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1. Adiabatic invariant of dynamic systems on time scales

Consider the following system with a small parameter ε > 0 on a time scale:

vΔ(t) = A(tε)v(t), (1.1)

where vΔ is the delta derivative, v(t) is a 2-vector function, and

A(tε) = A(τ) =
(

a11(τ) εka12(τ)
ε−ka21(τ) a22(τ)

)
, τ = tε, k is an integer. (1.2)

WKB method [1, 2] is a powerful method of the description of behavior of solutions
of (1.1) by using asymptotic expansions. It was developed by Carlini (1817), Liouville, Green
(1837) and became very useful in the development of quantum mechanics in 1920 [1, 3]. The
discrete WKB approximation was introduced and developed in [4–8].

The calculus of times scales was initiated by Aulbach and Hilger [9–11] to unify the
discrete and continuous analysis.

In this paper, we are developing WKB approximations for the linear dynamic systems
on a time scale to unify the discrete and continuousWKB theory. Our formulas forWKB series
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are based on the representation of fundamental solutions of dynamic system (1.1) given in
[12]. Note that the WKB estimate (see (2.21) below) has double asymptotical character and it
shows that the error could be made small by either ε→0, or t→∞.

It is well known [13, 14] that the change of adiabatic invariant of harmonic oscillator
is vanishing with the exponential speed as ε approaches zero, if the frequency is an analytic
function.

In this paper, we prove that for the discrete harmonic oscillator (even for a harmonic
oscillator on a time scale) the change of adiabatic invariant approaches zero with the power
speed when the graininess depends on a parameter ε in a special way.

A time scale T is an arbitrary nonempty closed subset of the real numbers. If T has a
left-scattered minimum m, then T

k = T − m, otherwise T
k = T. Here we consider the time

scales with t ≥ t0, and supT = ∞.
For t ∈ T, we define forward jump operator

σ(t) = inf{s ∈ T, s > t}. (1.3)

The forward graininess function μ : T→[0,∞) is defined by

μ(t) = σ(t) − t. (1.4)

If σ(t) > t, we say that t is right scattered. If t < ∞ and σ(t) = t, then t is called right dense.
For f : T→R and t ∈ T

k define the delta (see [10, 11]) derivative fΔ(t) to be the
number (provided it exists)with the property that for given any ε > 0, there exist a δ > 0 and
a neighborhood U = (t − δ, t + δ) ∩ T of t such that

|f(σ(t)) − f(s) − fΔ(t)(σ(t) − s)| ≤ ε|σ(t) − s| (1.5)

for all s ∈ U.
For any positive ε define auxilliary “slow” time scales

Tε = {εt = τ, t ∈ T} (1.6)

with forward jump operator and graininess function

σ1(τ) = inf{sε ∈ Tε, sε > τ}, μ1(τ) = εμ(t), τ = tε. (1.7)

Further frequently we are suppressing dependence on τ = tε or t. To distinguish the
differentiation by t or τ we show the argument of differentiation in parenthesizes: fΔ(t) =
fΔt(t) or fΔ(τ) = fΔτ (τ).

Assuming A, θj ∈ C1
rd (see [10] for the definition of rd-differentiable function), denote

TrA(τ) = a11(τ) + a22(τ), detA(τ) = a11(τ)a22(τ) − a12(τ)a21(τ),

λ(τ) =

√
[TrA(τ)]2 − 4|A(τ)|

2a12(τ)
,

(1.8)

Hovj(t) = θ2
j (t) − θj(t)TrA(τ) + detA(τ) − εa12(τ)(1 + μθj)

(
a11 − θj

a12

)Δ

(τ), (1.9)

Q0(τ) =
Hov1 −Hov2

θ1 − θ2
, Q1(τ) =

(θ1 − a11)Hov2 − (θ2 − a11)Hov1

a12(θ1 − θ2)
, (1.10)

K(τ) = 2μ(t)max
j=1,2

[(
1 +

∣∣∣∣ ej

e3−j

∣∣∣∣
)(∣∣∣∣ 2Hovj

θ1 − θ2

∣∣∣∣ +
∣∣∣∣εa12(1 + μθj)

θ1 − θ2

(
a11 − θj

a12

)Δ

(τ)
∣∣∣∣
)
+ |θj |

]
, (1.11)
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where j = 1, 2, θ1,2(t) are unknown phase functions, ‖·‖ is the Euclidean matrix norm, and
{ej(t)}j=1,2 are the exponential functions on a time scale [10, 11]:

ej(t) ≡ eθj (t, t0) = exp
∫ t

t0

lim
p↘μ(s)

log(1 + pθj(s))Δs

p
< ∞, j = 1, 2. (1.12)

Using the ratio of Wronskians formula proposed in [15]we introduce a new definition
of adiabatic invariant of system (1.1)

J(t, θ, v, ε) = − [v1(t)(θ1(t) − a11(τ) − v2(t)a12(τ)][v1(t)(θ2(t) − a11(τ)) − v2a12(τ)]

(θ1 − θ2)
2(t)eθ1(t)eθ2(t)

, (1.13)

Theorem 1.1. Assume a12(τ)/= 0, A, θ ∈ C1
rd(Tε), and for some positive number β and any natural

numberm conditions

|1 + μ(TrA +Q0) + μ2(detA + θ1Q0 −Hov1)|(τ) ≥ β, ∀τ ∈ Tε, (1.14)

K(τ) ≤ const, ∀τ ∈ Tε, (1.15)
∫∞

tε

(
1 +

∣∣∣∣ ej

e3−j

∣∣∣∣
)∣∣∣∣ Hovj

θ1 − θ2

∣∣∣∣(τ)Δτ ≤ C0ε
m+1, j = 1, 2, (1.16)

are satisfied, where the positive parameter ε is so small that

0 ≤ 2C0(1 +K(τ))
β

εm ≤ 1. (1.17)

Then for any solution v(t) of (1.1) and for all t1, t2 ∈ T, the estimate

J(v, ε) ≡ |J(t1, v, ε) − J(t2, v, ε)| ≤ C3ε
m (1.18)

is true for some positive constant C3.

Checking condition (1.16) of Theorem 1.1 is based on the construction of asymptotic
solutions in the form of WKB series

v(t) = C1eθ1(t, t0) + C2eθ2(t, t0), (1.19)

where τ = tε, and

θ1,2(t) =
∞∑
j=0

εjζj±(τ), θΔ
1,2(t) =

∞∑
k=0

εk+1ζΔk±(τ). (1.20)

Here the functions ζ0+(τ), ζ0−(τ) are defined as

ζ0±(τ) =
TrA
2

± a12λ, ζ1±(τ) = −1 + μζ0±
2λ

(
λ ∓ a11 − a22

2a12

)Δ

(τ), (1.21)
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where λ(τ) is defined in (1.8), and ζk+(τ), ζk−(τ), k = 2, 3, . . . are defined by recurrence
relations

ζk±(τ) = ∓ (1 + μζ0±)
2λ

(
ζk−1±
a12

)Δ

(τ) + ∓
k−1∑
j=1

ζj±
2λ

[
ζk−j±
a12

+ μ

(
ζk−1−j± − a11δj,k−1

a12

)Δ

(τ)
]
, (1.22)

δjk is the Kroneker symbol (δjk = 1, if k = j, and δkj = 0 otherwise).
Denote

Z1(τ) = Z(ζ0+(τ)), Z2(τ) = Z(ζ0−(τ)), (1.23)

Z(ζ0) = a12(1 + μζ0)
(
ζm
a12

)Δ

+
m∑
j=1

ζj

[
ζm+1−j + εζm+2−j + a12μ

(
ζm−j − a11δj,m + εζm+1−j

a12

)Δ

(τ)
]
.

(1.24)

In the next Theorem 1.2 by truncating series (1.20):

θ1(t) =
m∑
k=0

εkζk+, θ2(t) =
m∑
k=0

εkζk−, (1.25)

where ζk±(t), k = 1, 2, . . . , m are given in (1.21) and (1.22), we deduce estimate (1.16) from
condition (1.26) below given directly in the terms of matrix A(τ).

Theorem 1.2. Assume that a12(τ)/=0, A, θ ∈ C1
rd(Tε), and conditions (1.14), (1.15), (1.17), and

∫∞

tε

(
1 +

∣∣∣∣ ej

e3−j

∣∣∣∣
)∣∣∣∣ Zj(τ)

θ1 − θ2

∣∣∣∣Δτ ≤ C0, j = 1, 2, (1.26)

are satisfied. Then, estimate (1.18) is true.

Note that if a11 = a22, then formulas (1.21) and (1.22) are simplified:

ζ0±(τ) = a11(τ) ± a12λ(τ), ζ1± = − (1 + μζ0±(τ))λΔ(τ)
2λ(τ)

, (1.27)

where from (1.8)

λ(τ) =

√
a12(τ)a21(τ)
a12(τ)

. (1.28)

Taking m = 1 in (1.25) and ζ0±(t), ζ1±(t) as in (1.21), we have

θ1(t) = ζ0+(t) + εζ1+(t), θ2(t) = ζ0−(t) + εζ1−(t), (1.29)

which means that in (1.20) ζ2± = ζ3± = · · · = 0, and from (1.24)

Z(ζ0) = ζ21 + a12(1 + μζ0)
(

ζ1
a12

)Δ

+ μa12ζ1

(
ζ0 − a11 + εζ1

a12

)Δ

. (1.30)
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Example 1.3. Consider system (1.1) with a11 = a22. Then for continuous time scale T = R we
have μ = 0, and by picking m = 1 in (1.25) we get by direct calculations ζ1+ = ζ1− and

Hov(θ1) = Hov(θ2) = Z(ζ0+) = Z(ζ0−). (1.31)

In view of

Z1 = Z2 = ζ21+ + a12

(
ζ1+
a12

)Δ

=
(
λτ
λ

)2

− 2a12

(
λτ
a12λ

)
τ

= λ1/2(τ)
(
a−1
12 (τ)(λ

−1/2(τ))τ
)
τ , (1.32)

condition (1.26) under the assumption R[λ] = 0 turns to

∫∞

0

∣∣a−1
12 (τ)λ

−1/2(τ)
(
a−1
12 (τ)(λ

−1/2(τ))τ
)
τ

∣∣Δτ < C0, (1.33)

and from Theorem 1.2 we have the following corollary.

Corollary 1.4. Assume that a−1
12 ∈ C1[0,∞), λ ∈ C2[0,∞), R[λ(τ)] ≡ 0, a11(τ) ≡ a22(τ), and

(1.33) is satisfied. Then for ε ≤ 1/C0 estimate (1.18) with m = 1 is true for all solutions v(t) of
system (1.1) on continuous time scale T = R.

If a12 = 1, then (1.33) turns to

∫∞

t0ε

|λ−1/2(τ)(λ−1/2(τ))ττ |Δτ < C0, (1.34)

and for λ(τ) =
√
a21 = iτ−2γ it is satisfied for any real γ .

If λ(τ) is an analytic function, then it is known (see [13]) that the change of adiabatic invariant
approaches zero with exponential speed as ε approaches zero.

Example 1.5. Consider harmonic oscillator on a discrete time scale T = εZ,

uΔΔ(t) +w2(tε)u(t) = 0, t ∈ εZ, (1.35)

which could be written in form (1.1), where

A =
(

0 1
−w2(tε) 0

)
, v =

(
u
uΔ

)
. (1.36)

Choosing m = 1 from formulas (1.27) and (1.29) we have λ(τ) = iw(τ), and

θ1(t) = ζ0+ + εζ1+ = iw(τ) − εwΔ(τ)
2w(τ)

− iεμwΔ(τ)
2

, τ = tε,

θ2(t) = ζ0− + εζ1− = −iw(τ) − εwΔ(τ)
2w(τ)

+
iεμwΔ(τ)

2
.

(1.37)

From (1.13) we get

J(t, v, ε) =
[v2(t) + iw(τ)v1(t)][v2(t) − iw(τ)v1(t)]

(2w(τ) − εμ(t)wΔ(τ))2eθ1(t)eθ2(t)
, (1.38)
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or

J(t, u, ε) =
(uΔ(t))2 +w2(τ)u2(t)

(2w(τ) − εμ(t)wΔ(τ))2eη
, (1.39)

η = θ1 + θ2 + μθ1θ2 = −εw
Δ(τ)
w

+
μ(εwΔ)2

4w2
+ μ

(
w − εμwΔ

2

)2

. (1.40)

If we choose

w(τ) =
aε2

τ2
+
bε3

τ3
=

a

t2
+

b

t3
, λ(τ) =

√
a21(τ) = iw(τ), (1.41)

then all conditions of Theorem 1.2 are satisfied (see proof of Example 1.5 in the next section)
for any real numbers b, a /= 0, and estimate (1.18) withm = 1 is true.

Note that for continuous time scale we have μ = 0, and (1.39) turns to the formula of
adiabatic invariant for Lorentz’s pendulum ([13]):

J(t, v, ε) =
u2
t (t) +w2(tε)u2(t)

4w(tε)
. (1.42)

2. WKB series and WKB estimates

Fundamental system of solutions of (1.1) could be represented in form

v(t) = Ψ(t)(C + δ(t)), (2.1)

where Ψ(t) is an approximate fundamental matrix function and δ(t) is an error vector
function.

Introduce the matrix function

H(t) = (1 + μ(t)Ψ−1(t)ΨΔ(t))−1Ψ−1(t)(A(t)Ψ(t) −ΨΔ(t)). (2.2)

In [16], the following theory was proved.

Theorem 2.1. Assume there exists a matrix function Ψ(t) ∈ C1
rd(T∞) such that ‖H‖ ∈ R+

rd, the
matrix function Ψ + μΨ∇ is invertible, and the following exponential function on a time scale is
bounded:

e‖H(t)‖(∞, t) = exp
∫∞

t

lim
p↘μ(s)

log(1 + p‖H(s)‖)Δs

p
< ∞. (2.3)

Then every solution of (1.1) can be represented in form (2.1) and the error vector function δ(t) can be
estimated as

‖δ(t)‖ ≤ ‖C‖(e‖H‖(∞, t) − 1), (2.4)

where ‖·‖ is the Euclidean vector (or matrix) norm.
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Remark 2.2. If μ(t) ≥ 0, then from (2.4)we get

‖δ(t)‖ ≤ ‖C‖
(
e
∫∞
t ‖H(s)‖Δs − 1

)
. (2.5)

Proof of Remark 2.2. Indeed if x ≥ 0, the function f(x) = x − log(1 + x) is increasing, so f(x) ≥
f(0), log(1 + x) ≤ x, and from p ≥ 0, ‖H(t)‖ ≥ 0 we get

log(1 + p‖H(s)‖)
p

≤ ‖H(s)‖, (2.6)

and by integration

∫∞

t

lim
p↘μ(s)

log(1 + p‖H(s)‖)
p

Δs ≤
∫∞

t

‖H(s)‖Δs, (2.7)

or

e‖H‖(t,∞) − 1 ≤ −1 + exp
∫∞

t

‖H(s)‖Δs. (2.8)

Note that from the definition

σ1(τ) = εσ(t), μ1(τ) = εμ(t), qΔ(t) = εqΔτ (τ). (2.9)

Indeed

εσ(t) = ε inf
s∈T

{s, s > t} = inf
εs∈Tε

{εs, s > t} = inf
εs∈Tε

{εs, εs > εt} = σ1(εt) = σ1(τ),

σ1(τ) = εσ(t), μ1(τ) = σ1(tε) − εt = ε(σ(t) − t) = εμ(t),

q(εσ(t)) = q(tε) + εμ(t)qΔτ (τ) = q(tε) + μ(t)qΔ(t).

(2.10)

If a12(τ)/=0, then the fundamental matrix Ψ(t) in (2.1) is given by (see [12])

Ψ(t) =
(

eθ1(t) eθ2(t)
U1(t)eθ1(t) U2(t)eθ2(t)

)
, Uj(t) =

θj(t) − a11(t)
a12(t)

. (2.11)

Lemma 2.3. If conditions (1.14), (1.15) are satisfied, then

‖H(t)‖ ≤ 2(1 +K(τ))
β

max
j=1,2

[(
1 +

∣∣∣∣ ej(t)
e3−j(t)

∣∣∣∣
)∣∣∣∣ Hovj(t)

θ1(t) − θ2(t)

∣∣∣∣
]
, t ∈ T, (2.12)

where the functions Hovj(t), K(τ) are defined in (1.9), (1.11).

Proof. Denote

Ω = 1 + μΨ−1ΨΔ, M = Ψ−1(AΨ −ΨΔ). (2.13)



8 Advances in Difference Equations

By direct calculations (see [12]), we get from (2.11)

M =
1

θ1 − θ2

⎛
⎜⎝ −Hov1 −e2Hov2

e1
e1Hov1

e2
Hov2

⎞
⎟⎠ , ΨΔΨ−1 =

(
a11 a12

a21 +Q1 a22 +Q0

)
. (2.14)

Using (2.14), we get

detΩ = det(ΨΩΨ−1) = det(1 + μΨΔΨ−1) = 1 + μ(Q0 + TrA) + μ2(detA + a11Q0 − a12Q1),
(2.15)

and from (1.14)

|det(Ω)| = |1 + μ(Q0 + TrA) + μ2(detA + a11Q0 − a12Q1)| ≥ β > 0,

‖Ω−1‖ =
‖Ωco‖
|detΩ| ≤

‖Ω‖
|detΩ| ≤

‖Ω‖
β

, H = Ω−1M,

Ψ−1AΨ =
1

θ1 − θ2

⎛
⎜⎜⎝

−θ2
1 + θ1TrA − detA −e2(θ

2
2 − θ2TrA + detA)

e1
e1(θ2

1 − θ1TrA + detA)
e2

θ2
2 − θ2TrA + detA

⎞
⎟⎟⎠ +

(
θ1 0
0 θ2

)
,

‖M‖ ≤ 2max
j=1,2

[(
1 +

∣∣∣∣ ej

e3−j

∣∣∣∣
)∣∣∣∣ Hovj

θ1 − θ2

∣∣∣∣
]
.

(2.16)

So by using (1.9), we have

‖Ψ−1AΨ‖ ≤ 2max
j=1,2

[(
1 +

∣∣∣∣ ej

e3−j

∣∣∣∣
)(∣∣∣∣ Hovj

θ1 − θ2

∣∣∣∣ +
∣∣∣∣εa12(1 + μθj)[(a11 − θj)/a12]

Δ(τ)
θ1 − θ2

∣∣∣∣
)
+ |θj |

]

‖Ω‖ = ‖1 + μ(Ψ−1AΨ −M)‖ ≤ 1 + μ(‖Ψ−1AΨ‖ + ‖M‖).
(2.17)

From (2.2), (2.13), (2.17), we get (2.12) in view of

‖H‖ ≤ ‖Ω−1‖ · ‖M‖ ≤ ‖Ω‖
β

‖M‖ ≤ 1 +K

β
‖M‖. (2.18)

Proof of Theorem 1.1. From (1.16) changing variable of integration τ = εs,we get

∫∞

t

‖M(s)‖Δs ≤
∫∞

t

2max
j=1,2

(
1 +

∣∣∣∣ ej(s)
e3−j(s)

∣∣∣∣
)∣∣∣∣ Hovj(s)

θ1(s) − θ2(s)

∣∣∣∣Δs ≤ 2C0ε
m, j = 1, 2. (2.19)

So using (2.12), we get

∫∞

t

‖H(s)‖Δs ≤
∫∞

t

1 +K(εs)
β

‖M(s)‖Δs ≤ cC0ε
m. (2.20)
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From this estimate and (2.5), we have

‖δ(t)‖ ≤ ‖C‖
(
e
∫∞
t ‖H(s)‖Δs − 1

)
≤ ‖C‖(eC0cε

m − 1
) ≤ e‖C‖C0cε

m, (2.21)

where ε is so small that (1.17) is satisfied. The last estimate follows from the inequality ex−1 ≤
ex, x ∈ [0, 1]. Indeed because g(x) = ex + 1 − ex is increasing for 0 ≤ x ≤ 1, we have
g(x) ≥ g(0).

Further from (2.1), (2.11), we have

v1 = (C1 + δ1)eθ1 + (C2 + δ2)eθ2 , v2 = (C1 + δ1)U1eθ1 + (C2 + δ2)U2eθ2 . (2.22)

Solving these equation for Cj + δj , we get

C1 + δ1 =
v1U2 − v2

(U2 −U1)eθ1
, C2 + δ2 =

v2 − v1U1

(U2 −U1)eθ2
. (2.23)

By multiplication (see (1.12)), we get

J(t) = (C1 + δ1(t))(C2 + δ2(t)) = C1C2 + C2δ1(t) + C1δ2(t) + δ1(t)δ2(t),

J(t1) − J(t2) = C2(δ1(t1) − δ1(t2)) + C1(δ2(t1) − δ2(t2)) + δ1(t1)δ2(t1) − δ1(t2)δ2(t2),
(2.24)

and using estimate (2.21), we have

|J(t1, θ, v, ε) − J(t2, θ, v, ε)| ≤ C3ε
m. (2.25)

Proof of Theorem 1.2. Let us look for solutions of (1.1) in the form

v(t) = Ψ(t)C, (2.26)

where Ψ is given by (2.11), and functions θj are given via WKB series (1.20).
Substituting series (1.20) in (1.9), we get

Hov(θ1) =
∞∑

r,j=0

(ζrεr)(ζjεj) − Tr(A)
∞∑
r=0

ζrε
r + detA

+ a12ε

(
1 + μ

∞∑
r=0

ζrε
r

)(∑∞
j=0ζjε

j − a11

a12

)Δ

(τ),

(2.27)

or

Hov(θ1) ≡
∞∑
k=0

bk(τ)εk. (2.28)

TomakeHov(θ1) asymptotically equal zero or Hov(θ1) ≡ 0wemust solve for ζk the equations

bk(τ) = 0, k = 0, 1, 2 . . . . (2.29)
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By direct calculations from the first quadratic equation

b0 = ζ20 − ζ0TrA + det(A) = 0, (2.30)

and the second one

b1(τ) = 2ζ1ζ0 − ζ1TrA + a12(1 + μζ0)
(
ζ0 − a11

a12

)Δ

= 0, (2.31)

we get two solutions ζj± given by (1.21) and (1.22). Note that

ζ0+ − a11

a12
=

a22 − a11

2a12
+ λ,

ζ0− − a11

a12
=

a22 − a11

2a12
− λ,

ζ1+ − ζ1− = a12μλ
Δ +

2 + μTrA
2λ

(
a11 − a22

2a12

)Δ

.

(2.32)

Furthermore from (k + 1)th equation

bk = (2ζ0 − TrA)ζk + a12(1 + μζ0)
(
ζk−1
a12

)Δ

+
k−1∑
j=1

ζj

[
ζk−j + a12μ

(
ζk−1−j − a11δj,k−1

a12

)Δ

(τ)
]
= 0,

(2.33)

we get recurrence relations (1.22).
In view of Theorem 1.1, to prove Theorem 1.2 it is enough to deduce condition (1.16)

from (1.26). By truncation of series (1.20) or by taking

ζk+ = ζk− = 0, k = m + 1, m + 2, . . . , (2.34)

we get (1.25). Defining ζj±, j = 1, 2, . . . , m as in (1.21) and (1.22), we have

b0 = b1 = · · · = bm−1 = bm = bm+3 = bm+4 = · · · = 0,

bm+1 = a12(1 + μζ0)
(
ζm
a12

)Δ

+
m∑
j=1

ζj

[
ζm+1−j + a12μ

(
ζm−j − a11δj,m

a12

)Δ

(τ)
]
,

bm+2 =
m∑
j=1

ζj

[
ζm+2−j + a12μ

(
ζm+1−j
a12

)Δ

(τ)
]
.

(2.35)

Now (1.16) follows from (1.26) in view of

Hov(θk) = εm+1(bm+1 + bm+2ε) = εm+1Zk, k = 1, 2. (2.36)
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Note that from (1.13) and the estimates

log |1 + pθ| ≤ log
√
1 + 2pR(θ) + p2|θ|2 ≤ 1

2
|2pR(θ) + p2|θ|2|,

log |1 + pθ| ≤ log
√
1 + 2pR(θ) + p2|θ|2 ≤

√
|2pR(θ) + p2|θ|2|,

(2.37)

it follows

|eθ(t, t0)| ≤ exp
∫ t

t0

∣∣∣∣R[θ(s)] +
μ(s)|θ(s)|2

2

∣∣∣∣Δs, (2.38)

|eθ(t, t0)| ≤ exp
∫ t

t0

√
|θ(s)|2 + 2R[θ(s)]

μ(s)
Δs, μ(s) > 0. (2.39)

Proof of Example 1.5. From (1.37), (1.41), we have

θ1 − θ2 = i(2w(τ) − εμwΔ(τ)), θ1 + θ2 = −εw
Δ(τ)
w

, θ1θ2 =
(εwΔ)2

4w2
+
(
w − εμwΔ

2

)2

,

η1(t) =
θ1 − θ2
1 + μθ2

=
2ia
t2

+O(t−3), η2(t) =
θ2 − θ1
1 + μθ1

=
−2ia
t2

+O(t−3), τ −→ ∞,

(2.40)

and using (2.39), we get

∣∣∣∣eθ1eθ2

∣∣∣∣ ≤ |eη1 | ≤ const,
∣∣∣∣eθ2eθ1

∣∣∣∣ ≤ |eη2 | ≤ const. (2.41)

Further for τ→∞

ζ1± = −λ
Δ

2λ
∓ λΔ

2
=

1
τ
+
bε − 3aμ
2aτ2

+
1
τ3

(
2μ2 − 3bεμ

2a
− b2ε2

2a2
± iaε2

)
+O(τ−4),

Z1 = ζ21+ + ζΔ1+ + εζΔ1+ζ1+ +O(τ−4) =
μ − ε

τ3
+O(τ−4) = O(τ−4), Z2 = Z1 +O(τ−4).

(2.42)

So if μ = ε, then (1.26) and all other conditions of Theorem 1.2 are satisfied, and (1.18) is true
withm = 1.
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