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1. Introduction

In the recent years, the problems of stability of delayed neural networks have received much
attention due to its potential application in associative memories, pattern recognition and
optimization. A large number of results have appeared in literature, see, for example, [1–
14]. As is well known, a real system is usually affected by external perturbations which
in many cases are of great uncertainty and hence may be treated as random [15–17]. As
pointed out by Haykin [18] that in real nervous systems synaptic transmission is a noisy
process brought on by random fluctuations from the release of neurotransmitters and other
probabilistic causes, it is of significant importance to consider stochastic effects for neural
networks. In recent years, the dynamic behavior of stochastic neural networks, especially
the stability of stochastic neural networks, has become a hot study topic. Many interesting
results on stochastic effects to the stability of delayed neural networks have been reported
(see [16–23]).
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In the factual operations, on other hand, diffusion phenomena could not be
ignored in neural networks and electric circuits once electrons transport in a nonuniform
electromagnetic field. Thus, it is essential to consider state variables varying with time
and space variables. The delayed neural networks with diffusion terms can commonly be
expressed by partial functional differential equation (PFDE). To study the stability of delayed
reaction-diffusion neural networks, for instance, see [24–31], and references therein.

Based on the above discussion, it is significant and of prime importance to
consider the stochastic effects on the stability property of the delayed reaction-diffusion
networks. Recently, Sun et al. [32, 33] have studied the problem of the almost sure
exponential stability and the moment exponential stability of an equilibrium solution for
stochastic reaction-diffusion recurrent neural networks with continuously distributed delays
and constant delays, respectively. Wan et al. have derived the sufficient condition of
exponential stability of stochastic reaction-diffusion CGNNs with delay [34, 35]. In [36],
the problem of stochastic exponential stability of the delayed reaction-diffusion recurrent
neural networks with Markovian jumping parameters have been investigated. In [32–
36], unfortunately, reaction-diffusion terms were omitted in the deductions, which result
in that the criteria of obtained stability do not contain the diffusion terms. In other
words, the diffusion terms do not take effect in their results. The same cases appear
also in other research literatures on the stability of reaction-diffusion neural network [24–
31].

Motivated by the above discussions, in this paper, we will further investigate the
convergence dynamics of stochastic reaction-diffusion CGNNs with delays, where the
activation functions are not necessarily bounded, monotonic, and differentiable. Utilizing
Poincaré inequality and constructing appropriate Lyapunov functionals, some sufficient
conditions on the almost surely and mean square exponential stability for the equilibrium
point are established. The results show that diffusion terms have contributed to the almost
surely and mean square exponential stability criteria. Two examples have been provided to
illustrate the effectiveness of the obtained results.

The rest of this paper is organized as follows. In Section 2, a stochastic delayed
reaction-diffusion CGNNsmodel is described, and some preliminaries are given. In Section 3,
some sufficient conditions to guarantee the mean square and almost surely exponential
stability of equilibrium point for the reaction-diffusion delayed CGNNs are derived.
Examples and comparisons are given in Section 4. Finally, in Section 5, conclusions are
given.

2. Model Description and Preliminaries

To begin with, we introduce some notations and recall some basic definitions and lemmas:

(i) X be an open bounded domain in R
m with smooth boundary ∂X, and mesX > 0

denotes the measure of X. X = X ∪ ∂x;

(ii) L2(X) is the space of real Lebesgue measurable functions on X which is a Banach
space for the L2-norm ‖v(x)‖2 = (

∫
X |v(x)|2dx)

1/2, v ∈ L2(X);

(iii) H1(X) = {w ∈ L2(X), Diw ∈ L2(X)}, where Diw = ∂w/∂xi, 1 ≤ i ≤ m. H1
0(X) =

the closure of C∞
0 (X) inH1(X);
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(iv) C = C(I ×X,Rn) is the space of continuous functions which map I ×X into R
n with

the norm ‖u(t, x)‖2 = (
∑n

i=1 ‖ui(t, x)‖22)
1/2, for any u(t, x) = (u1(t, x), . . . , un(t, x))

T ∈
C;

(v) ζ = {(φ1(s, x), . . . , φn(s, x))
T : [−τ, 0]} ∈ BC([−τ, 0] × X,Rn) and be an F0-

measurable R-valued random variable, where, for example, F0 = Fs restricted
on [−τ, 0], and BC be the Banach space of continuous and bounded functions
with the norm ‖φ‖τ = (Σn

i=1‖φi‖2τ)1/2, where ‖φi‖τ = sup−τ≤s≤0‖φi(s, x)‖2, for any
φ(s, x) = (φ1(s, x), . . . , φn(s, x))

T ∈ BC, i = 1, . . . , n;

(vi) ∇v = (∂v/∂x1, . . . , ∂v/∂xm) is the gradient operator, for v ∈ C1(X). |∇v|2 =∑m
l=1 |∂v/∂xm|2. Δu =

∑m
l=1(∂

2u/∂x2
l
) is the Laplace operator, for u ∈ C2(X).

Consider the following stochastic reaction-diffusion CGNNs with constant delays
on X:

dui(t, x) = Σm
l=1

∂

∂xl

(
Dil

∂ui(t, x)
∂xl

)
dt − ai(ui(t, x))

×
[
bi(ui(t, x)) − Σn

j=1wijfj
(
uj(t, x)

) − Σn
j=1vijgj

(
uj

(
t − τj , x

))
+ Ji
]
dt

+
n∑

j=1

σij(ui(t, x))dwj(t), (t, x) ∈ [0,+∞) ×X,

B[ui(t, x)] = 0, (t, x) ∈ [0,+∞) × ∂X,

ui(t, x) = φi(s, x), (s, x) ∈ [−τ, 0] ×X,

(2.1)

where i = 1, . . . , n, n ≥ 2 corresponds to the number of units in a neural network;
x = (x1, . . . , xm)

T ∈ X is a space variable, ui(t, x) corresponds to the state of the
ith unit at time tand in space x; Dil > 0 corresponds to the transmission diffusion
coefficient along the ith neuron; ai(ui(t, x)) represents an amplification function; bi(ui(t, x))
is an appropriately behavior function; wij , vij denote the connection strengths of the
jth neuron on the ith neuron, respectively; gj(uj(t, x)), fj(uj(t, x)) denote the activation
functions of jth neuron at time t and in space x; τj corresponds to the transmission
delay and satisfies 0 ≤ τj ≤ τ (τ is a positive constant); Ji is the constant input
from outside of the network. Moreover, w(t) = (w1(t), . . . , wn(t))

T is an n-dimensional
Brownian motion defined on a complete probability space (Ω,F,P)with the natural filtration
{Ft}t≥0 generated by the process {w(s) : 0 ≤ s ≤ t}, where we associate Ω with
the canonical space generated by all {wi(t)}, and denote by F the associated σ-algebra
generated by w(t) with the probability measure P. The boundary condition is given by
B[ui(t, x)] = ui(t, x) (Dirichlet type) or B[ui(t, x)] = ∂ui(t, x)/∂m (Neumann type), where
∂ui(t, x)/∂m = ∂ui(t, x)/∂x1, . . . , ∂ui(t, x)/∂xm)

T denotes the outward normal derivative
on ∂X.
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Model (2.1) includes the following reaction-diffusion recurrent neural networks
(RNNs) as a special case:

dui(t, x) = Σm
l=1

∂

∂xl

(
Dil

∂ui(t, x)
∂xl

)
dt

+
[
−bi(ui(t, x)) + Σn

j=1wijfj
(
uj(t, x)

)
+ Σn

j=1vijgj
(
uj

(
t − τj , x

))
+ Ji
]
dt

+
n∑

j=1

σij

(
uj(t, x)

)
dwj(t), (t, x) ∈ [0,+∞) ×X,

B[ui(t, x)] = 0, (t, x) ∈ [0,+∞) × ∂X,

ui(t, x) = φi(s, x), (s, x) ∈ [−τ, 0] ×X,

(2.2)

for i = 1, . . . , n.
When wi(t) = 0 for any i = 1, . . . , n, model (2.1) also comprises the following reaction-

diffusion CGNNs with no stochastic effects on space X:

∂ui(t, x)
∂t

= Σm
l=1

∂

∂xl

(
Dil

∂ui(t, x)
∂xl

)
− ai(ui(t, x))

×
[
bi(ui(t, x)) − Σn

j=1wijfj
(
uj(t, x)

) − Σn
j=1vijgj

(
uj

(
t − τj , x

))
+ Ji
]
,

(t, x) ∈ [0,+∞) ×X,

B[ui(t, x)] = 0, (t, x) ∈ [0,+∞) × ∂X,

ui(t, x) = φi(s, x), (s, x) ∈ [−τ, 0] ×X,

(2.3)

for i = 1, . . . , n.
Throughout this paper, we assume that

(H1) each function ai(ξ) is bounded, positive and continuous, that is, there exist
constants ai, ai such that 0 < ai ≤ ai(ξ) ≤ ai < ∞, for ξ ∈ R, i = 1, . . . , n,

(H2) bi(ξ) ∈ C1(R,R) and bi = infξ∈Rb′i(ξ) > 0, for i = 1, . . . , n,

(H3) fj , gj are bounded, and fj , gj , σij are Lipschitz continuous with Lipschitz constant
Fj , Gj , Lij > 0, for i, j = 1, . . . , n,

(H4) σij(u∗
i ) = 0, for i, l = 1, . . . , n.

Using the similar method of [25], it is easily to prove that under assumptions (H1)–
(H3), model (2.3) has a unique equilibrium point u∗ = (u∗

1, . . . , u
∗
n)

T which satisfies

bi
(
u∗
i

) − Σn
j=1wijfj

(
u∗
j

)
− Σn

j=1vijgj
(
u∗
j

)
+ Ji = 0, i = 1, . . . , n. (2.4)

Suppose that system (2.1) satisfies assumptions (H1)–(H4), then equilibrium point u∗ of
model (2.3) is also a unique equilibrium point of system (2.1).
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By the theory of stochastic differential equations, see [15, 37], it is known that under
the conditions (H1)–(H4), model (2.1) has a global solution denoted by u(t, 0, x;φ) or simply
u(t, φ), u(t, x) or u(t), if no confusion should occur. For the effects of stochastic forces to the
stability property of delayed CGNNs model (2.1), we will study the almost sure exponential
stability and the mean square exponential stability of their equilibrium solution u(t) ≡ u∗ in
the following sections. For completeness, we give the following definitions [33], in which E

denotes expectation with respect to P.

Definition 2.1. The equilibrium solution u∗ of model (2.1) is said to be almost surely
exponentially stable, if there exists a positive constant μ such that for any φ there is a finite
positive random variable M such that

∥
∥u(t, φ) − u∗∥∥

2 ≤ Me−μt ∀t ≥ 0. (2.5)

Definition 2.2. The equilibrium solution u∗ of model (2.1) is said to be pth moment
exponentially stable, if there exists a pair of positive constants μ and M such that for any
φ,

E
∥∥u(t, φ) − u∗∥∥p

2 ≤ ME
∥∥φ − u∗∥∥p

τe
−μt ∀t ≥ 0. (2.6)

When p = 1 and 2, it is usually called the exponential stability in mean value and mean
square, respectively.

The following lemmas are important in our approach.

Lemma 2.3 (nonnegative semimartingale convergence theorem [16]). Suppose A(t) and U(t)
are two continuous adapted increasing processes on t ≥ 0 with A(0) = U(0) = 0, a.s. Let M(t) be a
real-valued continuous local martingale withM(0) = 0, a.s. and let ζ be a nonnegative F0-measurable
random variable with Eζ < ∞. DefineX(t) = ζ+A(t)−U(t)+M(t) for t ≥ 0. IfX(t) is nonnegative,
then

{
lim
t→∞

A(t) < ∞
}

⊂
{
lim
t→∞

X(t) < ∞
}
∩
{
lim
t→∞

U(t) < ∞
}

a.s., (2.7)

where B ⊂ D a.s. denotes P(B ∪Dc) = 0. In particular, if limt→∞A(t) < ∞ a.s., then for almost all
w ∈ Ωlimt→∞X(t,w) < ∞ and limt→∞U(t,w) < ∞, that is, both X(t) and U(t) converge to finite
random variables.

Lemma 2.4 (Poincaré inequality). Let X be a bounded domain of Rm with a smooth boundary ∂X
of class C2 by X. v(x) is a real-valued function belonging to H1

0(X) and satisfies B[v(x)]|∂X = 0.
Then

λ1

∫

X

|v(x)|2dx ≤
∫

X

|∇v(x)|2dx, (2.8)
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which λ1 is the lowest positive eigenvalue of the boundary value problem

−Δψ(x) = λψ(x), x ∈ X,

B
[
ψ(x)

]
= 0, x ∈ ∂X.

(2.9)

Proof. We just give a simple sketch here.

Case 1. Under the Neumann boundary condition, that is, B[v(x)] = ∂v(x)/∂m. According
to the eigenvalue theory of elliptic operators, the Laplacian −Δ on X with the Neumann
boundary conditions is a self-adjoint operator with compact inverse, so there exists a
sequence of nonnegative eigenvalues (going to +∞) and a sequence of corresponding
eigenfunctions, which are denoted by 0 = λ0 < λ1 < λ2 < · · · and ψ0(x), ψ1(x), ψ2(x), . . .,
respectively. In other words, we have

λ0 = 0, ψ0(x) = 1,

−Δψk(x) = λkψk(x), in X,

ψk(x) = 0, on ∂X,

(2.10)

where k ∈ N. Multiply the second equation of (2.10) by ψk(x) and integrate over X. By
Green’s theorem, we obtain

∫

X

∣∣∇ψk(x)
∣∣2dx = λk

∫

X

ψ2
k(x)dx, for k ∈ N. (2.11)

Clearly, (2.11) can also hold for k = 0. The sequence of eigenfunctions {ψk(x)}∞k=0 defines an
orthonormal basis of L2(X). For any v(x) ∈ H1

0(X), we have

v(x) =
∞∑

k=0

ckψk. (2.12)

From (2.11) and (2.12), we can obtain

∫

X

|∇v(x)|2dx ≥ λ1

∫

X

|v(x)|2dx. (2.13)

Case 2. Under the Dirichlet boundary condition, that is, B[v(x)] = v(x). By the same may, we
can obtained the inequality.

This completes the proof.

Remark 2.5. (i) The lowest positive eigenvalue λ1 in the boundary problem (2.9) is sometimes
known as the first eigenvalue. (ii) The magnitude of λ1 is determined by domain X. For
example, let Laplacian on X = {(x1, x2)

T ∈ R
2 | 0 < x1 < a, 0 < x2 < b}, if B[v(x)] = v(x) and

B[v(x)] = ∂v(x)/∂m, respectively, then λ1 = (π/a)2 + (π/b)2 and λ1 = min{(π/a)2, (π/b)2}
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[38, 39]. (iii) Although the eigenvalue λ1 of the laplacian with the Dirichlet boundary
condition on a generally bounded domain X cannot be determined exactly, a lower bound
of it may nevertheless be estimated by λ1 ≥ (m2/(m+ 2))((2π)2/ωm−1)(1/V )2/m, where ωm−1
is a surface area of the unit ball in R

m, V is a volume of domain X [40].

In Section 4, we will compare the results between this paper and previous literatures.
To this end, we recall some previous results as follows (according to the symbols in this
paper).

In [35], Wan and Zhou have studied the problem of convergence dynamics of model
(2.1) with the Neumann boundary condition and obtained the following result (see [35,
Theorem 3.1]).

Proposition 2.6. Suppose that system (2.1) satisfies the assumptions (H1)–(H4) and

(A) C > 0, ρ(C−1(A1W
+F + A1V

+G)) < 1, where C = diag(δ1, . . . , δn), δi = aibi −
(1/2)

∑n
j=1 L

2
ij , i = 1, . . . , n, A1 = diag(a1, . . . , an), W+ = (|wij |)n×n, V + = (|vij |)n×n,

F = diag(F1, . . . , Fn), G = diag(G1, . . . , Gn). Also, ρ(A) denotes the spectral radius of a
square matrix A.

Then model (2.1) is mean value exponentially stable.

Remark 2.7. It should be noted that condition (A) in Proposition 2.6 is equivalent to C −
(A1W

+F + A1V
+G) is a nonsingular M-matrix, where C > 0. Thus, the following result is

treated as a special case of Proposition 2.6.

Proposition 2.8 (see [33, Theorem 3.1]). Suppose that model (2.2) satisfies the assumptions (H2)–
(H4) and

(B) B − B − W+F − V +G is a nonsingular M-matrix, where B = diag{b1, . . . , bn}, bi :=
−bi +

∑n
j=1 |wij |Fj +

∑n
j=1 |Vij |Gj +

∑n
j=1 L

2
ij ≥ 0, for 1 ≤ i ≤ n.

Then model (2.2) is almost surely exponentially stable.

Remark 2.9. It is obvious that conditions (A) and (B) are irrelevant to the diffusion term. In
other words, the diffusion term does not take effect in Propositions 2.6 and 2.8.

3. Main Results

Theorem 3.1. Under assumptions (H1)–(H4), if the following conditions hold:

(H5) a = 2(λ1Di +aibi)−
∑n

j=1(|wij |aiFj + |wji|ajFi + |vij |aiGj +L2
ij) > b =

∑n
j=1 |vji|ajGi, for

any i = 1, . . . , n,

where λ1 is the lowest positive eigenvalue of problem (2.9), Di = min1≤l≤m{Dil}, i = 1, . . . , n.
Then model (2.1) is almost surely exponentially stable.
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Proof. Let u(t) = (u1(t), . . . , un(t))
T be an any solution of model (2.1) and yi(t) = ui(t) − u∗

i .
Model (2.1) is equivalent to

dyi(t) = Σm
l=1

∂

∂xl

(
Dil

∂yi(t)
∂xl

)
dt − ai(ui(t))

×
[
b̃i
(
yi(t)

) − Σn
j=1vij g̃j

(
uj

(
t − τj

)) − Σn
j=1wij f̃j

(
yj(t)

)]
dt

+
n∑

j=1

σ̃ij

(
yi(t)

)
dwj(t), (t, x) ∈ [0,+∞) ×X,

(3.1a)

B
[
yi(t)

]
= 0, (t, x) ∈ [0,+∞) × ∂X, (3.1b)

yi(s, x) = φi(s, x) − u∗
i , (s, x) ∈ [−τ, 0] ×X, (3.1c)

where

b̃i
(
yi(t)

)
= bi
(
yi(t) + u∗

i

) − bi
(
u∗
i

)
, f̃j

(
yj(t)

)
= fj
(
yi(t) + u∗

j

)
− fj
(
u∗
j

)
,

g̃j
(
yj(t)

)
= gj
(
yj(t) + u∗

i

) − gj
(
u∗
j

)
, σ̃ij

(
yj(t)

)
= σij

(
yj(t) + u∗

j

)
− σij

(
u∗
j

)
,

(3.2)

for i, j = 1, . . . , n.
It follows from (H5) that there exists a sufficiently small constant μ > 0 such that

2
(
λ1Di + aibi

) − μ −
n∑

j=1

(∣
∣wij

∣
∣aiFj +

∣∣wji

∣
∣ajFi +

∣∣vij

∣
∣aiGj + L2

ij

)

−
n∑

j=1

∣∣vji

∣∣ajGie
μτ > 0, i = 1, . . . , n.

(3.3)

To derive the almost surely exponential stability result, we construct the following
Lyapunov functional:

V (z(t), t) =
n∑

i=1

∫

Ω
eμt

⎡

⎣y2
i (t) + ai

n∑

j=1

∣∣vij

∣∣Gj

∫ t

t−τj
eμ(s+τj)y2

j (s)ds

⎤

⎦dx. (3.4)
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By Itô’s formula to V (z(t), t) along (3.1a), we obtain

V (z(t), t) = V (z(0), 0)

+
∫ t

0
eμs

n∑

i=1

∫

Ω

⎧
⎨

⎩
μy2

i (s) + 2yi(s)
∂

∂xl

(
Dil

∂yi(s)
∂xl

)
− 2yi(s)ai(ui(s))

×
⎡

⎣b̃i
(
yi(s)

)
+

n∑

j=1

wij f̃j
(
yj(s)

)
+ Σn

j=1vij g̃j
(
yj

(
s − τj

))
⎤

⎦

+ai

n∑

j=1

∣
∣vij

∣
∣Gje

μτj y2
j (s) − ai

n∑

j=1

∣
∣vij

∣
∣Gjy

2
j

(
s − τj

)
⎫
⎬

⎭
dsdx

+
∫ t

0

∫

Ω

n∑

i=1

n∑

j=1

eμsσ2
ij

(
yi(s)

)
dsdx

+ 2
n∑

i=1

∫ t

0

∫

Ω
Σn
j=1yi(s)σij

(
yj(s)

)
dwj(s)dx,

(3.5)

for t ≥ 0.
By the boundary condition, it is easy to calculate that

∫

Ω
yi(s)Σm

l=1
∂

∂xl

(
Dil

∂yi(s)
∂xl

)
dx

= −
m∑

l=1

∫

Ω
Dil

(
∂yi(s)
∂xl

)2

dx ≤ −Di

∫

Ω

m∑

l=1

(
∂yi(s)
∂xl

)2

dx

= −Di

∫

Ω

∣∣∇yi(s)
∣∣2dx

≤ −λ1Di

∫

Ω
y2
i (s)dx = −λ1Di

∥∥yi(s)
∥∥2
2.

(3.6)

From assumptions (H1) and (H2), we have

∫

Ω
yi(s)ãi

(
yi(s)

)
b̃i
(
yi(s)

)
dx ≥ aibi

∫

Ω
y2
i (t)dx = aibi

∥∥yi(s)
∥∥2
2. (3.7)
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From assumptions (H1) and (H3), we have

2
∫

Ω
yi(s)ãi

(
yi(s)

) n∑

j=1

wij f̃i
(
yj(s)

)
dx

≤ 2
∫

Ω

n∑

j=1

ai

∣
∣wij

∣
∣
∣
∣yi(s)

∣
∣
∣
∣
∣f̃i
(
yj(s)

)∣∣
∣dx

≤ 2
∫

Ω

n∑

j=1

ai

∣
∣wij

∣
∣
∣
∣yi(s)

∣
∣Fj

∣
∣yj(s)

∣
∣dx

≤ ai

∫

Ω

n∑

j=1

∣
∣wij

∣
∣Fjy

2
i (t)dx + ai

∫

Ω

n∑

j=1

∣
∣wij

∣
∣Fj

∣
∣yj(s)

∣
∣2dx

≤ ai

n∑

j=1

∣∣wij

∣∣Fj

∥∥yi(s)
∥∥2
2 + ai

n∑

j=1

∣∣wij

∣∣Fj

∥∥yj(s)
∥∥2
2.

(3.8)

By the same way, we can obtain

2
∫

Ω
yi(s)ãi

(
yi(s)

)
Σn
j=1vij g̃i

(
yj

(
s − τj

))
dx

≤ ai

n∑

j=1

∣∣vij

∣∣Gj

∥∥yi(s)
∥∥2
2 + ai

n∑

j=1

∣∣vij

∣∣Gj

∥∥yj

(
s − τj

)∥∥2
2.

(3.9)

Combining (3.6)–(3.9) into (3.5), we get

V (z(t), t) ≤ V (z(0), 0) +
∫ t

0
eμs

⎧
⎨

⎩

n∑

i=1

⎡

⎣−2(λ1Di + aibi
)
+ μ +

n∑

j=1

∣∣wij

∣∣aiFj

+
n∑

j=1

∣∣wji

∣∣ajFi + ai

n∑

j=1

∣∣vij

∣∣Gj

⎤

⎦
∥∥yi(s)

∥∥2
2

+ai

n∑

j=1

∣∣vij

∣∣Gje
μτj
∥∥yj(s)

∥∥2
2

⎫
⎬

⎭
ds

+
∫ t

0

∫

Ω

n∑

i=1

n∑

j=1

eμsσ̃2
ij

(
yi(s)

)
dx ds

+ 2
∫ t

0

n∑

i=1

∫

Ω
Σn
j=1yi(s)σ̃ij

(
yj(s)

)
dwj(s)dx
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≤ V (z(0), 0) −
∫ t

0
eμs

⎧
⎨

⎩

n∑

i=1

⎡

⎣2
(
λ1Di + aibi

) − μ

−
n∑

j=1

(∣
∣wij

∣
∣aiFj +

∣
∣wji

∣
∣ajFi +

∣
∣vij

∣
∣aiGj + L2

ij

)

−
n∑

j=1

∣∣vji

∣∣ajGie
μτ

⎤

⎦
∥∥yi(s)

∥∥2
2

⎫
⎬

⎭
ds

+ 2
n∑

i=1

∫

Ω

∫ t

0
Σn
j=1yi(s)σ̃ij

(
yj(s)

)
dwj(s)dx

≤ V (z(0), 0) + 2
n∑

i=1

∫

Ω

∫ t

0
Σn
j=1yi(s)σ̃ij

(
yj(s)

)
dwj(s)dx, for t ≥ 0.

(3.10)

That is,

V (z(t), t) ≤ V (z(0), 0) + 2
n∑

i=1

∫ t

0

∫

Ω
Σn
j=1yi(s)σij(ui(s))dwj(s)dx, for t ≥ 0. (3.11)

It is obvious that the right-hand side of (3.6) is a nonnegative semimartingale. From
Lemma 2.3, it is easy to see that its limit is finite almost surely as t → ∞, which shows
that

lim
t→∞

supV
(
y(t), t

)
< ∞, P-a.s. (3.12)

That is,

lim
t→∞

sup

(

eμt
n∑

i=1

∥∥yi(t, x)
∥∥2
2

)

< ∞, P-a.s., (3.13)

which implies

lim
t→∞

sup
1
t
ln

(
n∑

i=1

∥∥yi(t, x)
∥∥2
2

)

< −μ, P-a.s., (3.14)

that is,

lim
t→∞

sup
1
t
ln
(∥∥y(t, x)

∥∥2
2

)
< −μ, P-a.s. (3.15)

The proof is complete.
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Theorem 3.2. Under the conditions of Theorem 3.1, model (2.1) is mean square exponentially stable.

Proof. Taking expectations on both sides of (3.11) and noticing that

E

n∑

i=1

∫ t

0

∫

Ω
Σn
j=1yi(s)σij

(
uj(s)

)
dwj(s)dx = 0, (3.16)

we get

EV (z(t), t) ≤ EV (z(0), 0). (3.17)

Since

V (z(0), 0) =
n∑

i=1

∫

Ω

⎡

⎣y2
i (0) + ai

n∑

j=1

∣
∣vij

∣
∣Gj

∫0

−τj
eμ(s+τj )y2

j (s)ds

⎤

⎦dx

=
n∑

i=1

∫

Ω

⎡

⎣
∣∣φi(0) − u∗

i

∣∣2 + ai

n∑

j=1

∣∣vij

∣∣G2
j

(∫0

−τj
eμ(s+τj )

∣∣∣φj(s) − u∗
j

∣∣∣
2
ds

)⎤

⎦dx

≤
n∑

i=1

∥∥φi − u∗
i

∥∥2
τ +

1
μ

n∑

i=1

ai

n∑

j=1

∣∣vij

∣∣(eμτ − 1)Gj

∥∥∥φj(s) − u∗
j

∥∥∥
2

2

≤
n∑

i=1

⎛

⎝1 +
eμτ − 1

μ

n∑

j=1

aj

∣∣vji

∣∣G2
i

⎞

⎠
∥∥φi − u∗

i

∥∥2
τ

≤ max
i≤i≤n

⎧
⎨

⎩
1 +

eμτ − 1
μ

n∑

j=1

aj

∣∣vji

∣∣Gi

⎫
⎬

⎭

∥∥φ − u∗∥∥2
τ ,

(3.18)

we have

EV (z(0), 0) ≤ max
i≤i≤n

⎧
⎨

⎩
1 +

eμτ − 1
μ

n∑

j=1

aj

∣∣vji

∣∣Gi

⎫
⎬

⎭
E
∥∥φ − u∗∥∥2

τ . (3.19)

Also

V (z(t), t) ≥
n∑

i=1

∫

Ω
eμty2

i (t)dx ≥ eμt
∥∥y(t)

∥∥2
2. (3.20)

By (3.17)–(3.20), we have

eμtE
∥∥y
∥∥2
2 ≤ max

i≤i≤n

⎧
⎨

⎩
1 +

eμτ − 1
μ

n∑

j=1

aj

∣∣vji

∣∣Gi

⎫
⎬

⎭
E
∥∥φ − u∗∥∥2

τ , ∀t ≥ 0. (3.21)

Let M = maxi≤i≤n{1 + ((eμτ − 1)/μ)
∑n

j=1 aj |vji|Gi}.
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Then, we easily get

E‖u(t) − u∗‖22 ≤ ME
∥
∥φ − u∗∥∥2

τe
−μt, ∀t ≥ 0. (3.22)

The proof is completed.

By the similar way of the proof of Theorem 3.1, it is easy to prove the following results.

Theorem 3.3. Under assumptions (H2)–(H4), if the following conditions hold:

(H6) 2(λ1Di + bi) >
∑n

j=1(|wij |Fj + |wji|Fi + |vij |Gj + |vji|Gi + L2
ij), i = 1, . . . , n.

Then model (2.2) is almost surely exponentially stable and mean square exponentially stable.

Remark 3.4. In the proof of Theorem 3.1, by Poincaré inequality, we have obtained
−Di

∫
Ω|∇yi|2dx ≤ −λ1Di‖yi(t)‖22 (see (3.6)). This is an important step that results in the

condition of Theorem 3.1 including the diffusion terms.

Remark 3.5. It should be noted that assumptions (H5) and (H6) allow

2aibi −
n∑

j=1

(∣∣wij

∣∣aiFj +
∣∣wji

∣∣ajFi +
∣∣vij

∣∣aiGj + L2
ij

)
≤

n∑

j=1

∣∣vji

∣∣ajGi, i = 1, . . . , n (3.23)

2bi <
n∑

j=1

(∣∣wij

∣∣Fj +
∣∣wji

∣∣Fi +
∣∣vij

∣∣Gj +
∣∣vji

∣∣Gi + L2
ij

)
, i = 1, . . . , n (3.24)

respectively, which cannot guarantee themean square exponential stability of the equilibrium
solution of models (2.1) and (2.2). Thus, as we can see form Theorems 3.1, 3.2, and 3.3,
reaction-diffusion terms do contribute the almost surely exponential stability and the mean
square exponential stability of models (2.1) and (2.2), respectively. However, as we can
see from Propositions 2.6 and 2.8, the diffusion term do not take effect in the convergence
dynamics of delayed stochastic reaction-diffusion neural networks. Thus, the criteria what
we proposed are less conservative and restrictive than Propositions 2.6 and 2.8.

Theorem 3.6. Under assumptions (H1)–(H3), if

(H7) a = 2(λ1Di + aibi) −
∑n

j=1(|wij |aiFj + |wji|ajFi + |vij |aiGj) > b =
∑n

j=1 |vji|ajGi, for any
i = 1, . . . , n,

holds, the equilibrium point of system (2.2) is globally exponentially stable.

Remark 3.7. Theorem 3.6 shows that the globally exponential stability criteria on reaction-
diffusion CGNNs with delays depend on the diffusion term. In exact words, diffusion
terms have contributed to exponentially stabilization of reaction-diffusion CGNNs with
delays. It should be noted that the authors in [24–28] have studied reaction-diffusion neural
networks (including CGNNs and RNNs) with delays and obtained the sufficient condition
of exponential stability. However, those sufficient condition are independent of the diffusion
term. Obviously, the criteria what we proposed are less conservative and restrictive than
those in [24–28].
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4. Examples and Comparison

In order to illustrate the feasibility of our above established criteria in the preceding sections,
we provide two concrete examples. Although the selection of the coefficients and functions
in the examples is somewhat artificial, the possible application of our theoretical theory is
clearly expressed.

Example 4.1. Consider the following stochastic reaction-diffusion neural networks model on
X = {(x1, x2)

T ∈ R
2 | 0 < x1, x2 <

√
2/3π}

d

(
u1(t)

u2(t)

)

=

⎛

⎜
⎜
⎜
⎝

0.4
∂u1(t)
∂x1

0.52
∂u1(t)
∂x2

0.42
∂u2(t)
∂x1

0.4
∂u2(t)
∂x2

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

∂

∂x1

∂

∂x2

⎞

⎟
⎟
⎟
⎠

dt

−
[(

0.4 0

0 0.4

)(
u1(t)

u2(t)

)

−
(
0.1 0.2

0.3 0.1

)(
sinu1(t)

sinu2(t)

)

−
(−0.3 0.1

0.2 −0.2

)(
tanh(u1(t − 1))

tanh(u2(t − 2))

)]

dt

+

(
L11(u1(t)) L12(u2(t))

L21(u2(t)) L22(u2(t))

)

dw(t), (t, x) ∈ [0,+∞) ×X,

∂ui(t)
∂m

= 0, (t, x) ∈ [0,+∞) × ∂X, i = 1, 2,

ui(s) = φi(s), (s, x) ∈ [−2, 0] ×X, i = 1, 2,

(4.1)

where tanh(x) = (ex − e−x)/(ex + e−x). It is clear that Di = 0.4, bi = 0.4, Fj = Gj = 1, i, j = 1, 2.
According to Remark 2.5, we can get λ1 = 1.5. Taking

L =

(√
0.1 0

0
√
0.2

)

, (4.2)

we have

2(Diλ1 + bi) −
2∑

j=1

(∣∣wij

∣∣Fj +
∣∣wji

∣∣Fi +
∣∣vij

∣∣Gj +
∣∣vji

∣∣Gi + L2
ij

)
=

⎧
⎨

⎩

0.8, i = 1,

1, i = 2.
(4.3)

It follows from Theorem 3.3 that the equilibrium solution of such system is almost surely
exponentially stable and mean square exponential stable.
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Remark 4.2. It should be noted that

2aibi −
2∑

j=1

(∣
∣wij

∣
∣aiFj +

∣
∣wji

∣
∣ajFi +

∣
∣vij

∣
∣aiGj +

∣
∣vji

∣
∣ajGi + L2

ij

)
=

⎧
⎪⎨

⎪⎩

−1, i = 1,

−0.8, i = 2,
(4.4)

it is well known, which cannot guarantee the mean square exponential stability of the
equilibrium solution of model (4.1). Thus, as we can see in Example 4.1, the reaction-diffusion
terms have contributed to the almost surely and mean square exponential stability of this
model.

Example 4.3. For themodel (4.1), the diffusion operator, spaceX, and the Neumann boundary
conditions are replaced by,

⎛

⎜⎜⎜
⎝

2
∂u1(t)
∂x1

1.2
∂u1(t)
∂x2

1.2
∂u1(t)
∂x3

1.2
∂u2(t)
∂x1

2
∂u2(t)
∂x2

2
∂u2(t)
∂x3

⎞

⎟⎟⎟
⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∂

∂x1

∂

∂x2

∂

∂x3

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

X =
{
(x1, x2, x3)T ∈ R

3 | |xi| < 1, i = 1, 2, 3
}
,

(4.5)

and the Dirichlet boundary condition

ui(t) = 0, (t, x) ∈ [0,+∞) × ∂X, i = 1, 2, (4.6)

respectively. The remainder parameters and functions unchanged. According to Remark 2.5,
we see that λ1 ≥ 0.5387. By the same way of Example 4.1, equilibrium solution of model (4.5)
is almost surely exponentially stable and mean square.

Now, we compare the results in this paper with Propositions 2.6 and 2.8.
The authors in [33, 35] have considered the stochastic delayed reaction-diffusion

neural networks with Neumann boundary condition and obtained the sufficient conditions
to guarantee the almost surely or mean value exponential stability. We notice that the
conditions of Propositions 2.6 and 2.8 do not include the diffusion terms, hence, in principal,
Propositions 2.6 and 2.8 could be applied to analyze the exponential stability of stochastic
system (4.1), but could not be model (4.5) for its the Dirichlet boundary condition.
Unfortunately, Propositions 2.6 and 2.8 are not applicable to ascertain the exponential stability
of model (4.1).
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In fact, it is easy to calculate that

ai = ai = 1, i = 1, 2, A1 = diag(1, 1), C = diag(0.35, 0.35) > 0,

C−1(A1W
+F +A1V

+G) =

⎛

⎜
⎜
⎜
⎝

8
7

6
7

10
7

6
7

⎞

⎟
⎟
⎟
⎠

,

ρ
(
C−1(A1W

+F +A1V
+G)
)
= 1.8690 > 1.

(4.7)

That is, condition (A) of Proposition 2.6 does not hold.
Next, we explain that Proposition 2.8 is not applicable to ascertain the almost surely

exponential stability of system (4.1):

bi = −bi +
n∑

j=1

∣∣wij

∣∣Fj +
n∑

j=1

∣∣Vij

∣∣Gj +
n∑

j=1

L2
ij =

⎧
⎪⎨

⎪⎩

0.4, i = 1,

0.6, i = 2.
(4.8)

However,

B − B −W+F − V +G =

⎛

⎝
−0.4 −0.3
−0.5 −0.5

⎞

⎠ (4.9)

is not a nonsingular M-matrix. This implies that condition (A) of Proposition 2.6 is not
satisfied.

Remark 4.4. The above comparison shows that reaction-diffusion term contributes to the
exponentially stabilization of a stochastic reaction-diffusion neural network and the previous
results have been improved.

5. Conclusion

The problem of the convergence dynamics for the stochastic reaction-diffusion CGNNs with
delays has been studied in this paper. This neural networks is quite general, and can be used
to describe some well-known neural networks, including Hopfield neural networks, cellular
neural networks, and generalized CGNNs. By Poincaré inequality and constructing suitable
Lyapunov functional, we obtain some sufficient condition to ensure the almost sure and
mean square exponential stability of the system. It is worth noting that the diffusion term has
played an important role in the obtained conditions, a significant feature that distinguishes
the results in this paper from the previous. Two examples are given to show the effectiveness
of the results. Moreover, the methods in this paper can been used to consider other stochastic
delayed reaction-diffusion neural network model with the Neumann or Dirichlet boundary
condition.
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