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1. Introduction

Let p be a fixed prime number. Throughout this paper Zp, Qp, and Cp will, respectively,
denote the ring of p-adic rational integers, the field of p-adic rational numbers, and the
completion of algebraic closure of Qp. For x ∈ Cp, we use the notation [x]q = (1 − qx)/(1 − q).
Let UD(Zp) be the space of uniformly differentiable functions on Zp, and let vp be the
normalized exponential valuation of Cp with |p|p = p−vp(p) = 1/p. For q ∈ Cp with |1 − q|p < 1,
the q-Volkenborn integral on Zp is defined as

Iq
(
f
)
=
∫

Zp

f(x)dμq(x) = lim
N→∞

1
[
pN

]
q

pN−1∑

x=0

f(x)qx, f ∈ UD
(
Zp

)
(1.1)

(see [1, 2]). The ordinary p-adic invariant integral on Zp is given by

I1
(
f
)
= lim

q→ 1
Iq
(
f
)
=
∫

Zp

f(x)dx (1.2)
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(see [1–15]). Let f ′(0) = (df(x)/dx)|x=0. Then we easily see that

I1
(
f1
)
= I1

(
f
)
+ f ′(0), where f1(x) = f(x + 1). (1.3)

From (1.3), we can derive

∫

Zp

extdx =
t

et − 1
=

∞∑

n=0

Bn
tn

n!
(1.4)

(see [2, 8–10]), where Bn are the nth Bernoulli numbers.
By (1.2) and (1.3), we easily see that

n
∫
Zp
extdx

∫
Zp
enxtdx

=
1
t

(∫

Zp

e(x+n)tdx −
∫

Zp

extdx

)

=
n−1∑

i=0

eit =
∞∑

n=0

(
n−1∑

i=0

ik
)

tk

k!
=

∞∑

k=0

Sk(n − 1)
tk

k!
,

(1.5)

where Sk(n) = 0k + 1k + · · · + nk for k ∈ Z+.
It is known that the Bernoulli polynomials are defined by

∫

Zp

e(x+y)tdx =
t

et − 1
ext =

∞∑

n=0

Bn(x)
tn

n!
, (1.6)

where Bn(x) are called the nth Bernoulli polynomials. The Bernoulli polynomials of order k,
denoted Bk

n(x), are defined as

ext
(

t

et − 1

)k

=
(

t

et − 1

)
× · · · ×

(
t

et − 1

)
ext =

∞∑

n=0

B
(k)
n (x)

tn

n!
(1.7)

(see [3–6]). Then the values of B(k)
n (x) at x = 0 are called the Bernoulli numbers of order

k. When k = 1, the polynomials or numbers are called the Bernoulli polynomials or
numbers. The purpose of this paper is to investigate some interesting properties of symmetry
for the multivariate p-adic invariant integral on Zp. From the properties of symmetry for
the multivariate p-adic invariant integral on Zp, we derive some interesting identities of
symmetry for the Bernoulli polynomials of higher order.

2. Symmetry Properties of Higher-Order Bernoulli Polynomials

Let w1, w2 ∈ N. Then we define

D(m)(w1, w2) =
(

w1t

ew1t − 1

)m

ew1w2tx
(
ew1w2t − 1

)
(

w2t

ew2t − 1

)m ew1w2yt

w1w2t
. (2.1)
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From (2.1), we note that

D(m)(w1, w2) =

∫
Z
m
p
ew1(x1+x2+···+xm+w2x)tdx1 · · ·dxm

∫
Z
m
p
ew2(x1+x2+···+xm+w1y)tdx1 · · ·dxm

∫
Zp
ew1w2xtdx

, (2.2)

where
∫
Z
m
p
f(x1, . . . , xm)dx1 · · ·dxm =

∫
Zp

· · · ∫
Zp
f(x1, . . . , xm)dx1 · · ·dxm.

In (2.1), we note that D(m)(w1, w2) is symmetric in w1, w2. By (2.1), we see that

D(m)(w1, w2) =

(∫

Z
m
p

ew1(x1+···+xm)tdx1 · · ·dxm

)

ew1w2xt

⎛

⎝

∫
Zp
ew2xmtdxm

∫
Zp
ew1w2xtdx

⎞

⎠

×
(∫

Z
m−1
p

ew2(x1+···+xm−1)tdx1 · · ·dxm−1

)

ew1w2yt.

(2.3)

It is easy to see that

ew1w2xt

∫

Z
m
p

ew1(x1+···+xm)tdx1 · · ·dxm =
(

w1t

ew1t − 1

)m

ew1w2xt =
∞∑

n=0

B
(m)
n (w2x)wn

1
tn

n!
. (2.4)

From (2.1), (2.3), and the above formula, we can derive

D(m)(w1, w2) =

( ∞∑

�=0

B
(m)
� (w2x)w�

1
t�

�!

)( ∞∑

k=0

Sk(w1 − 1)
wk

2

k!
tk
)( ∞∑

i=0

B
(m−1)
i

(
w1y

)wi
2

i!
ti
)

1
w1

=

( ∞∑

�=0

B
(m)
� (w2x)w�−1

1
t�

�!

)⎛

⎝
∞∑

j=0

⎛

⎝
j∑

k=0

Sk(w1 − 1)wk
2w

j−k
2

B
(m−1)
j−k

(
w1y

)

k!
(
j − k

)
!

j!

⎞

⎠ tj

j!

⎞

⎠

=
∞∑

n=0

⎛

⎝
n∑

j=0

(
n

j

)

w
j

2w
n−j−1
1 B

(m)
n−j (w2x)

j∑

k=0

Sk(w1 − 1)

(
j

k

)

B
(m−1)
j−k

(
w1y

)
⎞

⎠ tn

n!
.

(2.5)

By the symmetry of D(m)(w1, w2) in w1 and w2, we see that

D(m)(w1, w2) =
∞∑

n=0

⎛

⎝
n∑

j=0

(
n

j

)

w
j

1w
n−j−1
2 B

(m)
n−j (w1x)

j∑

k=0

(
j

k

)

Sk(w2 − 1)B(m−1)
j−k

(
w2y

)
⎞

⎠ tn

n!
.

(2.6)
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By comparing the coefficients on both sides of (2.5) and (2.6), we obtain the following
theorem.

Theorem 2.1. For w1, w2 ∈ N, n ≥ 0, m ≥ 1, one has

n∑

j=0

(
n

j

)

w
j

2w
n−j−1
1 B

(m)
n−j (w2x)

j∑

k=0

Sk(w1 − 1)

(
j

k

)

B
(m−1)
j−k

(
w1y

)

=
n∑

j=0

(
n

j

)

w
j

1w
n−j−1
2 B

(m)
n−j (w1x)

j∑

k=0

(
j

k

)

Sk(w2 − 1)B(m−1)
j−k

(
w2y

)
.

(2.7)

Let y = 0 and m = 1 in (2.7). Then we have the following corollary.

Corollary 2.2. For n ∈ Z+, one has

n∑

j=0

(
n

j

)

w
n−j−1
1 w

j

2Bn−j(w2x)Sj(w1 − 1)

=
n∑

j=0

(
n

j

)

w
j

1w
n−j−1
2 Bn−j(w1x)Sj(w2 − 1).

(2.8)

If we take w2 = 1 in (2.8), then we also obtain the following corollary.

Corollary 2.3. For w1 ∈ N, one has

Bn(w1x) =
n∑

i=0

(
n

i

)

wi−1
1 Bi(x)Sn−i(w1 − 1). (2.9)

By the definition of D(m)(w1, w2), we easily see that

D(m)(w1, w2) =
(

w1t

ew1t − 1

)m

exw1w2t
ew1w2t − 1
ew2t − 1

(
w2t

ew2t − 1

)m−1
eyw1w2t

1
w1

=
1
w1

(
w1−1∑

i=0

∞∑

k=0

B
(m)
k

(
w2x +

w2

w1
i

)
wk

1
tk

k!

)( ∞∑

�=0

B
(m−1)
�

(
w1y

)
w�

2
t�

�!

)

=
∞∑

n=0

(
n∑

k=0

(
w1−1∑

i=0

B
(m)
k

(
w2x +

w2

w1
i

))
wk−1

1

k!
B
(m−1)
n−k

(
w1y

) wn−k
2

(n − k)!
n!

)
tn

n!

=
∞∑

n=0

(
n∑

k=0

(
n

k

)

wk−1
1 wn−k

2 B
(m−1)
n−k

(
w1y

)w1−1∑

i=0

B
(m)
k

(
w2x +

w2

w1
i

))
tn

n!
.

(2.10)
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From the symmetric property of D(m)(w1, w2) in w1, w2, we note that

D(m)(w1, w2) =
∞∑

n=0

(
n∑

k=0

(
n

k

)

wk−1
2 wn−k

1 B
(m−1)
n−k

(
w2y

)w2−1∑

i=0

B
(m)
k

(
w1x +

w1

w2
i

))
tn

n!
. (2.11)

By comparing the coefficients on both sides of (2.10) and (2.11), we obtain the following
theorem.

Theorem 2.4. For w1, w2 ∈ N, n ∈ Z+, m ∈ N, one has

n∑

k=0

(
n

k

)

wk−1
1 wn−k

2 B
(m−1)
n−k

(
w1y

)w1−1∑

i=0

B
(m)
k

(
w2x +

w2

w1
i

)

=
n∑

k=0

(
n

k

)

wk−1
2 wn−k

1 B
(m−1)
n−k

(
w2y

)w2−1∑

i=0

B
(m)
k

(
w1x +

w1

w2
i

)
.

(2.12)

Let y = 0 and m = 1 in (2.12). Then we obtain the following Corollary 2.5.

Corollary 2.5. For w1, w2 ∈ N, one has

wn−1
1

w1−1∑

i=0

Bn

(
w2x +

w2

w1
i

)
= wn−1

2

w2−1∑

i=0

Bn

(
w1x +

w1

w2
i

)
. (2.13)

From (2.12), we can get the well-known result due to Raabe:

w1−1∑

i=0

Bn

(
x +

1
w1

i

)
= w1−n

1 Bn(w1x). (2.14)
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