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1. Introduction and Preliminaries

In this paper we study stability of a scalar linear difference equation with several delays,

x(n + 1) − x(n) = −
m∑

l=1

al(n)x(hl(n)), hl(n) ≤ n, n ≥ n0, (1.1)

where hl(n) is an integer for any l = 1, . . . , m, n is an integer, n0 ≥ 0. Stability of (1.1) and
relevant nonlinear equations has been an intensively developed area during the last two
decades.

Let us compare stability methods for delay differential equations and delay difference
equations. Many of the methods previously used for differential equations have also been
applied to difference equations. However, there are at least two methods which are specific
for difference equations. The first approach is reducing a solution of a delay difference
equation to the values of a solution of a delay differential equation with piecewise constant
arguments at integer points. The second method is based on a recursive form of difference
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equations and is described in detail later. In this paper we obtain new stability results based
on the recursive solution representation.

For (1.1) everywhere below we assume that hl(n) ≥ n − T , n ≥ n0 ≥ 0, that is, the
system has a finite memory, and the following initial conditions are defined

x(n) = ϕ(n), n0 − T ≤ n ≤ n0. (1.2)

Definition 1.1. Equation (1.1) is exponentially stable if there exist constants M > 0, λ ∈ (0, 1)
such that for every solution {x(n)} of (1.1) and (1.2) the inequality

|x(n)| ≤ Mλn−n0

(
max

n0−T≤k≤n0

{∣∣ϕ(k)
∣∣}
)

(1.3)

holds for all n ≥ n0, where M, λ do not depend on n0 ≥ 0.
Equation (1.1) is stable if for any ε > 0 there exists δ > 0 such that

maxn0−T≤k≤n0{|ϕ(k)|} < δ implies |x(n)| < ε, n ≥ n0; if δ does not depend on n0, then (1.1)
is uniformly stable.

Equation (1.1) is attractive if for any ϕ(k) a solution tends to zero limn→∞x(n) = 0. It is
asymptotically stable if it is both stable and attractive.

One of the methods to establish stability of difference equations is based on a recursive
form of these equations; see the monographs [1, 2]. The following result was also obtained
by this method.

Lemma 1.2 ([3, 4]). Consider the nonlinear delay difference equation

xn+1 = f(n, xn, . . . , xn−T ), n ≥ 0. (1.4)

Assume that f : N × R
T+1 → R satisfies

∣∣f(n, u0, . . . , uT )
∣∣ ≤ bmax{|u0|, . . . , |uT |}, (1.5)

for some constant b < 1, and for all (n, u0, . . . , uT ) ∈ N × R
T+1. Then

|xn| ≤ bn/(T+1)M0, n ≥ 0, (1.6)

for every solution {xn} of (1.4), whereM0 = max−T≤i≤0{|xi|}. In particular, the zero solution of (1.4)
is globally exponentially stable.

This result was applied to a more general than (1.1) nonlinear difference equation

xn+1 − xn = −
N∑

k=0

ak(n)xn−k + f(n, xn, . . . , xn−T ). (1.7)
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Without loss of generality, we can suppose that N ≤ T . We assume that there exist constants
bn ≥ 0 such that

∣∣f(n, u0, . . . , uT )
∣∣ ≤ bn max{|u0|, . . . , |uT |}, (1.8)

for all n ≥ 0 and (u0, . . . , uT ) ∈ R
T+1.

Similar argument leads to the following result.

Lemma 1.3 ([4]). Assume that for n large enough inequality (1.8) holds and there exists a constant
γ ∈ (0, 1) such that

cn :=

∣∣∣∣∣1 −
N∑

k=0

ak(n)

∣∣∣∣∣ +
N∑

k=1

|ak(n)|
n−1∑

m=n−k

(
bm +

N∑

k=0

|ak(m)|
)

+ bn ≤ γ. (1.9)

Then the zero solution of (1.7) is globally exponentially stable. Moreover, if (1.8) and (1.9) hold for
n ≥ 0, then

|xn| ≤ γn/(N+T+1) max{|xN |, . . . , |x−T |}, n ≥ N, (1.10)

for every solution {xn} of (1.7).

Recently several results on exponential stability of high-order difference equations
appearedwhere the results are based on the recursive representations; see, for example, [5, 6].
In particular, in [6, Corollary 7] contains the following statement.

Lemma 1.4 ([6]). If there exists λ ∈ (0, 1) such that

Λn =

∣∣∣∣∣∣

N∏

j=0

a
(
n − j

) − c(n)

∣∣∣∣∣∣
+

N∑

s=1

∣∣∣∣∣∣

s−1∏

j=0

a
(
n − j

)
∣∣∣∣∣∣
|c(n − s)| ≤ λ, (1.11)

for large n, then the zero solution of the equation

x(n + 1) = a(n)x(n) − c(n)x(n −N) (1.12)

is globally exponentially stable.

In the present paper we obtain some new stability results for (1.1)with several variable
delays. In contrast to many other stability tests, we consider the case when the sum of
coefficients

∑m
k=1ak(n) or some of its subsum is allowed to be in the interval (0, 2], not just

(0, 1]. We illustrate our results with several examples.

2. Main Results

Now we can proceed to the main results of this paper. Let us note that any sum where the
lower index exceeds the upper index is assumed to vanish.
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Theorem 2.1. Suppose that there exist a set of indices I ⊂ {1, 2, . . . , m} and γ ∈ (0, 1) such that for
n sufficiently large

∑

k∈I
|ak(n)|

n−1∑

j=hk(n)

m∑

l=1

∣∣al

(
j
)∣∣ +

∑

l /∈ I

|al(n)| +
∣∣∣∣∣1 −

∑

k∈I
ak(n)

∣∣∣∣∣ ≤ γ. (2.1)

Then (1.1) is exponentially stable.

Proof. Since

x(n + 1) = x(n) −
∑

k∈I
ak(n)x(hk(n)) −

∑

l /∈ I

al(n)x(hl(n))

=
∑

k∈I
ak(n)

n−1∑

j=hk(n)

[
x
(
j + 1

) − x
(
j
)]

+ x(n) −
∑

k∈I
ak(n)x(n) −

∑

l /∈ I

al(n)x(hl(n))

= −
∑

k∈I
ak(n)

n−1∑

j=hk(n)

m∑

l=1

al

(
j
)
x
(
hl

(
j
))

+ x(n)

[
1 −

∑

k∈I
ak(n)

]
−
∑

l /∈ I

al(n)x(hl(n)),

(2.2)

then

|x(n + 1)| ≤
⎡

⎣
∑

k∈I
|ak(n)|

n−1∑

j=hk(n)

m∑

l=1

∣∣al

(
j
)∣∣ +

∑

l /∈ I

|al(n)| +
∣∣∣∣∣1 −

∑

k∈I
ak(n)

∣∣∣∣∣

⎤

⎦max
j≤n

∣∣x
(
j
)∣∣

≤ γ max
j≤n

∣∣x
(
j
)∣∣.

(2.3)

By Lemma 1.2, (1.1) is exponentially stable.

We can reformulate Theorem 2.1 in the following equivalent form.

Theorem 2.2. Suppose that there exist a set of indices I ⊂ {1, 2, . . . , m} and ε ∈ (0, 1) such that for
n sufficiently large

∑

k∈I
|ak(n)|

n−1∑

j=hk(n)

m∑

l=1

∣∣al

(
j
)∣∣ +

∑

l /∈ I

|al(n)| ≤ min

{
∑

k∈I
ak(n), 2 −

∑

k∈I
ak(n)

}
− ε. (2.4)

Then (1.1) is exponentially stable.

Assuming first I = {1} and then I = {1, 2, . . . , m}, we obtain the following two
corollaries for an equation with a nondelay term.
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Corollary 2.3. Let 0 < γ < 1 and
∑m

l=2|al(n)|+ |1−a1(n)| ≤ γ for n large enough. Then the equation

x(n + 1) − x(n) = −a1(n)x(n) −
m∑

l=2

al(n)x
(
gl(n)

)
(2.5)

is exponentially stable.

Example 2.4. Consider the equation

x(n + 1) − x(n) = −1.5x(n) − 0.3 sin(n)x(h(n)), (2.6)

with an arbitrary bounded delay h(n): n − T ≤ h(n) ≤ n for some integer T > 0 and any n.
Since 0.3|sinn| + |1 − 1.5| ≤ 0.8 < 1, then by Corollary 2.3 this equation is exponentially stable.
Lemma 1.4 is formulated for a constant delay, some other tests do not apply since | − 1.5| > 1.

Corollary 2.5. Suppose that for some γ ∈ (0, 1) the following inequality is satisfied for n large enough:

m∑

k=2

|ak(n)|
n−1∑

j=gk(n)

m∑

l=1

∣∣al

(
j
)∣∣ +

∣∣∣∣∣1 −
m∑

k=1

ak(n)

∣∣∣∣∣ ≤ γ. (2.7)

Then (2.5) is exponentially stable.

Example 2.6. By Corollary 2.5 the equation

x(n + 1) − x(n) = −(0.5 + 0.1 sinn)x(n) − (0.6 − 0.1 sinn)x(n − 1) (2.8)

is exponentially stable, since |0.5+0.1 sinn|+|0.6−0.1 sinn| = 1.1 and 0.7·1.1+|1−1.1| = 0.87 < 1.

Now let us assume that all coefficients are proportional. Such equations arise as
linear approximations of nonlinear difference equations in mathematical biology. Then a
straightforward computation leads to the following result.

Corollary 2.7. Suppose that all coefficients are proportional al(n) = Alr(n), l = 1, . . . , m, there exist
r0 > 0, ε > 0 and a set of indices I ⊂ {1, 2, . . . , m}, such that r(n) ≥ r0 > 0 and

∑

l∈I
|Al|

n−1∑

k=hl(n)

r(k) ≤ min{r(n)∑l∈IAl, 2 − r(n)
∑

l∈IAl} − r(n)
∑

l /∈ I |Al| − ε

r(n)
∑m

l=1|Al|
. (2.9)

Then (1.1) is exponentially stable.

Assuming constant coefficients and I = {1, 2, . . . , m}we obtain the following corollary.
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Corollary 2.8. Suppose that all coefficients are constants al(n) ≡ al and

lim sup
n→∞

m∑

l=1

|al|
m∑

l=1

|al|(n − hl(n)) < min

{
m∑

l=1

al, 2 −
m∑

l=1

al

}
. (2.10)

Then (1.1) is exponentially stable.

Remark 2.9. Corollary 2.8 for the case 0 <
∑m

l=1al < 1 was obtained in Proposition 4.1 of [7].

Now let us consider the equation with one nondelay and one delay terms

x(n + 1) − x(n) = −a(n)x(n) − b(n)x(h(n)). (2.11)

Choosing I = {1}, I = {1, 2}, we obtain Parts (1) and (2) of Corollary 2.10, respectively.

Corollary 2.10. Suppose that there exists γ ∈ (0, 1) such that at least one of the following conditions
holds for n sufficiently large:

(1) |b(n)| + |1 − a(n)| ≤ γ ;

(2) |b(n)|∑n−1
k=h(n)[|a(k)| + |b(k)|] + |1 − a(n) − b(n)| ≤ γ.

Then (2.11) is exponentially stable.

Let us now proceed to equations with three terms in the right-hand side

x(n + 1) − x(n) = −a(n)x(n) − b(n)x(h(n)) − c(n)x
(
g(n)

)
. (2.12)

For I = {1}, {1, 2, 3}, {1, 2} and {1, 3} we obtain Parts (1), (2), (3), and (4), respectively.

Corollary 2.11. Suppose that there exists γ ∈ (0, 1) such that at least one of the following conditions
holds for n sufficiently large:

(1) |b(n)| + |c(n)| + |1 − a(n)| ≤ γ ;

(2) |b(n)|∑n−1
k=h(n)[|a(k)|+ |b(k)|+ |c(k)|]+ |c(n)|

∑n−1
k=g(n)[|a(k)|+ |b(k)|+ |c(k)|]+ |1−a(n)−

b(n) − c(n)| ≤ γ ;

(3) |b(n)|∑n−1
k=h(n)[|a(k)| + |b(k)| + |c(k)|] + |c(n)| + |1 − a(n) − b(n)| ≤ γ ;

(4) |c(n)|∑n−1
m=g(n)[|a(k)| + |b(k)| + |c(k)|] + |b(n)| + |1 − a(n) − c(n)| ≤ γ .

Then (2.12) is exponentially stable.

Theorem 2.1 and its corollaries imply new explicit conditions of exponential stability
for autonomous difference equations with several delays, as well as a new justification for
known ones.

Consider the autonomous equation

x(n + 1) − x(n) = −a1x(n) −
m∑

l=2

alx(n − hl), (2.13)

where hl > 0. Choosing I = {1} we immediately obtain the following stability test.
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Corollary 2.12. Let
∑m

l=2|al| < min{a1, 2 − a1}. Then (2.13) is exponentially stable.

Remark 2.13. This result is well known; see, for example, [8] form = 2 as well as some results
for autonomous equations below. We presented it just to illustrate our method.

Further, Theorem 2.1 and Corollaries 2.8 and 2.11 can be reformulated for (2.13) as
follows.

Corollary 2.14. Suppose that there exists a set of indices I ⊂ {1, 2, . . . , m}, with 1 ∈ I, such that

m∑

l=1

|al|
∑

k∈I
|ak|hk +

∑

l /∈ I

|al| +
∣∣∣∣∣1 −

∑

k∈I
ak

∣∣∣∣∣ < 1. (2.14)

Then (2.13) is exponentially stable.

Corollary 2.15. If
∑m

l=1|al|
∑m

k=2|ak|hk < min{∑m
k=1ak, 2 − ∑m

k=1ak}, then (2.13) is exponentially
stable.

Consider now an autonomous equation with two delays:

x(n + 1) − x(n) = −a0x(n) − a1x(n − h1) − a2x(n − h2), (2.15)

where h1 > 0, h2 > 0.

Corollary 2.16. Suppose that at least one of the following conditions holds

(1) |a1| + |a2| + |1 − a0| < 1;

(2) (|a0| + |a1| + |a2|)(|a1|h1 + |a2|h2) + |1 − a0 − a1 − a2| < 1;

(3) |a1|h1(|a0| + |a1| + |a2|) + |1 − a0 − a1| < 1;

(4) |a2|h2(|a0| + |a1| + |a2|) + |1 − a0 − a2| < 1.

Then (2.15) is exponentially stable.

Let us present two more results which can be easily deduced from the recursive
representation of solutions. To this end we consider the equation

x(n + 1) =
m∑

l=1

al(n)x(hl(n)), (2.16)

which is a different form of (1.1).
We recall that we assume n − hl(n) ≤ T for all delays hl(n) in this paper.

Theorem 2.17. Suppose that there exists λ ∈ (0, 1) such that

lim sup
n→∞

m∑

l=1

|al(n)|
m∑

j=1

∣∣aj(hl(n) − 1)
∣∣ ≤ λ. (2.17)

Then (2.16) is exponentially stable.
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Proof. Without loss of generality we can assume that the expression under lim sup in (2.17)
does not exceed some λ < 1 for n ≥ n0. Since

x(hl(n)) =
m∑

j=1

aj(hl(n) − 1)x
(
hj(hl(n) − 1)

)
, (2.18)

then

x(n + 1) =
m∑

l=1

al(n)x(hl(n))

=
m∑

l=1

al(n)
m∑

j=1

aj(hl(n) − 1)x
(
hj(hl(n) − 1)

)
.

(2.19)

Hence for n ≥ n0 + 2T + 1 we have

|x(n + 1)| ≤
m∑

l=1

|al(n)|
m∑

j=1

∣∣aj(hl(n) − 1)
∣∣ max
n−2T−1≤k≤n

|x(k)|

≤ λ max
n−2T−1≤k≤n

|x(k)|.
(2.20)

Thus by Lemma 1.2 |x(n)| ≤ M0μ
n−n0 , where μ = λ1/(2T+2), M0 = λ−2T−1 max−T≤k≤n0 |x(k)|, for

n ≥ n0, so (2.16) is exponentially stable.

Theorem 2.18. Suppose that there exists λ ∈ (0, 1), N ∈ N such that

lim sup
n→∞

N∏

j=0

m∑

l=1

∣∣al

(
n − j

)∣∣ ≤ λ. (2.21)

Then (2.16) is exponentially stable.

Proof. Without loss of generality we can assume that the expression under lim sup in (2.21)
does not exceed some λ < 1 for n ≥ n0. Since

|x(n + 1)| ≤
m∑

l=1

|al(n)| max
n−T≤k≤n

|x(k)|

≤
N∏

j=0

m∑

l=1

∣∣al

(
n − j

)∣∣ max
n−NT≤k≤n

|x(k)|

≤ λ max
n−NT≤k≤n

|x(k)|,

(2.22)

then the reference to Lemma 1.2 completes the proof.
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3. Discussion and Examples

Let us comment that Theorem 2.18 (see also Corollary 2.12) generalizes the result of Clark [8]
that |p| + |q| < 1 is a sufficient condition for the asymptotic stability of the difference equation

x(n + 1) + px(n) + qx(n −N) = 0. (3.1)

We note that there are not really many publications on difference equations with variable
delays, and the present paper partially fills up this gap. In particular, Theorem 2.18 gives the
same stability condition for the equation with variable delays

x(n + 1) + px(h(n)) + qx
(
g(n)

)
= 0 (3.2)

once the delays are bounded: n − h(n) ≤ T1, n − g(n) ≤ T2.
The following example outlines the sharpness of the condition that the delays are

bounded in Theorems 2.1, 2.2, 2.17, and 2.18.

Example 3.1. The equation with constant coefficients

x(n + 1) = 0.4x(n) + 0.1x(0), n = 0, 1, . . . (3.3)

satisfies all assumptions of Theorems 2.1, 2.2, 2.17, and 2.18 but the boundedness of the delay.
Since the solution x(n) with x(0) = 6 tends to 1 as n → ∞, then the zero solution of (3.3) is
neither asymptotically nor exponentially stable. Here even the condition limn→∞hl(n) = ∞ is
not satisfied.

Example 3.2. Let us demonstrate that in the case when the arguments tend to infinity but the
delays are not bounded and all other conditions of Theorem 2.18 are satisfied, this does not
imply exponential stability. The equation

x(n) = 0.5x
([n

2

])
, n = 1, 2, . . . , (3.4)

where [x] is the integer part of x, is asymptotically, but not exponentially stable. Really, its
solution

x(0),
1
2
x(0),

1
4
x(0),

1
4
x(0),

1
8
x(0),

1
8
x(0),

1
8
x(0),

1
8
x(0),

1
16

x(0), . . . (3.5)

is nonincreasing by the absolute value and

x(n) =
x(1)
n

, (3.6)

for any n = 2k, k = 0, 1, 2, . . ., so limn→ 0x(n) = 0 for any x(1); the equation is asymptotically
stable. Since the solution decay is not faster than 1/n, then the equation is not exponentially
stable.
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Next, let us compare Corollary 2.10 and Theorem 4 of [6] which is also Lemma 1.4 of
the present paper.

Example 3.3. Consider (1.12), where

a(n) =

⎧
⎨

⎩
0.8, if n is even,

0.9, if n is odd,

c(n) =

⎧
⎨

⎩
0.2, if n is even,

0.8, if n is odd.

(3.7)

Then, (1.12) is exponentially stable for anyN by Corollary 2.10, Part (1); here λ = 0.9, γ = 8/9.
If, for example, we assume N = 1, then (1.11) has the form

|a(n)a(n − 1) − c(n)| + |a(n)| |c(n − 1)| ≤ λ < 1, (3.8)

which is not satisfied for even n, so Lemma 1.4 cannot be applied to deduce exponential
stability.

Example 3.4. We will modify Example 8 in [6] to compare Theorem 2.18 and Lemma 1.4.
Consider

a(n) =

⎧
⎨

⎩

1
25(N + 1)

, if n is even,

2, if n is odd,

c(n) =

⎧
⎨

⎩

1
25(N + 1)

, if n is even,

d, if n is odd.

(3.9)

Let us compare constants d such that (1.12) is exponentially stable for N = 1,

x(n + 1) = a(n)x(n) − c(n)x(n − 1). (3.10)

By Theorem 2.18 we obtain stability whenever

(
1
50

+
1
50

)
(2 + |d|) < 1, or |d| < 23. (3.11)

Condition (3.8) of Lemma 1.4 becomes

∣∣∣∣
1
25

− 1
50

∣∣∣∣ +
1
50

|d| < 1 (3.12)
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for even n and

∣∣∣∣
1
25

− d

∣∣∣∣ + 2
1
50

< 1 (3.13)

for odd n, which gives the intervals |d| < 49 and −0.92 < d < 1, respectively. Finally,
Lemma 1.4 implies exponential stability for d ∈ (−0.92, 1) ⊂ (−23, 23).

In addition to Theorems 2.1, 2.2, 2.17, and 2.18, let us review some other known
stability conditions for equations with several delays. For comparison, we will cite the
following two results.

Theorem A ([9–14]). Suppose that

aj(n) ≥ 0, 0 ≤ j ≤ m,
m∑

j=0

aj(n) > 0,
∞∑

n=0

m∑

j=0

aj(n) = ∞,

sup
n≥m

n∑

k=n−m

m∑

j=0

aj(k) <
3
2
+

1
2(m + 1)

.

(3.14)

Then the equation with several delays

x(n + 1) − x(n) = −
m∑

j=0

aj(n)x
(
n − j

)
, n = 0, 1, 2, . . . (3.15)

is globally asymptotically stable.

Theorem B ([15]). Suppose that al(n) ≡ al > 0 and

m∑

l=1

al lim sup
n→∞

(n − hl(n)) < 1 +
1
e
−

m∑

l=1

al. (3.16)

Then (1.1) is asymptotically stable.

Let us note that unlike Theorems A and B we do not assume that coefficients are either
nonnegative (as in Theorem A) or constant (as in Theorem B). Further, let us compare our
stability tests with known results, including Theorems A and B.

Example 3.5. Consider the equation

x(n + 1) = a(n)x(n − 4) + c(n)x(n − 6), (3.17)
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where

a(n) =

⎧
⎨

⎩
2, if n is even,

0.1, if n is odd,

c(n) =

⎧
⎨

⎩
3, if n is even,

0.05, if n is odd.

(3.18)

Repeating the proof of Theorem 2.17, we have

x(n + 1) = a(n)[a(n − 5)x(n − 9) + c(n − 5)x(n − 11)]

+ c(n)[a(n − 7)x(n − 11) + c(n − 7)x(n − 13)].
(3.19)

By Theorem 2.17, (3.17) is exponentially stable since

|a(n)| [|a(n − 5)| + |c(n − 5)|] + |c(n)|[|a(n − 7)| + |c(n − 7)|]
= [|a(n)| + |c(n)|] [|a(n − 5)| + |c(n − 5)|]
= 0.15 · 5 = 0.75 < 1.

(3.20)

Lemma 1.4 cannot be applied since for even n

|a(n)a(n − 1) − c(n)| + |a(n)||c(n − 1)| = |0.2 − 3| + 2 · 0.05 > 2.8 > 1. (3.21)

Theorem A fails since

n∑

j=n−6

[
a
(
j
)
+ b

(
j
)]

> a(n) + c(n) + a(n − 1) + c(n − 1) = 5.15 >
3
2
+
1
4
. (3.22)

Theorem B is applicable to equations with constant coefficients only.

Acknowledgments

The authors are very grateful to the referee for valuable comments and remarks. This paper
is partially supported by Israeli Ministry of Absorption and by the NSERC Research Grant.

References
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[3] S. Stević, “Behavior of the positive solutions of the generalized Beddington-Holt equation,”
Panamerican Mathematical Journal, vol. 10, no. 4, pp. 77–85, 2000.

[4] L. Berezansky, E. Braverman, and E. Liz, “Sufficient conditions for the global stability of
nonautonomous higher order difference equations,” Journal of Difference Equations and Applications,
vol. 11, no. 9, pp. 785–798, 2005.

[5] E. Liz, “On explicit conditions for the asymptotic stability of linear higher order difference equations,”
Journal of Mathematical Analysis and Applications, vol. 303, no. 2, pp. 492–498, 2005.

[6] H. A. El-Morshedy, “New explicit global asymptotic stability criteria for higher order difference
equations,” Journal of Mathematical Analysis and Applications, vol. 336, no. 1, pp. 262–276, 2007.
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