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1. Introduction

In this paper, we denote by N, Z, R the set of all natural numbers, integers, and real
numbers, respectively. For a,b ∈ Z, define Z(a) = {a,a+ 1, . . .}, Z(a,b) = {a,a+ 1, . . . ,b}
when a≤ b.

Consider the nonlinear second-order difference equation

Δ
(
ϕp

(
Δxn−1

))
+ f

(
n,xn+1,xn,xn−1

)= 0, n∈ Z, (1.1)

where Δ is the forward difference operator Δxn = xn+1 − xn, Δ2xn = Δ(Δxn), ϕp(s) is
p-Laplacian operator ϕp(s) = |s|p−2s (1 < p <∞), and f : Z×R3 → R is a continuous
functional in the second, the third, and fourth variables and satisfies f (t +m,u,v,w) =
f (t,u,v,w) for a given positive integerm.

We may think of (1.1) as being a discrete analogue of the second-order functional
differential equation

[
ϕp(x′)

]′
+ f

(
t,x(t+1),x(t),x(t− 1)

)= 0, t ∈R (1.2)

which includes the following equation:

c2y′′(x)= v′
[
y(x+1)− y(x)

]− v′
[
y(x)− y(x− 1)

]
. (1.3)
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Equations similar in structure to (1.3) arise in the study of the existence of solitary waves
of lattice differential equations, see [1] and the references cited therein.

Some special cases of (1.1) have been studied by many researchers via variational
methods, see [2–7]. However, to our best knowledge, no similar results are obtained in
the literature for (1.1). Since f in (1.1) depends on xn+1 and xn−1, the traditional ways of
establishing the functional in [2–7] are inapplicable to our case. The main purpose of this
paper is to give some sufficient conditions for the existence of periodic and subharmonic
solutions of (1.1) using the critical point theory.

2. Some basic lemmas

To apply critical point theory to study the existence of periodic solutions of (1.1), we will
state some basic notations and lemmas (see [5, 8]), which will be used in the proofs of
our main results.

Let S be the set of sequences, x = (. . . ,x−n, . . . ,x−1,x0,x1, . . . ,xn, . . .) = {xn}+∞−∞, that is,
S = {x = {xn} : xn ∈ R, n ∈ Z}. For a given positive integer q and m, Eqm is defined as a
subspace of S by

Eqm =
{
x = {xn} ∈ S | xn+qm = xn, n∈ Z

}
. (2.1)

For any x, y ∈ S, a,b ∈R, ax+ by is defined by

ax+ by = {
axn + byn

}+∞
n=−∞. (2.2)

Then S is a vector space. Clearly, Eqm is isomorphic to Rqm, Eqm can be equipped with
inner product

〈x, y〉Eqm =
qm∑

j=1
xj y j , ∀x, y ∈ Eqm, (2.3)

by which the norm ‖ · ‖ can be induced by

‖x‖ =
( qm∑

j=1
x2j

)1/2

, ∀x ∈ Eqm. (2.4)

It is obvious that Eqm with the inner product in (2.3) is a finite dimensional Hilbert space
and linearly homeomorphic to Rqm.

On the other hand, we define the norm ‖ · ‖p on Eqm as follows:

‖x‖p =
( qm∑

i=1

∣
∣xi

∣
∣p

)1/p

, (2.5)

for all x ∈ Eqm and p > 1. Clearly, ‖x‖ = ‖x‖2. Since ‖ · ‖p and ‖ · ‖2 are equivalent, there
exist constants C1, C2, such that C2 ≥ C1 > 0, and

C1‖x‖p ≤ ‖x‖2 ≤ C2‖x‖p, ∀x ∈ Eqm. (2.6)



P. Chen and H. Fang 3

Define the functional J on Eqm as follows:

J(x)=
qm∑

n=1

[
1
p

∣
∣Δxn

∣
∣p−F

(
n,xn+1,xn

)
]
, (2.7)

where

f (t,u,v,w)= F′2(t− 1,v,w) +F′3(t,u,v),

F′2(t− 1,v,w)= ∂F(t− 1,v,w)
∂v

, F′3(t,u,v)=
∂F(t,u,v)

∂v
,

(2.8)

then

f
(
n,xn+1,xn,xn−1

)= F′3
(
n,xn+1,xn

)
+F′2

(
n− 1,xn,xn−1

)
. (2.9)

Clearly, J ∈ C1(Eqm,R) and for any x = {xn}n∈Z ∈ Eqm, by using x0 = xqm, x1 = xqm+1, we
can compute the partial derivative as

∂J

∂xn
=−(Δ(ϕp

(
Δxn−1

))
+ f

(
n,xn+1,xn,xn−1

))
, n∈ Z(1,qm). (2.10)

By the periodicity of {xn} and f (t,u,v,w) in the first variable t, we reduce the existence
of periodic solutions of (1.1) to the existence of critical points of J on Eqm. That is, the
functional J is just the variational framework of (1.1).

For convenience, we identify x ∈ Eqm with x = (x1,x2, . . . ,xqm)T .
Let X be a real Hilbert space, I ∈ C1(X ,R), which means that I is a continuously

Fréchet differentiable functional defined on X . I is said to satisfy Palais-Smale condition
(P-S condition for short) if any sequence {un} ⊂ X for which {I(un)} is bounded and
I′(un)→ 0, as n→∞, possesses a convergent subsequence in X .

Let Bρ be the open ball in X with radius ρ and centered at 0 and let ∂Bρ denote its
boundary.

Lemma 2.1 (linking theorem) [8, Theorem 5.3]. LetX be a real Hilbert space,X = X1⊕X2,
where X1 is a finite-dimensional subspace of X . Assume that I ∈ C1(X ,R) satisfies the P-S
condition and

(A1) there exist constants σ > 0 and ρ > 0, such that I|∂Bρ∩X2 ≥ σ ;
(A2) there is an e ∈ ∂B1 ∩ X2 and a constant R1 > ρ, such that I|∂Q ≤ 0, where Q =

(BR1 ∩X1)⊕{re | 0 < r < R1}.
Then, I possesses a critical value c ≥ σ , where

c = inf
h∈Γ

max
u∈Q

I
(
h(u)

)
, Γ= {

h∈ C
(
Q,X

)|h|∂Q = id
}

(2.11)

and id denotes the identity operator.
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3. Main results

Theorem 3.1. Assume that the following conditions are satisfied:
(H1) f (t,u,v,w) ∈ C(R4,R) and there exists a positive integer m, such that for every

(t,u,v,w)∈R4, f (t+m,u,v,w)= f (t,u,v,w);
(H2) there exists a functional F(t,u,v)∈ C1(R3,R) with F(t,u,v)≥ 0 and it satisfies

F′2(t− 1,v,w) +F′3(t,u,v)= f (t,u,v,w),

lim
ρ→0

F(t,u,v)
ρp

= 0, ρ =
√
u2 + v2;

(3.1)

(H3) there exist constants β ≥ p+1, a1 > 0, a2 > 0, such that

F(t,u,v)≥ a1
(√

u2 + v2
)β− a2, ∀(t,u,v)∈R3. (3.2)

Then, for a given positive integer q, (1.1) has at least two nontrivial qm-periodic solutions.

First, we prove two lemmas which are useful in the proof of Theorem 3.1.

Lemma 3.2. Assume that f (t,u,v,w) satisfies condition (H3) of Theorem 3.1, then the func-
tional J(x)=∑qm

n=1[1/p|Δxn|p−F(n,xn+1,xn)] is bounded from above on Eqm.

Proof. By (H3), there exist a1 > 0, a2 > 0, β > p, such that for all x ∈ Eqm,

J(x)=
qm∑

n=1

[
1
p

∣
∣Δxn

∣
∣p−F

(
n,xn+1,xn

)
]
≤

qm∑

n=1

[
2p

p
max

{∣∣xn+1
∣
∣p
,
∣
∣xn

∣
∣p}−F

(
n,xn+1,xn

)
]

≤ 2p

p

qm∑

n=1

[∣∣xn+1
∣
∣p

+
∣
∣xn

∣
∣p]− a1

qm∑

n=1

(√
x2n+1 + x2n

)β

+ a2qm

≤ 2p+1

p

qm∑

n=1

∣
∣xn

∣
∣p− a1

qm∑

n=1

∣
∣xn

∣
∣β + a2qm= 2p+1

p
‖x‖pp− a1‖x‖ββ + a2qm.

(3.3)

In view of (2.6), there exist constants C1, C3, such that

‖x‖p ≤ 1
C1
‖x‖, ‖x‖β ≥ 1

C3
‖x‖. (3.4)

So

J(x)≤ 2p+1

p
(
C1

)p ‖x‖p−
a1

(
C3

)β ‖x‖β + a2qm. (3.5)

By β > p and the above inequality, there exists a constant M > 0, such that for every x ∈
Eqm, J(x)≤M. The proof is complete. �

Lemma 3.3. Assume that f (t,u,v,w) satisfies condition (H3) of Theorem 3.1, then the func-
tional J satisfies P-S condition.
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Proof. Let x(k) ∈ Eqm, for all k ∈ N , be such that {J(x(k))} is bounded. Then there exists
M1 > 0, such that

−M1 ≤ J
(
x(k)

)≤ 2p+1

pC
p
1

∥
∥x(k)

∥
∥p− a1

C3
β

∥
∥x(k)

∥
∥β + a2qm, (3.6)

that is,

a1
C3

β

∥
∥x(k)

∥
∥β− 2p+1

pC
p
1

∥
∥x(k)

∥
∥p ≤M1 + a2qm. (3.7)

By β > p, there existsM2 > 0 such that for every k ∈N , ‖x(k)‖ ≤M2.
Thus, {x(k)} is bounded on Eqm. Since Eqm is finite dimensional, there exists a subse-

quence of {x(k)}, which is convergent in Eqm and the P-S condition is verified. �

Proof of Theorem 3.1. The proof of Lemma 3.2 implies lim‖x‖→∞ J(x) = −∞, then −J is
coercive. Let c0 = supx∈Eqm J(x). By continuity of J on Eqm, there exists x ∈ Eqm, such that
J(x)= c0, and x is a critical point of J . We claim that c0 > 0. In fact, we have

J(x)= 1
p

([ qm∑

n=1

∣
∣Δxn

∣
∣p

]1/p)p

−
qm∑

n=1
F
(
n,xn+1,xn

)

≥ 1
p

(
1
C2

)p
([ qm∑

n=1

∣
∣Δxn

∣
∣2
]1/2)p

−
qm∑

n=1
F
(
n,xn+1,xn

)

= 1
p

(
1
C2

)p
[ qm∑

n=1
2
(
x2n− xnxn+1

)
]p/2

−
qm∑

n=1
F
(
n,xn+1,xn

)

= 1
p

(
1
C2

)p(
xTAx

)p/2−
qm∑

n=1
F
(
n,xn+1,xn

)
,

(3.8)

where x = (x1,x2, . . . ,xqm)T ,

A=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2 −1 0 ··· 0 −1
−1 2 −1 ··· 0 0
0 −1 2 ··· 0 0
...

...
. . .

...
...

...
−1 0 0 ··· −1 2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

qm×qm

. (3.9)

Clearly, 0 is an eigenvalue of A and ξ = (v,v, . . . ,v)T ∈ Eqm is an eigenvector of A cor-
responding to 0, where v �= 0, v ∈R. Let λ1, λ2, . . . ,λqm−1 be the other eigenvalues of A. By
matrix theory, we have λj > 0, for all j ∈ Z(1,qm− 1).

Denote Z = {(v,v, . . . ,v)T ∈ Eqm | v ∈R} and Y = Z⊥, such that Eqm = Y ⊕Z.
Set

λmin = min
j∈Z(1,qm−1)

λj > 0, λmax = max
j∈Z(1,qm−1)

λj > 0. (3.10)
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By condition (H2), we have

lim
ρ→0

F(t,u,v)
ρp

= 0, ρ=
√
u2 + v2. (3.11)

Choose ε = 2−p/2−2(1/p)λp/2min(C1/C2)p, there exists δ > 0, such that

∣
∣F(t,u,v)

∣
∣≤ 2−p/2−2

1
p
λ
p/2
min

(
C1

C2

)p

ρp, ∀ρ≤ δ. (3.12)

Therefore, for any x = (x1,x2, . . . ,xqm)T with ‖x‖ ≤ δ, x ∈ Y , we have

J(x)≥ 1
p

(
1
C2

)p(
xTAx

)p/2−
qm∑

n=1
F
(
n,xn+1,xn

)

≥ 1
p
λ
p/2
min

(
1
C2

)p

‖x‖p− 2−p/2−2
1
p
λ
p/2
min

(
C1

C2

)p qm∑

n=1

[
2p/2max

(∣∣xn+1
∣
∣p
,
∣
∣xn

∣
∣p)]

≥ 1
p
λ
p/2
min

(
1
C2

)p

‖x‖p− 2−p/2−2
1
p
λ
p/2
min

(
C1

C2

)p qm∑

n=1

[
2p/2

(∣∣xn+1
∣
∣p

+
∣
∣xn

∣
∣p)]

= 1
p
λ
p/2
min

(
1
C2

)p

‖x‖p− 2−p/2−2
1
p
λ
p/2
min

(
C1

C2

)p

2p/2+1‖x‖pp

≥ 1
p
λ
p/2
min

(
1
C2

)p

‖x‖p− 1
2p

λ
p/2
min

(
C1

C2

)p( 1
C1

)p

‖x‖p = 1
2p

(
1
C2

)p

λ
p/2
min‖x‖p.

(3.13)

Take σ = 1/2p(1/C2)pλ
p/2
minδ

p, then

J(x)≥ σ > 0, ∀x ∈ Y ∩ ∂Bδ. (3.14)

So

c0 = sup
x∈Eqm

J(x)≥ σ > 0, (3.15)

which implies that J satisfies the condition (A1) of the linking theorem.
Noting that Ax = 0, for all x ∈ Z, we have

J(x)≤ 1
p

(
1
C1

)p(
xTAx

)p/2−
qm∑

n=1
F
(
n,xn+1,xn

)≤ 0. (3.16)

Therefore, the critical point associated to the critical value c0 of J is a nontrivial qm-
periodic solution of (1.1). Now, we need to verify other conditions of the linking theorem.
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By Lemma 3.3, J satisfies P-S condition. So, it suffices to verify condition (A2). Take e ∈
∂B1∩Y , for any z ∈ Z, r ∈R, let x = re+ z, then

J(x)= 1
p

qm∑

n=1

∣
∣Δxn

∣
∣p−

qm∑

n=1
F
(
n,xn+1,xn

)≤ 1
p

(
1
C1

)p
( qm∑

n=1

∣
∣Δxn

∣
∣2
)p/2

−
qm∑

n=1
F
(
n,xn+1,xn

)

= 1
p

(
1
C1

)p(
xTAx

)p/2−
qm∑

n=1
F
(
n,xn+1,xn

)

= 1
p

(
1
C1

)p〈
A(re+ z),(re+ z)

〉p/2−
qm∑

n=1
F
(
n,ren+1 + zn+1,ren + zn

)

= 1
p

(
1
C1

)p〈
Are,re

〉p/2−
qm∑

n=1
F
(
n,ren+1 + zn+1,ren + zn

)

≤ 1
p

(
1
C1

)p

λ
p/2
maxr p− a1

qm∑

n=1

(√(
ren+1 + zn+1

)2
+
(
ren + zn

)2
)β

+ a2qm

≤ 1
p

(
1
C1

)p

λ
p/2
maxr p− a1

(
1
C3

)β
( qm∑

n=1

[(
ren+1 + zn+1

)2
+
(
ren + zn

)2]
)β/2

+ a2qm

= 1
p
λ
p/2
max

(
1
C1

)p

r p− a1

(
1
C3

)β(
2r2 + 2‖z‖2)β/2 + a2qm

≤ 1
p
λ
p/2
max

(
1
C1

)p

r p− a1

(
1
C3

)β

2β/2rβ− a1

(
1
C3

)β

2β/2‖z‖β + a2qm.

(3.17)

Let

g1(r)= 1
p
λ
p/2
max

(
1
C1

)p

r p− a1

(
1
C3

)β

2β/2rβ, g2(t)=−a1
(
1
C3

)β

2β/2tβ + a2qm.

(3.18)

Then

lim
r→+∞g1(r)=−∞, lim

t→+∞g2(t)=−∞, (3.19)

and g1(r) and g2(t) are bounded from above.
Thus, there exists a constant R2 > δ, such that J(x)≤ 0, for all x ∈ ∂Q, where

Q = (
BR2 ∩Z

)⊕ {
re | 0 < r < R2

}
. (3.20)

By the linking theorem, J possesses a critical value c ≥ σ > 0, where

c = inf
h∈Γ

max
u∈Q

J
(
h(u)

)
,

Γ= {
h∈ C

(
Q,Eqm

)|h|∂Q = id
}
.

(3.21)

The rest of the proof is similar to that of [5, Theorem 1.1], but for the sake of com-
pleteness, we give the details.
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Let x̃ ∈ Eqm be a critical point associated to the critical value c of J , that is, J(x̃)= c.
If x̃ �= x, then the proof is complete; if x̃ = x, then c0 = J(x)= J(x̃)= c, that is

sup
x∈Eqm

J(x)= inf sup
h∈Γu∈Q

J
(
h(u)

)
. (3.22)

Choose h= id, we have supx∈Q J(x)= c0. Since the choice of e ∈ ∂B1∩Y is arbitrary, we
can take −e ∈ ∂B1 ∩ Y . By a similar argument, there exists a constant R3 > δ, for any
x ∈ ∂Q1, J(x)≤ 0, where

Q1 =
(
BR3 ∩Z

)⊕ {− re | 0 < r < R3
}
. (3.23)

Again, by using the linking theorem, J possesses a critical value c′ ≥ σ > 0, where

c′ = inf max
h∈Γ1u∈Q1

J
(
h(u)

)
, Γ1 =

{
h∈ C

(
Q1,Eqm

)|h|∂Q1 = id
}
. (3.24)

If c′ �= c0, then the proof is complete. If c′ = c0, then supx∈Q1
J(x)= c0. Due to the fact

that J|∂Q ≤ 0, J|∂Q1 ≤ 0, J attains its maximum at some points in the interior of the set Q
and Q1. Clearly, Q∩Q1 =∅, and for any x ∈ Z, J(x)≤ 0. This shows that there must be
a point x̂ ∈ Eqm, such that x̂ �= x̃ and J(x̂)= c′ = c0.

The above argument implies that whether or not c = c0, (1.1) possesses at least two
nontrivial qm-periodic solutions.

Remark 3.4. when qm = 1, (1.1) is reduced to trivial case; when qm = 2, A has the fol-
lowing form:

A=
(

2 −2
−2 2

)

. (3.25)

In this case, it is easy to complete the proof of Theorem 3.1.

Finally, we give an example to illustrate Theorem 3.1.

Example 3.5. Assume that

f (t,u,v,w)= 2(p+1)v
[(

1+ sin2
πt

m

)
(
u2 + v2

)p
+
(
1+ sin2

π(t− 1)
m

)
(
v2 +w2)p

]
.

(3.26)

Take

F(t,u,v)=
(
1+ sin2

πt

m

)
(
u2 + v2

)p+1
. (3.27)

Then,

F′2(t− 1,v,w) +F′3(t,u,v)

= 2(p+1)v
[(

1+ sin2
πt

m

)
(
u2 + v2

)p
+
(
1+ sin2

π(t− 1)
m

)
(
v2 +w2)p

]
.

(3.28)
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It is easy to verify that the assumptions of Theorem 3.1 are satisfied and then (1.1) pos-
sesses at least two nontrivial qm-periodic solutions. �
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