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This paper studies the global asymptotic stability for positive solutions to the higher order rational
difference equation xn = (

∏m
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∏m
j=1(xn−kj − 1))/(

∏m
j=1(xn−kj + 1)−∏m

j=1(xn−kj − 1)), n =
0, 1, 2, . . ., where m is odd and x−km , x−km+1, . . . , x−1 ∈ (0,∞). Our main result generalizes several
others in the recent literature and confirms a conjecture by Berenhaut et al., 2007.
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1. Introduction

In 2007, Berenhaut et al. [1] proved that every solution of the following rational difference
equation

xn =
xn−k + xn−m
1 + xn−kxn−m

, n = 0, 1, 2, . . . (1.1)

converges to its unique equilibrium 1, where x−m, x−m+1, . . . , x−1 ∈ (0,∞) and 1 ≤ k < m.
Based on this fact, they put forward the following two conjectures.

Conjecture 1.1. Suppose that 1 ≤ k < l < m and that {xn} satisfies

xn =
xn−k + xn−l + xn−m + xn−kxn−lxn−m
1 + xn−kxn−l + xn−lxn−m + xn−mxn−k

, n = 0, 1, 2, . . . (1.2)

with x−m, x−m+1, . . . , x−1 ∈ (0,∞). Then, the sequence {xn} converges to the unique equilibrium 1.



2 Advances in Difference Equations

Conjecture 1.2. Suppose that m is odd and 1 ≤ k1 < k2 < · · · < km, and define S = {1, 2, . . . , m}. If
{xn} satisfies

xn =
f1(xn−k1 , xn−k2 , . . . , xn−km)
f2(xn−k1 , xn−k2 , . . . , xn−km)

, n = 0, 1, 2, . . . (1.3)

with x−km , x−km+1, . . . , x−1 ∈ (0,∞), where

f1
(
y1, y2, . . . , ym

)
=

∑

j∈{1,3,...,m}

∑

{t1,t2,...,tj}⊂S;t1<t2<···<tj
yt1yt2 · · ·ytj ,

f2
(
y1, y2, . . . , ym

)
= 1 +

∑

j∈{2,4,...,m−1}

∑

{t1,t2,...,tj}⊂S;t1<t2<···<tj
yt1yt2 · · ·ytj .

(1.4)

Then the sequence {xn} converges to the unique equilibrium 1.

Motivated by [2], Berenhaut et al. started with the investigation of the following
difference equation yn = A + (yn−k/yn−m)

p for p > 0 (see, [3, 4]). Among others, in [3] they
used a transformation method, which has turned out to be very useful in studying (1.1) and
(1.2) as well as in confirming Conjecture 1.1; see [5].

Some particular cases of (1.2) had been studied previously by Li in [6, 7], by using
semicycle analysis similar to that in [8]. The problem concerning periodicity of semicycles of
difference equations was solved in very general settings by Berg and Stević in [9], partially
motivated also by [10].

In the meantime, it turned out that the method used in [11] by Çinar et al. can be used
in confirming Conjecture 1.2 (see also [12]). More precisely [11, 12] use Corollary 3 from [13]
in solving similar problems. For example, Çinar et al. has shown, in an elegant way, that the
main result in [14] is a consequence of Corollary 3 in [13]. With some calculations it can be
also shown that Conjecture 1.2 can be confirmed in this way (see [15]).

Some other related results can be found in [16–24].
In this paper, we will prove that Conjecture 1.2 is correct by using a new method.

Obviously, our results generalize the corresponding works in [1, 5–7] and other literature.

2. Preliminaries and Notations

Observe that

f1
(
y1, y2, . . . , ym

)
=

1
2

⎡

⎣
m∏

j=1

(
yj + 1

)
+

m∏

j=1

(
yj − 1

)
⎤

⎦,

f2
(
y1, y2, . . . , ym

)
=

1
2

⎡

⎣
m∏

j=1

(
yj + 1

) −
m∏

j=1

(
yj − 1

)
⎤

⎦.

(2.1)
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Define function G as follows:

G
(
y1, y2, . . . , ym

)
=

∏m
j=1

(
yj + 1

)
+
∏m

j=1
(
yj − 1

)

∏m
j=1

(
yj + 1

) −∏m
j=1

(
yj − 1

) , y1, y2, . . . , ym > 0. (2.2)

Then we can rewrite (1.3) as

xn =

∏m
j=1

(
xn−kj + 1

)
+
∏m

j=1

(
xn−kj − 1

)

∏m
j=1

(
xn−kj + 1

)
−∏m

j=1

(
xn−kj − 1

) , n = 0, 1, 2, . . . , (2.3)

or

xn = G(xn−k1 , xn−k2 , . . . , xn−km), n = 0, 1, 2, . . . , (2.4)

where m is an odd integer and x−km , x−km+1, . . . , x−1 ∈ (0,∞).
The following lemma can be obtained by simple calculations.

Lemma 2.1. Let G be defined by (2.2). Then

∂G

∂yi
=

4
∏m

j=1,j /= i

(
y2
j − 1

)

[∏m
j=1(yj + 1) −∏m

j=1(yj − 1)
]2

⎧
⎪⎪⎨

⎪⎪⎩

> 0,
m∏

j=1,j /= i

(
yj − 1

)
> 0,

< 0,
m∏

j=1,j /= i

(
yj − 1

)
< 0,

(2.5)

i = 1, 2, . . . , m.

Lemma 2.2. Assume that 0 < α < 1 < β < +∞. If α ≤ y1, y2, . . . , ym ≤ β, then

min{A1, A3, . . . , Am} ≤ G
(
y1, y2, . . . , ym

) ≤ max{B1, B3, . . . , Bm}, (2.6)

where

Ai =
(α + 1)i

(
β + 1

)m−i + (α − 1)i
(
β − 1

)m−i

(α + 1)i
(
β + 1

)m−i − (α − 1)i
(
β − 1

)m−i ,

Bi =
(α + 1)m−i(β + 1

)i + (α − 1)m−i(β − 1
)i

(α + 1)m−i(β + 1
)i − (α − 1)m−i(β − 1

)i ,

(2.7)

i = 1, 3, . . . , m.
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Proof. Since G(y1, y2, . . . , ym) is symmetric in y1, y2, . . . , ym, we can assume, without loss of
generality, that α ≤ y1 ≤ y2 ≤ · · · ≤ ym ≤ β. Then there are m + 1 possible cases:

(1) α ≤ 1 ≤ y1 ≤ y2 ≤ · · · ≤ ym ≤ β;

(2) α ≤ y1 ≤ 1 ≤ y2 ≤ · · · ≤ ym ≤ β;

(3) α ≤ y1 ≤ y2 ≤ 1 ≤ · · · ≤ ym ≤ β;

(4) α ≤ y1 ≤ y2 ≤ y3 ≤ 1 ≤ · · · ≤ ym ≤ β;
...

(m+1) α ≤ y1 ≤ y2 ≤ · · · ≤ ym ≤ 1 ≤ β.

And, for the above cases (1)–(m+1), by the monotonicity ofG(y1, y2, . . . , ym), in turn, we may
get

(1) 1 ≤ G(y1, y2, . . . , ym) ≤ Bm;

(2) A1 ≤ G(y1, y2, . . . , ym) ≤ 1;

(3) 1 ≤ G(y1, y2, . . . , ym) ≤ Bm−2;

(4) A3 ≤ G(y1, y2, . . . , ym) ≤ 1;
...

(m+1) Am ≤ G(y1, y2, . . . , ym) ≤ 1.

From the above inequalities, it follows that (2.6) holds. The proof is complete.

Lemma 2.3. Assume that 0 < α < 1 < β < +∞ .Then

Ai =
(α + 1)i

(
β + 1

)m−i + (α − 1)i
(
β − 1

)m−i

(α + 1)i
(
β + 1

)m−i − (α − 1)i
(
β − 1

)m−i ≥ α, (2.8)

Bi =
(α + 1)m−i(β + 1

)i + (α − 1)m−i(β − 1
)i

(α + 1)m−i(β + 1
)i − (α − 1)m−i(β − 1

)i ≤ β, (2.9)

i = 1, 3, . . . , m.

Proof. For i = 1, 3, . . . , m, it is easy to see that

(α − 1)i−1
(
β − 1

)m−i ≤ (α + 1)i−1
(
β + 1

)m−i
, (2.10)

which yields

(α + 1)(α − 1)i
(
β − 1

)m−i ≥ (α − 1)(α + 1)i
(
β + 1

)m−i
, (2.11)

and so

α
[
(α + 1)i

(
β + 1

)m−i − (α − 1)i
(
β − 1

)m−i] ≤ (α + 1)i
(
β + 1

)m−i + (α − 1)i
(
β − 1

)m−i
. (2.12)
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It follows that (2.8) holds. Similarly, for i = 1, 3, . . . , m, it is easy to see that

(α − 1)m−i(β − 1
)i−1 ≤ (α + 1)m−i(β + 1

)i−1
, (2.13)

which yields

(
β + 1

)
(α − 1)m−i(β − 1

)i ≤ (
β − 1

)
(α + 1)m−i(β + 1

)i
. (2.14)

It follows that (2.9) holds. The proof is complete.

Lemma 2.4. Let

αj+1 = min
{
A1j , A3j , . . . , Amj

}
,

βj+1 = max
{
B1j , B3j , . . . , Bmj

}
,

(2.15)

where

Aij =

(
αj + 1

)i(
βj + 1

)m−i +
(
αj − 1

)i(
βj − 1

)m−i

(
αj + 1

)i(
βj + 1

)m−i − (
αj − 1

)i(
βj − 1

)m−i ,

Bij =

(
αj + 1

)m−i(
βj + 1

)i +
(
αj − 1

)m−i(
βj − 1

)i

(
αj + 1

)m−i(
βj + 1

)i − (
αj − 1

)m−i(
βj − 1

)i ,

(2.16)

i = 1, 3, . . . , m; j = 0, 1, 2, . . . . Assume that 0 < α0 < 1 < β0 < +∞. Then

lim
j→∞

αj = lim
j→∞

βj = 1. (2.17)

Proof. By induction, we easily show that

0 < αj < 1 < βj < +∞, j = 0, 1, 2, . . . . (2.18)

It follows from Lemma 2.3 that

Aij =

(
αj + 1

)i(
βj + 1

)m−i +
(
αj − 1

)i(
βj − 1

)m−i

(
αj + 1

)i(
βj + 1

)m−i − (
αj − 1

)i(
βj − 1

)m−i ≥ αj ,

Bij =

(
αj + 1

)m−i(
βj + 1

)i +
(
αj − 1

)m−i(
βj − 1

)i

(
αj + 1

)m−i(
βj + 1

)i − (
αj − 1

)m−i(
βj − 1

)i ≤ βj ,

(2.19)

i = 1, 3, . . . , m; j = 0, 1, 2, . . . .Hence, by (2.15) and (2.18), we have

αj ≤ αj+1 < 1 < βj+1 ≤ βj , j = 0, 1, 2, . . . . (2.20)
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Equation (2.20) implies that the limits limj→∞αj and limj→∞βj exist, and

α∗ = lim
j→∞

αj ∈ [α0, 1], β∗ = lim
j→∞

βj ∈
[
1, β0

]
. (2.21)

It follows from (2.16) that

A∗
i := lim

j→∞
Aij =

(α∗ + 1)i
(
β∗ + 1

)m−i + (α∗ − 1)i
(
β∗ − 1

)m−i

(α∗ + 1)i
(
β∗ + 1

)m−i − (α∗ − 1)i
(
β∗ − 1

)m−i ,

B∗
i := lim

j→∞
Bij =

(α∗ + 1)m−i(β∗ + 1
)i + (α∗ − 1)m−i(β∗ − 1

)i

(α∗ + 1)m−i(β∗ + 1
)i − (α∗ − 1)m−i(β∗ − 1

)i ,

(2.22)

i = 1, 3, . . . , m. Let j → ∞ in (2.15), we have

α∗ = min
{
A∗

1, A
∗
3, . . . , A

∗
m

}
,

β∗ = max
{
B∗
1, B

∗
3, . . . , B

∗
m

}
.

(2.23)

It follows that there exist i, j ∈ {1, 3, . . . , m} such that

α∗ =
(α∗ + 1)i

(
β∗ + 1

)m−i + (α∗ − 1)i
(
β∗ − 1

)m−i

(α∗ + 1)i
(
β∗ + 1

)m−i − (α∗ + 1)i
(
β∗ + 1

)m−i ,

β∗ =
(α∗ + 1)m−j(β∗ + 1

)j + (α∗ − 1)m−j(β∗ − 1
)j

(α∗ + 1)m−j(β∗ + 1
)j − (α∗ − 1)m−j(β∗ − 1

)j .

(2.24)

From (2.24), we have

(α∗ − 1)
[
(α∗ + 1)i−1

(
β∗ + 1

)m−i − (α∗ − 1)i−1
(
β∗ − 1

)m−i] = 0,

(
β∗ − 1

)[
(α∗ + 1)m−j(β∗ + 1

)j−1 − (α∗ − 1)m−j(β∗ − 1
)j−1] = 0.

(2.25)

Since

(α∗ + 1)i−1
(
β∗ + 1

)m−i − (α∗ − 1)i−1
(
β∗ − 1

)m−i
> 0,

(α∗ + 1)m−j(β∗ + 1
)j−1 − (α∗ − 1)m−j(β∗ − 1

)j−1
> 0,

(2.26)

it follows from (2.25) and (2.18) that α∗ = β∗ = 1. The proof is complete.
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3. Proof of Conjecture 1.2

Theorem 3.1. Suppose that 0 < α < 1 < β < +∞ and that

x−km , x−km+1, . . . , x−1 ∈
[
α, β

]
. (3.1)

Then the solution {xn} of (1.3) satisfies

xn ∈ [
α, β

]
, for n = 0, 1, 2, . . . . (3.2)

Theorem 3.1 is a direct corollary of Lemmas 2.2 and 2.3.

Proof of Conjecture 1.2. Let {xn} be a solution of (1.3) with x−km , x−km+1, . . . , x−1 ∈ (0,∞). We
need to prove that

lim
n→∞

xn = 1. (3.3)

Choose α0 ∈ (0, 1) and β0 ∈ (1,+∞) such that

x−km , x−km+1, . . . , x−1 ∈
[
α0, β0

]
. (3.4)

In view of Theorem 3.1, we have

xn ∈ [
α0, β0

]
, n = −km,−km + 1,−km + 2, . . . . (3.5)

Let αj , βj , Aij , and Bij be defined as in Lemma 2.4. Then by (3.5) and Lemma 2.2, we have

min{A10, A30, . . . , Am0} ≤ G(xn−k1 , xn−k2 , . . . , xn−km)

≤ max{B10, B30, . . . , Bm0}, n = 0, 1, 2, . . . .
(3.6)

That is

xn ∈ [
α1, β1

]
, n = 0, 1, 2, . . . . (3.7)

By (3.7) and Lemma 2.2, we obtain

min{A11, A31, . . . , Am1} ≤ G(xn−k1 , xn−k2 , . . . , xn−km)

≤ max{B11, B31, . . . , Bm1}, n = km, km + 1, km + 2, . . . .
(3.8)

That is

xn ∈ [
α2, β2

]
, n = km, km + 1, km + 2, . . . . (3.9)
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Repeating the above procedure, in general, we can obtain

xn ∈ [
αj+1, βj+1

]
, n = jkm, jkm + 1, jkm + 2, . . . , j = 0, 1, 2, . . . . (3.10)

By Lemma 2.4, we have

lim
n→∞

xn = lim
j→∞

αj+1 = lim
j→∞

βj+1 = 1, (3.11)

which implies that (3.3) holds. The proof of Conjecture 1.2 is complete.
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