ+k
)
,ξ
)] (4.16)

which is just the unique T0-periodic PC-mild solution of TPNLIS (4.5).

For any t ≥ 0, xξT0
∈ �(xT0 ,ρ1) ⊂ Sρ and ξ ∈ (−ξ0,ξ0) ⊂ Λ, it comes from (4) of

Assumption 4.1 and

∥
∥xξT0

(t)− xT0 (t)
∥
∥

≤ (∥∥�(t,0)
∥
∥
∥
∥[I −�

(
T0,0

)]−1∥∥+1
)
[∫ T0

0

∥
∥�
(
T0,θ

)
p
(
θ,xξT0

(θ),ξ
)∥∥dθ

+
∑

0≤τk<T0

∥
∥�
(
T0,τ+k

)
qk
(
xξT0

(
τ+k
)
,ξ
)∥∥
]

≤ 2L1
(
L1L2 + 1

)(
T0 + δ

)
sup
|ξ|≤ξ0

χ(ξ)

(4.17)

that limξ→0x
ξ
T0
(t)= xT0 (t) uniformly on t ∈ [0,+∞). �

An example is given to illustrate our theory. Consider the following problem:

∂

∂t
x(t, y)= Sin t

(
∂2x

∂y21
+
∂2x

∂y22
+
∂2x

∂y23

)
x(t, y)

+Cos(t, y) + ξ Sin(t, y), y ∈Ω, t ∈ (0,2π] \
{
1
2
π,π,

3
2
π
}
,

x
(
ti +0, y

)− x
(
ti− 0, y

)= x
(
ti, y

)
+ ξx

(
ti, y

)
, y ∈Ω, ti = i

2
π, i= 1,2,3,

x(0, y)= x(2π, y)= 1,

(4.18)

where ξ ∈ (−1,1), Ω⊂ R3 is bounded domain and ∂Ω∈ C3.
DefineX = L2(Ω),D(A)=H2(Ω)

⋂
H1

0 (Ω), andA(t)x = Sin t((∂2x/∂y21) + (∂2x/∂y22) +
(∂2x/∂y23)), for x ∈ D(A). Define x(·)(y) = x(·, y), Cos(·)(y) = Cos(·, y), ξ Sin(·)(y) =
ξ Sin(·, y). Thus problem (4.18) can be rewritten as

ẋ(t)= A(t)x(t) +Cos t+ ξ Sin t, t ∈ (0,2π] \
{
1
2
π,π,

3
2
π
}
,

x(0)= x(2π)= 1, Δx
(
i

2
π
)
= x
(
i

2
π
)
+ ξx

(
i

2
π
)
, i= 1,2,3.

(4.19)

It satisfies all the assumptions given in Theorem 4.4, thus our results can be applied to
problem (4.18).
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