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By using Riccati transformation technique, we will establish some new oscillation criteria for the
even order neutral delay differential equations [z(t)](n) +q(t)f(x(σ(t))) = 0, t ≥ t0, where n is even,
z(t) = x(t) + p(t)x(τ(t)), 0 ≤ p(t) ≤ p0 < ∞, and q(t) ≥ 0. These oscillation criteria, at least in
some sense, complement and improve those of Zafer (1998) and Zhang et al. (2010). An example
is considered to illustrate the main results.

1. Introduction

This paper is concerned with the oscillatory behavior of the even-order neutral delay
differential equations

[z(t)](n) + q(t)f(x(σ(t))) = 0, t ≥ t0, (1.1)

where n is even z(t) = x(t) + p(t)x(τ(t)).
In what follows we assume that

(I1) p, q ∈ C([t0,∞), R), 0 ≤ p(t) ≤ p0 < ∞, q(t) ≥ 0,

(I2) τ ∈ C1([t0,∞), R), σ ∈ C([t0,∞), R), τ(t) ≤ t, τ ′(t) = τ0 > 0, limt→∞σ(t) = ∞,
τ ◦ σ = σ ◦ τ , where τ0 is a constant,

(I3) f ∈ C(R,R) and f(y)/y ≥ α > 0, for y /= 0, α is a constant.



2 Advances in Difference Equations

Neutral differential equations find numerous applications in natural science and
technology. For instance, they are frequently used for the study of distributed networks
containing lossless transmission lines; see Hale [1].

In the last decades, there are many studies that have been made on the oscillatory
behavior of solutions of differential equations [2–6] and neutral delay differential equations
[7–23].

For instance, Grammatikopoulos et al. [10] examined the oscillation of second-order
neutral delay differential equations

[
x(t) + p(t)x(t − τ)

]′′ + q(t)x(t − σ) = 0, t ≥ t0, (1.2)

where 0 ≤ p(t) < 1.
Liu and Bai [13] investigated the second-order neutral differential equations

(
r(t)

∣∣Z′(t)
∣∣α−1Z′(t)

)′
+ q(t)

∣∣y(σ(t))
∣∣α−1y(σ(t)) = 0, t ≥ t0, (1.3)

where Z(t) = x(t) + p(t)x(τ(t)), 0 ≤ p(t) < 1.
Meng and Xu [14] studied the oscillation of even-order neutral differential equations

[
r(t)

∣∣∣
(
x(t) + p(t)x(t − τ)

)(n−1)∣∣∣
α−1(

x(t) + p(t)x(t − τ)
)(n−1)

]′
+ q(t)f(x(σ(t))) = 0, t ≥ t0,

(1.4)

where 0 ≤ p(t) < 1.
Ye and Xu [21] considered the second-order quasilinear neutral delay differential

equations

(
r(t)ψ(x(t))

∣∣Z′(t)
∣∣α−1Z′(t)

)′
+ q(t)f(x(σ(t))) = 0, t ≥ t0, (1.5)

where Z(t) = x(t) + p(t)x(τ(t)), 0 ≤ p(t) < 1.
Zafer [22] discussed oscillation criteria for the equations

[
x(t) + p(t)x(τ(t))

](n) + f(t, x(t), x(σ(t))) = 0, t ≥ t0, (1.6)

where 0 ≤ p(t) < 1.
In 2009, Zhang et al. [23] considered the oscillation of the even-order nonlinear neutral

differential equation (1.1) when 0 ≤ p(t) < 1.
To the best of our knowledge, the above oscillation results cannot be applied when

p(t) > 1, and it seems to have few oscillation results for (1.1)when p(t) > 1.
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Xu and Xia [17] established a new oscillation criteria for the second-order neutral
differential equations

[
x(t) + p(t)x(t − τ)

]′′ + q(t)f(x(t − σ)) = 0, t ≥ t0. (1.7)

Motivated by Liu and Bai [13], we will further the investigation and offer some more general
new oscillation criteria for (1.1), by employing a class of function Y and operator T. The
method used in this paper is different from [17].

Following [13], we say that a function φ = φ(t, s, l) belongs to the function class Y if
φ ∈ C(E,R), where E = {(t, s, l) : t0 ≤ l ≤ s ≤ t < ∞},which satisfies

φ(t, t, l) = 0, φ(t, l, l) = 0, φ(t, s, l) > 0, (1.8)

for l < s < t and has the partial derivative ∂φ/∂s on E such that ∂φ/∂s is locally integrable
with respect to s in E.

By choosing the special function φ, it is possible to derive several oscillation criteria
for a wide range of differential equations.

Define the operator T[·; l, t] by

T
[
g; l, t

]
=
∫ t

l

φ(t, s, l)g(s)ds, (1.9)

for t ≥ s ≥ l ≥ t0 and g ∈ C([t0,∞), R). The function ϕ = ϕ(t, s, l) is defined by

∂φ(t, s, l)
∂s

= ϕ(t, s, l)φ(t, s, l). (1.10)

It is easy to verify that T[·; l, t] is a linear operator and that it satisfies

T
[
g ′; l, t

]
= −T[gϕ; l, t], for g ∈ C1([t0,∞), R). (1.11)

2. Main Results

In this section, we give some new oscillation criteria for (1.1). In order to prove our theorems
we will need the following lemmas.

Lemma 2.1 (see [5]). Let u ∈ Cn([t0,∞), R+). If u(n)(t) is eventually of one sign for all large t, say
t1 > t0, then there exist a tx > t0 and an integer l, 0 ≤ l ≤ n, with n+ l even for u(n)(t) ≥ 0 or n+ l odd
for u(n)(t) ≤ 0 such that l > 0 implies that u(k)(t) > 0 for t > tx, k = 0, 1, 2, . . . , l − 1, and l ≤ n − 1
implies that (−1)l+kuk(t) > 0 for t > tx, k = l, l + 1, . . . , n − 1.

Lemma 2.2 (see [5]). If the function u is as in Lemma 2.1 and u(n−1)(t)u(n)(t) ≤ 0 for t > tx, then
for every λ, 0 < λ < 1, there exists a constant M > 0 such that

u(λt) ≥ Mtn−1
∣∣∣u(n−1)(t)

∣∣∣, for all large t. (2.1)
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Lemma 2.3 (see [14]). Suppose that x is an eventually positive solution of (1.1). Then there exists
a number t1 ≥ t0 such that for t ≥ t1,

z(t) > 0, z′(t) > 0, z(n−1)(t) > 0, z(n)(t) ≤ 0. (2.2)

Theorem 2.4. Assume that σ(t) ≥ τ(t).
Further, there exist functions φ ∈ Y and k ∈ C1([t0,∞), R+), such that for some λ, 0 < λ < 1

and for everyM > 0,

lim sup
t→∞

T

[

k(s)Q(s) −
(
1 + p0/τ0

)(
ϕ + k′(s)/k(s)

)2

4λM
k(s)

τn−2(s)τ0
; l, t

]

> 0, (2.3)

where Q(t) = min{αq(t), αq(τ(t))}, the operator T is defined by (1.9), and ϕ = ϕ(t, s, l) is defined
by (1.10). Then every solution x of (1.1) is oscillatory.

Proof. Let x be a nonoscillatory solution of (1.1). Then there exists t1 ≥ t0 such that x(t)/= 0,
for all t ≥ t1.Without loss of generality, we assume that x(t) > 0, x(τ(t)) > 0, and x(σ(t)) > 0,
for all t ≥ t1.

By Lemma 2.3, there exists t2 ≥ t1 such like that (2.2) for t ≥ t2. Using definition of z
and applying (1.1), we get for sufficiently large t

z(n)(t) + αq(t)x(σ(t)) + αp0q(τ(t))x(σ(τ(t))) + p0z
(n)(τ(t)) ≤ 0, (2.4)

thus

z(n)(t) +Q(t)z(σ(t)) + p0z
(n)(τ(t)) ≤ 0, (2.5)

where Q(t) = min{αq(t), αq(τ(t))}.
It is easy to check that we can apply Lemma 2.2 for u = z′ and conclude that there exist

M > 0 and t3 ≥ t2 such that

z′(λτ(t)) ≥ Mτn−2(t)z(n−1)(τ(t)) ≥ Mτn−2(t)z(n−1)(t), t ≥ t3. (2.6)

Next, define

ω(t) = k(t)
z(n−1)(t)
z(λτ(t))

, t ≥ t3. (2.7)

Then, ω(t) > 0 and

ω′(t) = k′(t)
z(n−1)(t)
z(λτ(t))

+ k(t)
z(n)(t)z(λτ(t)) − λz(n−1)(t)z′(λτ(t))τ ′(t)

z2(λτ(t))
. (2.8)
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From (2.6), (2.7), and (2.8), we have

ω′(t) ≤ k(t)
z(n)(t)
z(λτ(t))

+
k′(t)
k(t)

ω(t) − λM
τn−2(t)τ ′(t)

k(t)
ω2(t). (2.9)

Similarly, define

ν(t) = k(t)
z(n−1)(τ(t))
z(λτ(t))

, t ≥ t3. (2.10)

Then, ν(t) > 0 and

ν′(t) = k′(t)
z(n−1)(τ(t))
z(λτ(t))

+ k(t)
z(n)(τ(t))τ ′(t)z(λτ(t)) − λz(n−1)(τ(t))z′(λτ(t))τ ′(t)

z2(λτ(t))
. (2.11)

From (2.6), (2.10), and (2.11), we have

ν′(t) ≤ k(t)τ ′(t)
z(n)(τ(t))
z(λτ(t))

+
k′(t)
k(t)

ν(t) − λM
τn−2(t)τ ′(t)

k(t)
ν2(t). (2.12)

Therefore, from (2.9) and (2.12), we get

ω′(t) +
p0
τ ′(t)

ν′(t) ≤ k(t)
z(n)(t)
z(λτ(t))

+ p0k(t)
z(n)(τ(t))
z(λτ(t))

+
k′(t)
k(t)

ω(t)

− λM
τn−2(t)τ ′(t)

k(t)
ω2(t) +

p0
τ ′(t)

k′(t)
k(t)

ν(t) − p0
τ ′(t)

λM
τn−2(t)τ ′(t)

k(t)
ν2(t).

(2.13)

From (2.5), note that σ(t) ≥ τ(t), z′(t) > 0, and τ ′(t) = τ0, then we obtain

ω′(t) +
p0
τ0

ν′(t) ≤ −k(t)Q(t) +
k′(t)
k(t)

ω(t) − λM
τn−2(t)τ0

k(t)
ω2(t)

+
p0
τ0

k′(t)
k(t)

ν(t) − p0
τ0

λM
τn−2(t)τ0

k(t)
ν2(t).

(2.14)

Applying T[·; l, t] to (2.14), we get

T

[
ω′(s) +

p0
τ0

ν′(s); l, t
]
≤ T

[

−k(s)Q(s) +
k′(s)
k(s)

ω(s) − λM
τn−2(s)τ0

k(s)
ω2(s)

+
p0
τ0

k′(s)
k(s)

ν(s) − p0
τ0

λM
τn−2(s)τ0

k(s)
ν2(s); l, t

]

.

(2.15)
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By (1.11) and the above inequality, we obtain

T[k(s)Q(s); l, t] ≤ T

[(
ϕ +

k′(s)
k(s)

)
ω(s) − λM

τn−2(s)τ0
k(s)

ω2(s)

+
p0
τ0

(
ϕ +

k′(s)
k(s)

)
ν(s) − p0

τ0
λM

τn−2(s)τ0
k(s)

ν2(s); l, t

]

.

(2.16)

Hence, from (2.16), we have

T[k(s)Q(s); l, t] ≤ T

[((
ϕ + k′(s)/k(s)

)2

4λM
+

(
p0/τ0

)(
ϕ + k′(s)/k(s)

)2

4λM

)
k(s)

τn−2(s)τ0
; l, t

]

,

(2.17)

that is,

T

[

k(s)Q(s) −
(
1 + p0/τ0

)(
ϕ + k′(s)/k(s)

)2

4λM
k(s)

τn−2(s)τ0
; l, t

]

≤ 0. (2.18)

Taking the super limit in the above inequality, we get

lim sup
t→∞

T

[

k(s)Q(s) −
(
1 + p0/τ0

)(
ϕ + k′(s)/k(s)

)2

4λM
k(s)

τn−2(s)τ0
; l, t

]

≤ 0, (2.19)

which contradicts (2.3). This completes the proof.

We can apply Theorem 2.4 to the second-order neutral delay differential equations

z′′(t) + q(t)f(x(σ(t))) = 0, t ≥ t0. (2.20)

We get the following new result.

Theorem 2.5. Assume that σ(t) ≥ τ(t). Further, there exist functions φ∈Y and k∈C1([t0,∞), R+),
such that

lim sup
t→∞

T

[

k(s)Q(s) − k(s)
(
1 + p0/τ0

)(
ϕ + k′(s)/k(s)

)2

4τ0
; l, t

]

> 0, (2.21)

where Q is defined as in Theorem 2.4, the operator T is defined by (1.9), and ϕ = ϕ(t, s, l) is defined
by (1.10). Then every solution x of (2.20) is oscillatory.

Proof. Let x be a nonoscillatory solution of (2.20). Then there exists t1 ≥ t0 such that x(t)/= 0,
for all t ≥ t1.
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Without loss of generality, we assume that x(t) > 0, and x(τ(t)) > 0, x(σ(t)) > 0, for
all t ≥ t1. Proceeding as in the proof of Theorem 2.4, we have (2.2) and (2.5) (n = 2). Next,
define

ω(t) = k(t)
z′(t)

z(τ(t))
, t ≥ t3. (2.22)

Then ω(t) > 0 and

ω′(t) = k′(t)
z′(t)

z(τ(t))
+ k(t)

z′′(t)z(τ(t)) − z′(t)z′(τ(t))τ ′(t)
z2(τ(t))

. (2.23)

From (2.22) and (2.23), we have

ω′(t) ≤ k(t)
z′′(t)
z(τ(t))

+
k′(t)
k(t)

ω(t) − τ ′(t)
k(t)

ω2(t). (2.24)

Similarly, define

ν(t) = k(t)
z′(τ(t))
z(τ(t))

, t ≥ t3. (2.25)

Then ν(t) > 0. The rest of the proof is similar to that of the proof of Theorem 2.4, hence we
omit the details.

Remark 2.6. With the different choice of k and φ, Theorem 2.4 (or Theorem 2.5) can be
stated with different conditions for oscillation of (1.1) (or (2.20)). For example, if we choose
φ(t, s, l) = ρ(s)(t − s)v(s − l)μ for v > 1/2, μ > 1/2, ρ ∈ C1([t0,∞), (0,∞)), then

ϕ(t, s, l) =
ρ′(s)
ρ(s)

+
μt − (

v + μ
)
s + vl

(t − s)(s − l)
. (2.26)

By Theorem 2.4 (or Theorem 2.5) we can obtain the oscillation criterion for (1.1) (or (2.20));
the details are left to the reader.

For an application, we give the following example to illustrate the main results.

Example 2.7. Consider the following equations:

[x(t) + 2x(t − 5π)]′′ + x(t − π) = 0, t ≥ t0. (2.27)

Let p(t) = 2, q(t) = 1, and τ(t) = t − 5π, σ(t) = t −π. Take φ(t, s, l) = (t − s)(s − l), it is easy to
verify that

ϕ(t, s, l) =
(t − s) − (s − l)
(t − s)(s − l)

. (2.28)
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By Theorem 2.5, let k(t) = 1, α = 1, and p0 = 2, Q(t) = 1, one has (2.21). Hence, every
solution of (2.27) oscillates. For example, x(t) = sin t is an oscillatory solution of (2.27).

Remark 2.8. The recent results cannot be applied in (1.1) and (2.20) when p(t) > 1 for t ≥ t0.
Therefore, our results are new.

Remark 2.9. It would be interesting to find another method to study (1.1) and (2.20) when
τ ′(t)/≡ τ0, τ(σ(t))/≡σ(τ(t)), or σ(t) ≤ τ(t) for t ≥ t0.

Remark 2.10. It would be more interesting to find another method to study (1.1) when n is
odd.
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