
Hindawi Publishing Corporation
Advances in Difference Equations
Volume 2010, Article ID 202731, 26 pages
doi:10.1155/2010/202731

Research Article
Automorphisms of Submanifolds

Veronika Chrastinová and Václav Tryhuk
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The paper deals with local symmetries of the infinite-order jet space of C∞-smooth n-dimensional
submanifolds in R

m+n. Transformations under consideration are the most general possible. They
need not preserve the distinction between dependent, and independent variables, the order of
derivatives and the hierarchy of finite-order jet spaces.

1. Introduction

A huge literature is devoted to the symmetries and equivalences of (partial) differential
equations and it might seem that the theory is ultimately established. In spite of this we
believe that the actual methods are still insufficient since the problems are investigated
in finite-order jet spaces (left-hand side of Figure 1) and all transformations which do not
preserve such spaces are passed over in full silence (right-hand side of Figure 1).

We deal with the modest task, with symmetries of the empty system of differential
equations, that is, with symmetries of the family of all C∞-smooth n-dimensional subspaces
in an (m + n)-dimensional space. Thus we paraphrase and improve our previous results
devoted to the automorphisms of curves [1]. The exposition is self-contained but inevitably
with rather unorthodox manners. We restrict ourselves to the local theory on open subsets of
generic points.

1.1. Transformations of Submanifolds

Our reasoning starts in the space R
m+n (m,n = 1, 2, . . .) with coordinates

xi,wk (i = 1, . . . , n; k = 1, . . . , m), (1.1)
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Figure 1

and we are interested in the family of all C∞-smooth subspaces:

wk = wk
(
x1, . . . , xn

)
(k = 1, . . . , m), (1.2)

where the definition domains (open subsets of Rn) are not specified. (More precisely, we deal
with germs.) Let us recall the multi-index notation

wk
I =

∂rwk

∂xI
=

∂rwk

∂xi1 · · · ∂xir
(I = i1 · · · ir ; i1, . . . , ir = 1, . . . , n; k = 1, . . . , m) (1.3)

for the derivatives. Our transformations will be (locally) defined by

xi = Fi
(
. . . , xj ,wl

J , . . .
)
, wk = Gk

(
. . . , xj ,wl

J , . . .
)

(i = 1, . . . , n; k = 1, . . . , m), (1.4)

where Fi, Gk are C∞-smooth functions, each depending on a finite number of (a somewhat
symbolically indicated) arguments. By virtue of formulae (1.4), a given subspace (1.2) is
transformed into a subspace

wk = wk
(
x1, . . . , xn

)
(k = 1, . . . , m) (1.5)

again lying in R
m+n and this is achieved as follows.

A given subspace (1.2) is inserted into (1.4)1 with the result

xi = Fi

(
. . . , xj ,

∂|J |wl

∂xJ

(
x1, . . . , xn

)
, . . .

)
= Fi

(
x1, . . . , xn

)
. (1.6)

Then, assume that

det

(
∂Fi′

∂xi

)
= det

(
DiF

i′
)
/= 0

(
Di =

∂

∂xi
+
∑

wk
Ii

∂

∂wk
I

)
. (1.7)



Advances in Difference Equations 3

Equation (1.6) can be (locally) resolved as

xi = F
i(
x1, . . . , xn

)
(i = 1, . . . , n), (1.8)

and we obtain the desired subspace

wk = Gk

(
. . . ,F

j
,
∂|J |wl

∂xJ

(
F

1
, . . . ,F

n
)
, . . .

)
= wk

(
x1, . . . , xn

)
(k = 1, . . . , m) (1.9)

by using (1.4)2.
The obvious identities

∑ ∂F
i′′

∂xi′

∂Fi′

∂xi
=
∑ ∂F

i′′

∂xi′
DiF

i′ = δi′′

i

(
i, i′′ = 1, . . . , n

) (1.10)

appearing on this occasion express the invertibility of Jacobi matrices

⎛
⎝∂F

i

∂xi′

⎞
⎠

−1

=

(
∂Fi

∂xi′

)
=
(
Di′F

i
)

(1.11)

and will be frequently referred to.

1.2. The Prolongation Procedure

Explicit formulae

wk
I = Gk

I

(
. . . , xj ,wl

J , . . .
)

(I = i1 · · · ir ; i1, . . . , ir = 1, . . . , n; k = 1, . . . , m) (1.12)

for the transformed derivatives

wk
I =

∂rwk

∂xI
=

∂rwk

∂xi1 · · · ∂xir
(1.13)

can be obtained as follows. Assume that they are known for a certain I. (In particular Gk = Gk
φ

if I = φ is empty.) Then

wk
Ii =

∂

∂xi
wk

I =
∂

∂xi
Gk

I

(
. . . ,F

j
,
∂|J |wl

∂xJ

(
F

1
, . . . ,F

n
)
, . . .

)

=
∑

Di′G
k
I

(
. . . , xj ,wl

J , . . .
)
· ∂F

i′

∂xi
(i = 1, . . . , n).

(1.14)
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By virtue of (1.10), this is equivalent to the (implicit) recurrence

(∑
wk

IiDi′F
i =

)∑
Gk

IiDi′F
i = Di′G

k
I

(
i′ = 1, . . . , n

)
(1.15)

for the sought functions Gk
I = wk

I .
Altogether taken, we have the infinite system

xi = Fi
(
. . . , xj ,wl

J , . . .
)
, wk

I = Gk
I

(
. . . , xj ,wl

J , . . .
)

(1.16)

subjected to the recurrence (1.15). At this place, functions Fi (i = 1, . . . , n) satisfying (1.7) and
functions Gk (k = 1, . . . , m) may be quite arbitrary.

1.3. Invertible Transformations

We are interested in transformations (1.15) and (1.16) which can be (locally) inverted by
appropriate C∞-smooth formulae

xi = F
i(
. . . , xj ,wl

J , . . .
)
, wk

I = G
k

I

(
. . . , xj ,wl

J , . . .
)

(1.17)

analogous to (1.16). If this is possible, we will prove later that the recurrence

∑
G

k

IiDi′F
i
= Di′G

k

I

(
i′ = 1, . . . , n; Di =

∂

∂xi
+
∑

wk
Ii

∂

∂wk
I

)
(1.18)

corresponding to (1.15) is satisfied (see Lemma 2.1).

Definition 1.1. One speaks of a morphism (1.16) if the recurrence (1.15) holds true and of an
automorphism (1.16) if moreover the inverse (1.17) exists.

An algorithm for calculation of all automorphisms will be proposed as the final
achievement of this paper.

1.4. Elementary Examples

We need not discuss the well-known point transformations:

xi = Fi
(
. . . , xj ,wl, . . .

)
, wk = Gk

(
. . . , xj ,wl, . . .

)
(i = 1, . . . , n; k = 1, . . . , m) (1.19)

which are (locally) invertible if the Jacobi determinant is nonvanishing.

Theorem 1.2. Let

fr
(
x1, . . . , xn,w1, . . . , wm, x1, . . . , xn,w1, . . . , wm

)
(r = 1, . . . , R) (1.20)
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be functions of 2(m + n) variables where m + n = (n + 1)R. Assume that the system of (n + 1)R
equations

fr = 0, Dif
r = 0 (i = 1, . . . , n; r = 1, . . . , R) (1.21)

admits a certain solution:

xi = Fi(· · · ), wk = Gk(· · · )
(
i = 1, . . . , n; k = 1, . . . , m, det

(
DiF

i′
)
/= 0

)
(1.22)

where (· · · ) = (. . . , xj ,wl,wl
j , . . .), and moreover the system

fr = 0, Dif
r = 0 (i = 1, . . . , n; r = 1, . . . , R) (1.23)

admits a certain solution:

xi = F
i
(· · · ), wk = G

k
(· · · )

(
i = 1, . . . , n; k = 1, . . . , m, det

(
DiF

i′
)
/= 0

)
, (1.24)

where (· · · ) = (. . . , xj ,wl,wl
j , . . .) by applying the implicit function theorem. If (1.22) and (1.24) are

regarded as transformations of submanifolds in R
m+n, they are inverse one to each other. Alternatively

saying, prolongations of (1.22) and (1.24) are mutually inverse automorphisms.

Proof. Consider a subspace (1.2). Transformed subspace (1.5) is defined by (1.22) which is
equivalent to (1.21). We will see that (1.21) implies (1.23) and hence (1.24). Analogously
(1.24) implies (1.22) and we have inverse mappings.

Passing to the proof proper, we suppose that (1.22) and then (1.21)1 read

fr
(
. . . , xj ,wl

(
x1, . . . , xn

)
, xj ,wl

(
x1, . . . , xn

)
, . . .

)
= 0

(
xj = Fj

(
x1, . . . , xn

))
(1.25)

identically. It follows that

d

dxi
fr =

∑ ∂Fi′

∂xi
Di′f

r +Dif
r = 0 (i = 1, . . . , n; r = 1, . . . , R). (1.26)

Therefore (1.21)2 together with (1.7) implies Di′f
r = 0 and hence (1.23). The proof is done.

Remark 1.3. For the particular case m = R = 1, our Theorem 1.2 provides the classical Lie’s
contact transformations. (Indeed, assuming m = R = 1 and abbreviating f = f1, w = w1 for
a moment, then (1.21)1 implies

0 = df =
∑

Dif dxi +
∂f

∂w

(
dw −

∑
wi dxi

)
+
∑

Dif dxi +
∂f

∂w

(
dw −

∑
wi dxi

)
(1.27)
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and whence the identity

dw −
∑

wi dxi = λ
(

dw −
∑

wi dxi
) (

λ = −
∂f/∂w

∂f/∂w

)
(1.28)

follows by using (1.21)2 and (1.23)2. This is just the classical Lie’s definition.) The wave
mechanisms of Lie’s transformations are rather important and well known. In general (for
arbitrary m and R) a geometrical interpretation of our result in terms of waves is possible,
as well. Equations fr = 0 with xj ,wk kept fixed represent an (m − R)-dimensional wave and
Dif

r = 0 the intersection with the “close wave” in the space of variables xi,wk. The “reverse
wave” with parameters and spatial variables interchanged provides the inverse mapping.
Alas, the Huyghens principle in general fails.

Remark 1.4. Far-going generalizations can be stated; let us however only very briefly indicate
three possibilities without proofs [2] and without any aim for the most possible generality.
The particular case m = R = 1 of point (ιι) again reduces to the classical Lie’s concept.

(ι) The Multiple Waves. Let m + n = (n + 1)R + (n + 1)n/2. Assume that equations

fr = 0, Dif
r = 0, DiDi′f

1 = 0
(
i, i′ = 1, . . . , n; r = 1, . . . , R

)
(1.29)

admit certain solution (1.22) where (· · · ) = (. . . , xj ,wl,wl
j , w

l
j ′ , . . .) and moreover

the system

fr = 0, Dif
r = 0, DiDi′f

1 = 0
(
i, i′ = 1, . . . , n; r = 1, . . . , R

)
(1.30)

admits a solution (1.24) where (· · · ) = (. . . , xj ,wl,wl
j , w

l
j ′ , . . .). Then (1.22) and (1.24)

are mutually inverse mappings.

(ιι) The Degenerate Waves. Let m+n = (n+1)R+(n−3)n/2, R ≥ 2. Assume that equations

fr = 0, Dif
1Di′f

2 = Dif
2Di′f

1, Dif
s = 0

(
i, i′ = 1, . . . , n; r = 1, . . . , R; s = 3, . . . , R

) (1.31)

admit certain solution (1.22) where (· · · ) = (. . . , xj ,wl,wl
j , . . .) and moreover the

system

fr = 0, Dif
1Di′f

2 = Dif
2Di′f

1, Dif
s = 0

(
i, i′ = 1, . . . , n; r = 1, . . . , R; s = 3, . . . , R

) (1.32)

admits a solution (1.24) where (· · · ) = (. . . , xj ,wl,wl
j , . . .). Then (1.22) and (1.24) are

mutually inverse mappings.
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Figure 2

(ιιι) The Constrained Waves. Operators Di, Di need not be applied to all functions fr

under consideration. For instance, assuming m + n = nR′ + R (1 ≤ R′ < R) in
Theorem 1.2, requirements (1.21)2 and (1.23)2 may be replaced with the weaker
conditions Dif

r = Dif
r = 0 (r = 1, . . . , R′).

Remark 1.5. Let us discuss the simplest possible and very particular example of the above
automorphisms in more detail for better clarity. We choose m = 2, n = 1, R = 1 and the
spherical wave

(
f1 =

)
f = (x − x)2 +

(
y − y

)2 + (z − z)2 − r2 (1.33)

(r > 0, abbreviation x = x1, y = w1, z = w2) in the point (ι). Then the final result can be
geometrically described as follows. Let P = (x, y, z),P = (x, y, z) denote the original and the
transformed curves. The system f = Df = D2f = 0 (abbreviation D = D1) in point (ι) reads

(
P − P

)2
− r2 =

(
P − P

)dP
ds

=
(
P − P

)d2P
ds2

+
(

dP
ds

)2

= 0 (1.34)

in terms of scalar products and the arclength parametrization P = (x(s), y(s), z(s)) of the
original curve P = P(s). Then the solution

P± = P +
1
κ
N ±

√
r2 − 1

κ2
B (1.35)

(where κ, N, B are curvature, normal, and binormal vectors) easily follows by using the
Frenet formulae [3]. We have obtained two notable “parallel at the distance r” curves to the
original curve P. They consist of the “foci at the distance r” which is worth a schematical
picture (only one of the two resulting foci P+, P− is noted here). We have an involutory
transformation of curves (if the ± branches are appropriately combined) but not the classical
Lie’s transformation (see Figure 2).
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2. General Theory

2.1. Geometrical Approach

The technical tools must be made more precise. So we introduce the infinite-dimensional jet
space M (abbreviation for M(m,n) in [4]) equipped with jet coordinates

xi,wk
I (I = i1 · · · ir ; i, i1, . . . , ir = 1, . . . , n; r = 0, 1, . . . ; k = 1, . . . , m) (2.1)

(where the order of terms in I is irrelevant) and moreover the module Ω (abbreviation for
Ω(m,n)) of contact forms

ω =
∑

ak
Iω

k
I

(
finite sum, ωk

I = dwk
I −

∑
wk

Iidx
i
)

(2.2)

with arbitrary C∞-smooth coefficients, each depending on a finite number of coordinates. The
obvious identities

ω(Di) = Di�ω = 0 (ω ∈ Ω), Liω
k
I = ωk

Ii , dωk
I =

∑
dxi ∧ωk

Ii ,

df =
∑

Difdxi +
∑ ∂f

∂wk
I

ωk
I ,

(2.3)

where f = f(· · · , xi,wk
I , · · · ) is a C∞-smooth function on M and

Li = Di�d + dDi�
(
Di =

∂

∂xi
+
∑

wk
Ii

∂

∂wk
I

, i = 1, . . . , n

)
(2.4)

are the Lie derivatives will frequently occur.
We study C∞-smooth mappings m (locally) given by certain formulae:

m∗xi = Fi
(
. . . , xj ,wl

J , . . .
)
, m∗wk

I = Gk
I

(
. . . , xj ,wl

J , . . .
)
. (2.5)

They are a mere transcription of (1.16). We are interested in mappings m that admit the
inverse m−1 given by analogous formulae:

(
m−1

)∗
xi = F

i(
. . . , xj ,wl

J , . . .
)
,

(
m−1

)∗
wk

I = G
k

I

(
. . . , xj ,wl

J , . . .
)
. (2.6)

If recurrence (1.15) holds, we have a morphismm, and if moreover the inverse (2.6) exists, we
have an automorphism m.
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2.2. On the Recurrences

The recurrences can be expressed in geometrical terms. For this aim, let us begin with the
obvious congruence

m∗ωk
I = dGk

I −
∑

Gk
IidF

i ∼=
∑(

Di′G
k
I −

∑
Gk

IiDi′F
i
)

dxi′ (mod Ω) (2.7)

valid for every mapping (2.5). It follows that conditions

Di′G
k
I =

∑
Gk

IiDi′F
i, m∗ωk

I ∈ Ω (2.8)

are equivalent.

Consequence 1. A mapping (2.5) is morphism if and only if m∗Ω ⊂ Ω.

Lemma 2.1. The inversem−1 of a morphism m again is a morphism.

Proof. We have to verify (m−1)∗Ω ⊂ Ω. Let ω ∈ Ω and assume (m−1)∗ω ∼=
∑

fidxi (modΩ).
Then

ω = m∗
(
m−1

)∗
ω ∼= m∗

∑
fidxi (mod m∗Ω) hence (mod Ω) (2.9)

since m is a morphism. Consequently

ω ∼= m∗
∑

fidxi =
∑

m∗fiDi′F
idxi′ (mod Ω), (2.10)

and hence
∑

Di′F
im∗fi = 0 (i′ = 1, . . . , n). Therefore m∗fi = 0 by using (1.7) and as a result

m∗ω ∈ Ω.

Consequence 2. If m is automorphism, then m∗Ω = Ω.

Proof. Clearly (m−1)∗Ω ⊂ Ω and whence Ω = m∗(m−1)∗Ω ⊂ m∗Ω ⊂ Ω.

Continuing with the recurrences, we have

m∗dωk
I = m∗

∑
dxi ∧ωk

Ii
∼=
∑

Di′F
idxi′ ∧m∗ωk

Ii (mod Ω ∧Ω). (2.11)

On the other hand, assuming m∗ωk
I =

∑
akl
IJω

l
J , we obtain

dm∗ωk
I
∼=
∑

Dia
kl
IJdxi ∧ωl

J +
∑

akl
IJdxi ∧ωl

Ji =
∑

dxi ∧ Lim∗ωk
I (mod Ω ∧Ω) (2.12)
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and the important identities

∑
Di′F

im∗ωk
Ii = Li′m∗ωk

I

(
i′ = 1, . . . , n

)
(2.13)

for the contact forms immediately follow.
The following result is obvious.

Consequence 3. If m is a morphism, then LiΩ ⊂ Ω (i = 1, . . . , n).

2.3. Preparatory Constructions

Roughly saying, our next aim is to convert Consequence 2. In fact a seemingly stronger result
more adapted for the practice of calculations will be established by a general method [4].
We will deal with various modules of differential forms on M over the ring of C∞-smooth
functions. We always suppose that they (locally) have a basis, that is, generators linearly
independent at every point. The cardinality of a basis is a (finite or infinite) dimension of
the module.

Passing to the topic proper, let Ωs ⊂ Ω, Ω ⊂ Ω, Ωs ⊂ Ω (s = 0, 1, . . .) be the
submodules of all forms:

∑
ak
Iω

k
I

(
only |I| ≤ s

)
,

∑
ak
Im

∗ωk
I ,

∑
ak
Im

∗ωk
I

(
only |I| ≤ s

)
, (2.14)

respectively. Then

Ω∗ : Ω0 ⊂ Ω1 ⊂ · · · ⊂ Ω =
⋃

Ωs, Ω∗ : Ω0 ⊂ Ω1 ⊂ · · · ⊂ Ω =
⋃

Ωs (2.15)

are filtrations, and we introduce the corresponding gradations:

M =
⊕

Ms, M =
⊕

Ms

(
Ms =

Ωs

Ωs−1
, Ms =

Ωs

Ωs−1

)
, (2.16)

where (formally) Ω−1 = Ω−1 = 0. Forms ωk
I (k = 1, . . . , m; |I| ≤ s) provide a basis of Ωs and

the forms

ωk
I (k = 1, . . . , m; |I| = s) (2.17)

(better the classes of these forms) determine a basis of Ms. Analogously the forms m∗ωk
I (k =

1, . . . , m; |I| ≤ s) generate Ωs and the forms

m∗ωk
I (k = 1, . . . , m; |I| = s) (2.18)

(better: the classes) generate Ms. Recall that generators need not be linearly independent.
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Occasionally alternative generators

	kI = LIm∗ωk = Li1 · · · Lirm
∗ωk (r = 0, 1, . . . ; k = 1, . . . , m) (2.19)

of modules Ω and Ωs will be employed. The forms 	kI indeed are generators as follows from
the identities

	k = m∗ωk, 	ki = Lim∗ωk =
∑

DiF
i′m∗ωk

i′ , . . . ,

	kIi = Li	
k
I = · · · +

∑
DiF

i′m∗ωk
Ii′ ,

(2.20)

where recurrence (2.13) and inequality (1.7) are taken into account.
The number of forms (2.17) with given k and |I| = s is

(
s+n−1
n−1

)
by a well-known

combinatorial argument; therefore we have the following dimension:

dimMs = m ·
(
s + n − 1
n − 1

)
(s ≥ 0). (2.21)

Clearly dimMs ≤ dimMs with strong inequality if classes (2.18) are linearly dependent. We
need a slightly stronger assertion.

Assertion 1. Assume that there is a nontrivial linear relation in Ms0 . Then

dimMs ≤ (m − 1) ·
(
s + n − 1
n − 1

)
+H(s) (s ≥ s0), (2.22)

where H(s) is a polynomial of degree less than n − 1, H(s) = 0 if n = 1.

Hint for Proof

Alternative generators (2.19) are useful. If a class 	k0
I0

∈ Ms0 (|I0| = s0) is linearly dependent

on remaining classes lying in Ms0 , also all classes

LI	
k0
I0

= 	k0
II0

∈ Ms+s0 (|I| = s) (2.23)

are dependent on other generators in Ms+s0 . Therefore the total number of independent
classes is estimated by the lower-order polynomial. Please look at the quite transparent
particular cases n = 1, 2, 3 for better clarity. The assertion is of elementary nature but a
complete formal proof would be rather clumsy.

2.4. The Invertibility Main Theorem

The following result provides the most important technical tool for the study of general
automorphisms.
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Theorem 2.2. A morphismm is automorphism if ωk ∈ Ω (k = 1, . . . , m).

Proof. We will see in (ι) that the assumption implies even Ω ⊂ Ω hence and Ω = Ω.
Dimensions (2.21) and (2.22) are related in (ιι) and this ensures the injectivity of m∗ in (ιιι).
Finally (ιν) provides explicit formulae and (ν) clarifies the definition domain of the inverse
m−1.

(ι) A Simple Reasoning. We assume ωk =
∑

akl
J m

∗ωl
J . However, if

ωk
I =

∑
akl
IJm

∗ωl
J (fixed k and I) (2.24)

then

ωk
Ii = Liω

k
I =

∑
Dia

kl
IJm

∗ωl
J +

∑
akl
IJ

(∑
Di′F

im∗ωl
Ji

)
∈ Ω (2.25)

by using (2.13). It follows that the primary assumption implies Ω ⊂ Ω.
(ιι) On the Dimensions. Since Ω∗ is a filtration of Ω, we have Ω0 ⊂ ΩS for appropriate

(fixed) S large enough. Therefore

Ωs ⊂ Ωs+S (s = 0, 1, . . .) (2.26)

by applying Li as in (ι). It follows that

dimΩs = dimM0 + · · · + dimMs ≤ dimΩs+S = dimM0 + · · · + dimMs+S, (2.27)

and therefore

dimMs0 + · · · + dimMs ≤ dimMs0 + · · · + dimMs+S (2.28)

for every s0 and s ≥ s0 (we suppose dimMs = dimMs if s < s0 here).
Assuming inequality (2.22) for a moment, then (2.28) gives the inequality

(
s0 + n − 1
n − 1

)
+ · · · +

(
s + n − 1
n − 1

)
≤ H(s0) + · · · +H(s) + dimMs+1 + dimMs+S, (2.29)

symbolically A(s) ≤ B(s) + C(s), and this inequality is contradictory since A(s) is a
polynomial of degree n while B(s) and C(s) are polynomials of degrees n − 1 at most.
It follows that inequality (2.22) cannot be satisfied for any s0. Therefore (2.18) are linearly
independent classes in Ms for every s ≥ 0.

(ιιι) On the Injectivity. We have naturally induced surjection

m∗ : Ms −→ Ms (s ≥ 0) (2.30)
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(class ωk
I ∈ Ms into class m∗ωk

I ∈ Ms), and we have proved the injectivity in (ιι). By virtue
of well-known principle of algebra, bijectivity between gradations M,M implies bijectivity
between filtrations Ω∗, Ω∗. Altogether m∗ : Ω → Ω = Ω is a bijective mapping.

The obvious congruence

dm∗xi = dFi ∼=
∑

Di′F
idxi (mod Ω) (2.31)

and inequality (1.7) together imply that m∗ is bijective even on the module of all 1-forms. In other
words: m∗ preserves the linear independence of forms.

(ιν) The Inverse Transformation. Inclusion (2.26) is expressed by

dwk
I −

∑
wk

Iidx
i =

∑
akl
IJ

(
dGl

J −
∑

Gl
JjdF

j
)
. (2.32)

Moreover congruence (2.31) alternatively reads dxi ∼=
∑

bijdF
j (mod Ω) by using (1.7). In

more detail

dxi =
∑

bijdF
j +

∑
cilJ

(
dGl

J −
∑

Gl
JjdF

j
)
, (2.33)

where (mod Ω) is replaced with equivalent (mod Ω). The latter equations imply that we
(locally) deal with certain composed functions:

xi = F
i(
. . . , Fj , Gl

J , . . .
)
, wk

I = G
k

I

(
. . . , Fj , Gl

J , . . .
)

(2.34)

since differentials dFj = dm∗xj , dGl
J = dm∗wl

I, are linearly independent. We have obtained
formulae (1.24) for the inverse morphism m−1.

(ν) Definition Domains. In fact only the existence of functions F
i
, G

k
(i = 1, . . . , n; k =

1, . . . , m) causes the main difficulties. The remaining functions G
k

I with I nonempty follow
from the recurrence (1.18). In particular, there exists a common definition domain for all functions

F
i
, G

k

I .

2.5. Towards the Algorithm

Let us recall our task and briefly approach the strategy to follow. We deal with mappings
m : M → M given by formulae

m∗xi = Fi
(
. . . , xj ,wl

J , . . .
)
, m∗wk

I = Gk
I

(
. . . , xj ,wl

J , . . .
) (

det
(
Di′F

i
)
/= 0

)
(2.35)

that are morphisms; that is, they satisfy the inclusion Ω ⊂ Ω. This is expressed by certain
equations

	kI =
∑

akl
IJω

l
J (2.36)
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in terms of alternative generators 	kI of module Ω defined by recurrence:

	k = m∗ωk, 	kIi = Li	
k
I . (2.37)

We are however interested in automorphisms m. The invertibility of m is ensured if (2.36)
implies certain identities

ωk =
∑

bklJ 	
l
J (k = 1, . . . , m) (2.38)

in fact equivalent to the inclusion Ω ⊂ Ω. The algorithm for determining the automorphisms
consists of two parts.

The algebraical part concerns the requirements on (2.36) ensuring the existence of
identities (2.38). Due to the recurrence (2.37), the requirements can be expressed only in terms
of the initial forms 	k and hence the initial coefficients akl

J . Assuming developments

	k = m∗ωk =
∑

akl
J ω

l
J (k = 1, . . . , m; |J | ≤ S) (2.39)

of a given order S, the procedure will be of a finite length.
Then, in the analytic part of the algorithm, the explicit transcription

dGk −
∑

Gk
i dFi =

∑
akl
J

(
dwl

J −
∑

wl
Jjdx

j
)

(k = 1, . . . , m) (2.40)

of developments (2.39) determines partial differential equations (more correctly: a Pfaffian
system) for the functions Fi and Gk involving moreover the prolongations Gk

i . We assume
that coefficients akl

J satisfy the invertibility requirements here. This is the most toilsome part
of the algorithm and moreover the solutions Fi, Gk need not exist. The remaining functions
Gk

I appearing in transformation formulae (2.35) already follow by a routine prolongation
procedure (1.15).

Let us leave the general theory and more precise exposition of the algorithm to
other place. For the convenience of reader, we will discuss a few particular examples in the
meantime.

3. A Few Simple Examples

We start with the zeroth-order case S = 0 of developments (2.39). This will provide a proof
of the fundamental Lie-Bäcklund theorem as a by-product. Also the case m = 1 of one
independent variable is quite easy. In both cases S = 0 or m = 1 there do not exist any
generalized automorphisms. On the contrary, there exists an unimaginable amount of such
automorphisms if S > 0 and m > 1. Even the first-order case S = 1 with m = 2 cannot be
completely analysed on our limited space.

Passing to the topic proper, we recall the simplified notation

xi = m∗xi, wk
I = m∗wk

I , ωk
I = m∗ωk

I = dGk
I −

∑
Gk

IidF
i (3.1)

already employed in Introduction. It is quite sufficient in particular examples to follow.
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3.1. The Zeroth-Order Case

Assume S = 0. Then the assumption (2.39) reads ωk =
∑

aklωl and det(akl)/= 0 is the
necessary and sufficient invertibility condition. Identity (2.38) is expressed by ωk =

∑
bklωl

with the inverse matrix (bkl) = (akl)−1
. This concludes the algebraic part of the algorithm.

Let us turn to the analysis. We employ (2.38) which read

dwk −
∑

wk
i dxi =

∑
bkl

(
dwl −

∑
wl

jdx
j
)

(k = 1, . . . , m). (3.2)

It follows that

wk = gk
(
x1, . . . , xn,w1, . . . , wm, x1, . . . , xn

)
(k = 1, . . . , m) (3.3)

for appropriate functions gk. Then the identities

dwk =
∑ ∂gk

∂xi
dxi +

∑ ∂gk

∂wl
ωl +

∑
Dig

k · dxi (3.4)

immediately follow.
(ι) The Free Subcase. First of all assume that differentials dx1, . . ., dxn, dw1, . . .,

dwm,dx1, . . . ,dxn are linearly independent. Then

wk
i =

∂gk

∂xi
, bkl =

∂gk

∂wl
, Dig

k = 0 (k, l = 1, . . . , m; i = 1, . . . , n) (3.5)

by comparison of (3.4) and (3.2). Let us introduce the Jacobians

ΔK = det

⎛
⎜⎜⎜⎜⎝

∂2gK

∂xi∂xj

∂2gK

∂xi∂wl

∂gk

∂xj

∂gk

∂wl

⎞
⎟⎟⎟⎟⎠

(fixed K) (3.6)

(depending on parameters x1, . . . , xn) of functions

∂gK

∂x1
, . . . ,

∂gK

∂xn
, g1, . . . , gm (3.7)

with respect to the variables x1, . . . , xn,w1, . . . , wm. Assuming ΔK = 0 identically for certain
K, there would be a nontrivial identity:

G

(
∂gK

∂x1
, . . . ,

∂gK

∂xn
, g1, . . . , gm, x1, . . . , xn

)
= 0. (3.8)
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However, this is impossible due to (3.3) and (3.5)1. Therefore ΔK /= 0 for every K. Choosing
K fixed, the implicit system

∂gK

∂xi
= wK

i , gk = wk (i = 1, . . . , n; k = 1, . . . , m) (3.9)

admits a solution of the kind

xi = Ai
(
. . . , xj ,wl,wK

j , . . .
)
, wk = Bk

(
. . . , xj ,wl,wK

j , . . .
)

(i = 1, . . . , n; k = 1, . . . , m)

(3.10)

effectively depending on wK
j for every K = 1, . . . , m which may be kept fixed but arbitrary.

This is again a contradiction if m > 1. So we conclude that m = 1 and therefore m is the
classical Lie’s contact transformation.

(ιι) The Rigid Subcase. Assume that each differential dxi (i = 1, . . . , n) lin-
early dependent on dw1, . . . ,dwm,dx1, . . . ,dxn. Then there exist certain identities xi =

F
i
(x1, . . . , xn,w1, . . . , wm) and therefore

wk = gk
(
F1, . . . , Fn, x1, . . . , xn,w1, . . . , wm

)
= G

k(
x1, . . . , xn,w1, . . . , wm

)
. (3.11)

We deal with the point transformation m.
(ιιι) The Intermediate Case. Assume that certain identities

xr = fr
(
. . . , xs, xj ,wl, . . .

)
, wk = gk

(
. . . , xs, xj ,wl, . . .

)
(r = 1, . . . , R; k = 1, . . . , m) (3.12)

where s = R + 1, . . . , n (1 ≤ R < n) and differentials

dxR+1, . . . ,dxn,dx1, . . . ,dxn,dw1, . . . ,dwm (3.13)

are linearly independent. The reasoning (ι) can be accepted if the Jacobian of functions

f1, . . . , fR,
∂gK

∂xR+1
, . . . ,

∂gK

∂xn
, g1, . . . , gm (fixed K) (3.14)

with respect to variables x1, . . . , xn,w1, . . . , wm undertakes the role of ΔK.The final result is
exactly the same as in (ι).

Summary 1. Let m be automorphism such that m∗Ω0 ⊂ Ω0. Then m is either a point
transformation or m is the classical Lie’s contact transformation.

The next important folklore result easily follows.
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Theorem 3.1 (Lie-Bäcklund [5]). Let m be automorphism that preserves the space of jet variables

xi,wk
I (i = 1, . . . , n; k = 1, . . . , m; |I| ≤ S) (3.15)

of a certain order S. Then either m is a point transformation or m = 1 and m is the classical Lie’s
contact transformation.

Proof. Clearly m∗ΩS ⊂ ΩS. Assuming S > 0, then ΩS−1 ⊂ ΩS is the uniquely determined
submodule of all ω ∈ ΩS such that dω ∼= 0 (mod ΩS) and it follows that necessarily
m∗ΩS−1 ⊂ ΩS−1. Continuing, we conclude that m∗Ω0 ⊂ Ω0 and the Summary 1 applies.

3.2. The Case of One Dependent Variable

Let us state the only remaining simple case of automorphisms.

Theorem 3.2. In the case m = 1 of one dependent variable, the classical point and Lie’s contact
transformations are the only possible automorphisms m.

Proof. Assuming m = 1, we abbreviate ωI = ω1
I and these forms constitute a basis of Ω if only

the multiindices I with a different lexicographic order are employed. Let

ω =
∑

aIωI = · · · +
∑

aI0ωI0 ∈ Ω (aI0 /= 0) (3.16)

be a given form with the top order terms. Then the forms

LJω = LJ

∑
aiωI = · · · +

∑
aI0ωI0J (various multi-indices J) (3.17)

are linearly independent. They generate Ω0 if and only if I0 = φ is empty, and therefore if
ω ∈ Ω0. A given automorphism m preserves this property which implies m∗Ω0 ⊂ Ω0 and the
Summary 1 applies.

3.3. On the First-Order Case

We have S = 1 and let us moreover suppose m = 2. Then (2.39) reads

ωk =
∑

aklωl +
∑

akl
j ω

l
j ∈ Ω1 (k = 1, 2). (3.18)

Several requirements will be stated in order to ensure the inclusions ω1, ω2 ∈ Ω. We start with
the proportionality requirement

a2l
j = Ca1l

j

(
j = 1, . . . , m; l = 1, 2

)
(3.19)

for the top order summands in (3.18). Then

	 = ω2 − Cω1 =
∑

clωl ∈ Ω0

(
cl = a2l − Ca1l

)
(3.20)
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is a zeroth-order form. We obtain the first-order forms:

	i = Li	 =
∑

Dic
lωl +

∑
clωl

j ∈ Ω1 (i = 1, . . . , n), (3.21)

and let us introduce the requirement

a1l
j = clCj

(
j = 1, . . . , m; l = 1, 2

)
. (3.22)

Then we obtain the zeroth-order form:

ω1 −
∑

Cj	j =
∑(

a1l −
∑

CjDjc
l
)
ωl ∈ Ω0, (3.23)

and the invertibility is ensured if

det

⎛
⎜⎝

c1 a11 −
∑

CjDjc
1

c2 a12 −
∑

CjDjc
2

⎞
⎟⎠/= 0. (3.24)

This concludes the algebra and let us turn to the analysis. In contrast to Section 3.1, only two
rather particular but quite instructive prospects here without any ambitions on thorough
theory can be discussed here.

(ι) A Point-Like Subcase. Let us insert the assumption

xi = Fi
(
. . . , xj ,wl, . . .

)
, w2 = G

(
w1, . . . , xj ,wl, . . .

)
(3.25)

into identity (3.20). We obtain the equation

∑(∑(
Gw1w1

j −w2
j

)
DiF

j +DiG
)

dxi +
(
Gw1 − C

)
ω1 +

∑(
Gwl − cl

)
ωl = 0 (3.26)

which is satisfied if

∑
w2

j DiF
j =

∑
Gw1w1

jDiF
j +DiG, Gw1 = C, Gwl = cl (3.27)

for i = 1, . . . , n. Let us moreover insert

w1 = G
(
. . . , xj ,wl,wl

j , . . .
)
, xi = Fi

(
. . . , xj ,wl

j , . . .
)

(3.28)

into identity (3.18) with k = 1. We obtain the equation

∑(
DiG −

∑
w1

j DiF
j
)

dxi +
∑(

Gwl −
∑

w1
j F

j

wl − a1l
)
ωl +

∑(
Gwl

j
− a1l

j

)
ωl

j = 0 (3.29)
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which is satisfied if

∑
w1

jDjF
i = DiG, Gwl =

∑
w1

i F
i
wl + a1l, Gwl

j
= a1l

j . (3.30)

Since (3.27)1 and (3.30)2 are a mere prolongation formulae, we have obtained only the
differential equation

Gwl
j
= a1l

j = clCj = GwlCj

(
j = 1, . . . , n; l = 1, 2

)
(3.31)

with uncertain coefficients Cj. The equation is satisfied if

G = a
(
w1, . . . , xj , . . .

)
+ b

(
. . . , xj ,wl, . . .

)
, G = c

(
. . . , xj ,wl,

∑
bwlwl

j , . . .
)
, (3.32)

where a, b, c may be quite arbitrary functions (direct verification).

Summary 2. Let us choose functions Fi, G, G as above. Then, in the “not too special” case
(3.24), the formulae

xi = Fi (i = 1, . . . , n), w1 = G, w2 = G
(
G1, · · · , xj ,wl, · · ·

)
(3.33)

determine an automorphism m of the jet space M.

Remark 3.3. The inequality (3.24) is “in general” satisfied. For instance, we obtain the unit
matrix for the simplest choice Fi = xi, a = 0, b = w2, c = w1 +

∑
λjw

2
j (constants λj ∈ R)

which provide the “quite trivial” Abelian Lie group of automorphisms:

xi = xi, w1 = w1 +
∑

λiw
2
i , w2 = w2 (λi ∈ R; i = 1, . . . , n). (3.34)

Even this group is lying beyond the common symmetry theories since it does not preserve
the finite-order jet spaces.

(ιι) A Contact-Like Subcase. Let us assume

xr = xr (r = 2, . . . , n), w2 = H
(
x1, w1, · · · , xj ,wl, · · ·

)
. (3.35)

We obtain the requirement

(
D1H−w2

1

)
dx1 +D1Hdx1 +

∑(
DrH−w1

r

)
dxr +

(
Hw1 − C

)
ω1 +

∑(
Hwl − cl

)
ωl = 0

(3.36)

from identity (3.20) and this is satisfied if

w2
1 = D1H = Hx1 +w1

1Hw1 , w1
r = DrH, D1H = 0, Hw1 = C, Hwl = cl, (3.37)
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where r = 2, . . . , n and l = 1, 2. Let us suppose that the equation

D1H = Hx1 +
∑

wl
1Hwl = 0 (3.38)

admits a solution w1 = G(x1, . . . , xj ,wl,wl
1, . . .). Then identity (3.18) with k = 1 provides the

requirement

(
Gx1 −w1

1

)
dx1 +D1Gdx1 +

∑(
DrG −w1

r

)
dxr +

∑(
Gwl − a1l

)
ωl +

∑(
Gwl

j
− a1l

j

)
ωl

j = 0.

(3.39)

This is satisfied if

w1
1 = Gx1 , w1

r = DrG, D1G = 0, Gwl = a1l, Gwl
j
= a1l

j . (3.40)

Altogether taken, besides the prolongation formulae, we have obtained only two equations:

D1G = 0, Gwl
1
= a1l

1 = clC1 = HwlC1 (l = 1, 2) (3.41)

where c1, c2 are uncertain coefficients. The second equation is identically satisfied. This
follows from the identities:

D1H
(
x1,G, . . . , xj ,wl,wl

1, . . .
)
= 0,

d

dwk
1

D1H(· · · ) =
(
Hx1w1 +

∑
wl

1Hwlw1

)
Gwk

1
+Hwk = 0 (k = 1, 2).

(3.42)

As the first equation

D1G = Gx1 +
∑

wl
1Gwl +

∑
wl

11Gwl
1
= 0 (3.43)

is concerned, we suppose that it admits a solution x1 = F1(. . . , xj ,wl,wl
1, w

l
11, . . .) by applying

the implicit function theorem.

Summary 3. Let H(x1, w1, . . . , xj ,wl, . . .) be a “not too special” function such that the implicit
equation D1H = 0 admits a solution w1 = G(x1, . . . , xj ,wl,wl

1, . . .) and the equation D1G =
0 admits a solution x1 = F1(. . . , xj ,wl,wl

1, w
l
11, . . .). Then the formulae

x1 = F1
(
. . . , xj ,wl,wl

1, w
l
11 . . .

)
, xr = xr (r = 2, . . . , n),

w1 = G
(
x1, . . . , xj ,wl,wl

1, . . .
)
, w2 = H

(
F1,G, . . . , xj ,wl, . . .

) (3.44)

determine an automorphism m of the jet space M.
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One can check by direct calculation that condition (3.24) is satisfied if

rank
(
Hw1 Hw1w1 Hw1w2

Hw2 Hw2w1 Hw2w2

)
= 2. (3.45)

Remark 3.4. Assuming n = 1, the result may be identified with the particular case of the
multiple waves (ι) in Section 1.4, see also [1]. In fact, we have applied this lower dimensional
result n = 1 along every fibre xr = const. (r = 2, . . . , n). Quite analogous construction is
possible for any given automorphism in lower dimensions in order to obtain automorphisms
with large values of n and m. Then the composition with (e.g.) the point transformations
provides automorphisms where the variables xr (r = 2, . . . , n) in formula (3.35)1 need not be
preserved.

4. Concluding Results

In the above examples, the algebraic part of the algorithm looks easier than the subsequent
analysis. Nevertheless in full generality, the algebraic reasoning is dominant and moreover
strongly affects all fundamental aspects of the theory, for example, the nature of the
composition rules of automorphisms together with the structural results. Yet, the analysis
remains a toilsome task, though it consists of the well-known compatibility mechanisms for
the existence of solutions of differential or Pfaffian equations which does not append much
novelties.

4.1. More on the Algebra

We recall filtration Ω∗ : Ω0 ⊂ Ω1 ⊂ · · · ⊂ Ω =
⋃

Ωs of module Ω. Here Ωs ⊂ Ω are submodules
with the basis ωk

I (k = 1, . . . , m; |I| ≤ s) satisfying the recurrence Liω
k
I = ωk

Ii. A morphism m
is characterized by the inclusion Ω ⊂ Ω where Ω is module generated by all forms m∗ωk

I . We
recall filtration Ω∗ : Ω0 ⊂ Ω1 ⊂ · · · ⊂ Ω =

⋃
Ωs. Here Ωs ⊂ Ω are submodules generated by

all forms m∗ωk
I (k = 1, . . . , m; |I| ≤ s); however, the alternative generators 	kI = LIm∗ωk (k =

1, . . . , m; |I| ≤ s) satisfying the recurrence Li	
k
I = 	kIi are more appropriate in some respects. It

follows that module Ωs+1 is generated from Ωs by using operator Li. In more detail

Ωs+1 = Ωs +
∑

LiΩs (s = 0, 1, . . .) (4.1)

in a brief record where LiΩs (i = 1, . . . , m) denotes the module with generators Liω (ω ∈ Ωs).
In full generality

Ωr+s =
∑

LIΩs (sum over I with |I| ≤ r). (4.2)

We are interested in invertible morphisms m, the automorphisms. Our task is in fact twofold:
the existence (the particular examples of automorphisms) and the criterion (whether a given
morphism is invertible or not).
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Due to Theorem 1.2, automorphisms are characterized by the inclusion Ω0 ⊂ Ω.

The infinite-dimensional module Ω causes some difficulties. It may be replaced by a finite-
dimensional one as follows. Let m be a morphism of the order S; that is, we suppose either of
the equivalent conditions

Ω0 ⊂ ΩS, 	k = m∗ωk ∈ ΩS (k = 1, . . . , m) (4.3)

satisfied. Our reasoning rest on the following simple remark.

Assertion 2. A morphism m of order S is invertible if and only if Ω0 ⊂ ΩS ∩Ω.

In order to verify the last inclusion for a given morphism m, we will try to determine
the module ΩS ∩ Ω only in terms of forms lying in ΩS. This may be regarded as a “finite-
dimensional” approach. Let us turn to more details.

Definition 4.1. Let m be a morphism of the order S. A saturation I (of submodule Ω0 ⊂ ΩS) is
the least submodule Ω0 ⊂ I ⊂ ΩS such that

σ(I) ∈ I, ω =
∑

LIσ(I) ∈ ΩS implies ω ∈ I. (4.4)

Symbolically

ΩS ∩
∑

LII ⊂ I (4.5)

for any finite sum over multi-indices I. In particular, if σ ∈ ΩS−1 ∩I, then Liσ ∈ ΩS and hence
Liσ ∈ I.

Remark 4.2. The rules

aLiσ = Li(aσ) −Dia · σ,

aLii′σ = Lii′(aσ) − Li′(Dia · σ) −Dii′a · σ, . . .
(4.6)

ensure that (4.4) may be replaced by seemingly stronger requirement:

σ
(
I ′
)
∈ I, ω =

∑
a
(
I, I ′

)
LIσ

(
I ′
)
∈ ΩS implies ω ∈ I, (4.7)

where a(I, I ′) are arbitrary coefficients. Moreover the sum
∑

LII in (4.5) may be regarded as
a module.

The following results are self-evident.

Lemma 4.3. One has I ⊂ ΩS ∩Ω.

Proof. Forms σ ∈ I arise by applying Li to Ω0 and hence I ⊂ Ω.
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Consequence 4. If Ω0 ⊂ I, then m is invertible morphism.

The latter result is quite sufficient if we search for particular examples of automorphism.
In this sense, it was latently applied in Section 3.3. Alas, the criterion problem is more difficult.

Theorem 4.4. One has ΩS ∩Ω = I.

Proof. Due to Lemma 4.3, we have to verify the inclusion ΩS ∩ Ω ⊂ I or, equivalently, all
inclusions ΩS ∩Ωr ⊂ I (r = 0, 1, . . .) since Ω =

⋃
Ωr . However

ΩS ∩Ωr = ΩS ∩
∑
|I|≤r

LIΩ0 ⊂ ΩS ∩
∑

LII ⊂ I (4.8)

by applying (4.2) with s = 0, inclusion Ω0 ⊂ I, and (4.5).

Consequence 5. A morphism m is invertible if and only if Ω0 = I.

Remark 4.5. Since ΩS is a finite-dimensional module, we expect that only indices I with a
certain limited length |I| ≤ s(m) are effectively appearing in formulae (4.4) and (4.5). This is
the most delicate difficulty of our approach: to estimate the length s(m) which is enough for the
calculations with a given morphismm. In a certain sense, the situation resembles the criterion of
involutivity of exterior systems: though the general theory is not easy, the particular examples
can be resolved at a limited place.

4.2. One Independent Variable

Assuming n = 1 through Section 4.2, we abbreviate x = x1, L = L1, w
k
(s) = wk

I , ω
k
(s) =

ωk
I (I = 1 · · · 1 with s terms) and then Lrωk

(s) = ωk
(s+r). The saturations are very simplified in

this case.

Theorem 4.6. Let n = 1 andm be a morphism of the order S. Each of the following three requirements
is equivalent to the condition (4.4).

(ι) If σ(r) ∈ I and ω =
∑

Lrσ(r) ∈ ΩS, then ω ∈ I.

(ιι) If σ ∈ I and Lσ ∈ ΩS then Lσ ∈ I.

(ιιι) If σ ∈ ΩS−1 ∩ I, then Lσ ∈ I.

Proof. (ι) is a mere reformulation of (4.4) for the case n = 1. Moreover (ι) trivially implies (ιι)
and (ιι) is equivalent to (ιιι). Let us assume (ιι) in order to prove (ι).

We denote

σ(r) =
∑

a(r)lsω
l
(s) (r = 1, . . . , R; sum over l = 1, . . . , m , s = 0, . . . , S), (4.9)

where R > 0 is supposed. Then ω = · · ·+
∑

a(R)lSω
l
(S+R) and therefore a(R)lS = 0 (l = 1, . . . , m).

It follows that σ(R) ∈ ΩS−1 and hence Lσ(R) ∈ I by using (ιιι). Then

ω =
R−2∑

Lrσ(r) +LR−1σ ′(R) where σ ′(R) = σ(R − 1) +Lσ(R) ∈ I. (4.10)
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· · ·
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· · ·

ΩS

σ

n = 1: L acts only inside ΩS

(a)

Ω0 · · ·

Ω0

�

· · ·

σ

· · ·

ΩS

σ ω

n > 1: Li act even beyond ΩS

(b)

Figure 3

The form ω was expressed by means of R − 1 summands. Continuing in this way, we obtain
even ω = Lσ ′′(1) ∈ ΩS with σ ′′(1) ∈ I and whence ω ∈ I.

Roughly saying, operator L repeatedly applied to Ω0 inside the module ΩS leads to the
sought saturation I and this is achieved after dim ΩS − dim Ω0 steps at most (Figure 3(a)
above). In spite of this lucky reality, a thorough discussion of particular examples need not
be easy if the value of the order S is large [1].

4.3. Example

Assuming n ≥ 2, calculations inside module ΩS may be quite sufficient (see Section 3.3) or
not (Figure 3(b)) and we mention a simplest possible example of this kind.

Suppose n = m = 2, S = 1 and

ω1 = a1ω1 + a2ω2 + aω1
1 +ω2

1,

ω2 = b1ω1 + b2ω2 + aω1
2 +ω2

2.
(4.11)

The action of L1, L2 inside ΩS = Ω1 is useless at this stage; however,

ω = L2ω
1 − L1ω

2 =
(
D2a

1 −D1b
1
)
ω1 +

(
D2a

2 −D1b
2
)
ω2 +

(
−b1 +D2a

)
ω1

1

+
(
a1 −D1a

)
ω1

2 − b2ω2
1 + a2ω2

2 ∈ I

(4.12)

in accordance with Definition 4.1 where σ(2) = ω1, σ(1) = −ω2. Let us assume the identities

−b1 +D2a = −b2a, a1 −D1a = a2a. (4.13)

Then

	 = ω + b2ω2 − a2ω2 = Aω1 + Bω2 ∈ I, (4.14)
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(b) a group of generalized automor-
phism

Figure 4

where A = D2a
1 −D1b

1 + b2a1 − a2b1, B = D2a
2 −D1b

2. Moreover A = Ba identically (direct
verification using (4.13)) and whence

L1	 − Bω1 =
(
D1A − Ba1

)
ω1 +

(
D1B − Ba2

)
ω2 ∈ I (4.15)

and also L2	 − Bω2 ∈ I. The inclusion Ω0 ⊂ I is guaranteed if

rank
(
A D1A − Ba1

B D1B − Ba2

)
= rank

(
Ba D1(Ba) − B

(
D1a + a2a

)
B D1B − Ba2

)

= rankB2
(
a D1a − a1

1 a2

)
= rankB2

(
a −a2a
1 a2

)
= 2

(4.16)

which is satisfied if a, a2, B /= 0.

Summary 4. The choice a/= 0, a2 /= 0, B /= 0 and a1 = D1a + a2a together with the identity
b1 = D2a + b2a between remaining coefficients b1, b2 ensure the equality Ω0 = I.

Appendix

The common approach to jets in actual literature rests on the C. Ehresmann mechanisms of
smooth sections of fibered manifolds π : Y → X and the jets prolongations πr : JrY → X
are equipped with a huge family of purely technical concepts. Differential equations with
prolongations then appear as a nontrivial achievement due to the difficult compatibility
problems. A somewhat paradoxically, this ingenious approach does not rigorously include
even the classical Lie’s theory of first-order partial differential equations with his generalized
solutions and the reductions with respect to the Cauchy characteristics. Also generalized
automorphisms and the relevant generalized group symmetries of differential equations are
in fact beyond the scope of this theory. We have intentionally used the notation M = M(m,n)
for the jet spaces instead of the common Jr(Y,X) or J∞(Y,X) since we do not regard the jet
projections πr as a reasonable intrinsical concept for this paper. Analogously the notation
Ω = Ω(m,n) for the contact forms corresponds to the fact that only the number of dependent
and independent variables are important, not their actual choice.

Passing to quite general differential equations, they can be introduced without any
use of coordinates [4]. In more detail, an infinitely prolonged system of differential equations
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may be identified with a finite-codimensional submodule Ω ⊂ Φ(M) of the module Φ(M) of
all 1-forms on a manifold M which satisfies a certain Noetherian property. (The property is
as follows. Let H(Ω) be the module of all vector fields Z such that ω(Z) = 0 (ω ∈ Ω). Then
LZΩ ⊂ Ω (Z ∈ H(Ω)) and module Ω is generated by applying LZ to an appropriate finite-
dimensional submodule Ω0 ⊂ Ω.) Using this abstract approach, we believe that generalized
automorphisms of systems of differential equations are available.

Let us finally mention the groups of automorphisms together with the relevant
infinitesimal transformations. The classical infinitesimal symmetries preserve the finite-
order jet spaces and always generate the group of transformations (Figure 4(a)). They were
thoroughly investigated since the times of Lie. On the contrary generalized (Lie-Bäcklund,
higher order) infinitesimal symmetries need not generate any group and are only regarded
as formal series [5–9]. They generate a true group of (generalized) automorphisms if and
only if certain finite-dimensional subspaces depending on the group under consideration
are preserved (Figure 4(b)). (In full detail, the criterion is as follows. A vector field Z on M
locally generates a one-parameter group if and only if for every function f on M, the infinite family
Znf (n = 0, 1, . . .) involves only a finite number of functionally independent terms [4]. For the
case of automorphisms of jets, the inspection of functions f = x and f = wk (k = 1, . . . , m)
is enough.) The subspaces should be determined together with the group. This is a serious
difficulty and a problem which has not been solved yet.
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