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The method to compare only one component of the solution vector of linear functional differential
systems, which does not require heavy sign restrictions on their coefficients, is proposed in this
paper. Necessary and sufficient conditions of the positivity of elements in a corresponding row of
Green’s matrix are obtained in the form of theorems about differential inequalities. The main idea
of our approach is to construct a first order functional differential equation for the nth component
of the solution vector and then to use assertions about positivity of its Green’s functions. This
demonstrates the importance to study scalar equations written in a general operator form, where
only properties of the operators and not their forms are assumed. It should be also noted that the
sufficient conditions, obtained in this paper, cannot be improved in a corresponding sense and
does not require any smallness of the interval [0, ω], where the system is considered.

1. Introduction

Consider the following system of functional differential equations

(Mix)(t) ≡ x′
i(t) +

n∑

j=1

(
Bijxj

)
(t) = fi(t), t ∈ [0, ω], i = 1, . . . , n, (1.1)

where x = col(x1, . . . , xn), Bij : C[0,ω] → L[0,ω], i, j = 1, . . . , n, are linear continuous
operators, C[0,ω] and L[0,ω] are the spaces of continuous and summable functions y : [0, ω] →
R1, respectively.
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Let l : Cn
[0,ω] → Rn be a linear bounded functional. If the homogeneous boundary

value problem (Mix)(t) = 0, t ∈ [0, ω], i = 1, . . . , n, lx = 0, has only the trivial solution, then
the boundary value problem

(Mix)(t) = fi(t), t ∈ [0, ω], i = 1, lx = α, (1.2)

has for each f = col(f1, . . . , fn), where fi ∈ L[0,ω], i = 1, . . . , n, and α ∈ Rn, a unique solution,
which has the following representation [1]:

x(t) =
∫ω

0
G(t, s)f(s)ds +X(t)α, t ∈ [0, ω], (1.3)

where the n × n matrix G(t, s) is called Green’s matrix of problem (1.2), and X(t) is the n × n
fundamental matrix of the system (Mix)(t) = 0, i = 1, . . . , n, such that lX = E (E is the unit
n × n-matrix). It is clear from the solution representation (1.3) that the matrices G(t, s) and
X(t) determine all properties of solutions.

The following property is the basis of the approximate integration method by
Tchaplygin [2]: from the conditions

(Mix)(t) ≥
(
Miy

)
(t), t ∈ [0, ω], i = 1, . . . , n, lx = ly, (1.4)

it follows that

xi(t) ≥ yi(t), t ∈ [0, ω], i = 1, . . . , n. (1.5)

Series of papers, started with the known paper by Luzin [3], were devoted to
the various aspects of Tchaplygin’s approximate method. The well-known monograph by
Lakshmikantham and Leela [4] was one of the most important in this area. The known book
by Krasnosel’skii et al. [5] was devoted to approximate methods for operator equations.
These ideas have been developing in scores of books on the monotone technique for
approximate solution of boundary value problems for systems of differential equations. Note
in this connection the important works by Kiguradze and Puza [6, 7] and Kiguradze [8].

As a particular case of system (1.1), let us consider the following delay system:

x′
i(t) +

n∑

j=1

pij(t)xj

(
hij(t)

)
= fi(t), i = 1, . . . , n, t ∈ [0, ω],

x(ξ) = 0 for ξ < 0,

(1.6)

where pij are summable functions, and hij are measurable functions such that hij(t) ≤ t for
i, j = 1, . . . , n, t ∈ [0, ω].
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The classical Wazewskii’s theorem claims [9] that the condition

pij ≤ 0 for j /= i, i, j = 1, . . . , n, (1.7)

is necessary and sufficient for the property (1.4)⇒(1.5) for the Cauchy problem for system of
ordinary differential equations

x′
i(t) +

n∑

j=1

pij(t)xj(t) = fi(t), i = 1, . . . , n, t ∈ [0, ω]. (1.8)

From formula of solution representation (1.3), it is clear that property (1.4)⇒(1.5) is
true if all elements of the matrices G(t, s) and X(t) are nonnegative.

We focus our attention upon the problem of comparison for only one of the
components of solution vector. Let ki be either 1 or 2. In this paper we consider the following
property: from the conditions

(−1)ki[(Mix)(t) −
(
Miy

)
(t)

] ≥ 0, t ∈ [0, ω], lx = ly, i = 1, . . . , n, (1.9)

it does follow that for a corresponding fixed component xr of the solution vector the
inequality

xr(t) ≥ yr(t), t ∈ [0, ω], (1.10)

is satisfied. This property is a weakening of the property (1.4)⇒(1.5) and, as we will obtain
below, leads to essentially less hard limitations on the given system. From formula of
solution’s representation (1.3), it follows that this property is reduced to sign-constancy of
all elements standing only in the rth row of Green’s matrix.

The main idea of our approach is to construct a corresponding scalar functional
differential equation of the first order

x′
n(t) + (Bxn)(t) = f∗(t), t ∈ [0, ω], (1.11)

for nth component of a solution vector, where B : C[0,ω] → L[0,ω] is a linear continuous
operator, f∗ ∈ L[0,ω]. This equation is built in Section 2. Then the technique of analysis of
the first-order scalar functional differential equations, developed, for example, in the works
[10–12], is used. On this basis in Section 3 we obtain necessary and sufficient conditions
of nonpositivity/nonnegativity of elements in nth row of Green’s matrices in the form of
theorems about differential inequalities. Simple coefficient tests of the sign constancy of the
elements in the nth row of Green’s matrices are proposed in Section 4 for systems of ordinary
differential equations and in Section 5 for systems of delayed differential equations. It should
be stressed that in our results a smallness of the interval [0, ω] is not assumed.

Note that results of this sort for the Cauchy problem (i.e., lx ≡ col(x1(0), . . . , xn(0))
and Volterra operators Bij : C[0,ω] → L[0,ω] were proposed in the recent paper [13], where the
obtained operator B : C[0,ω] → L[0,ω] became a Volterra operator. In this paper we consider
other boundary conditions that imply that the operator B : C[0,ω] → L[0,ω] is not a Volterra
one even in the case when all Bij : C[0,ω] → L[0,ω], i, j = 1, . . . , n, are Volterra operators.
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2. Construction of Equation for nth Component of Solution Vector

In this paragraph, we consider the boundary value problem

(Mix)(t) ≡ x′
i(t) +

n∑

j=1

(
Bijxj

)
(t) = fi(t), t ∈ [0, ω], i = 1, . . . , n, (2.1)

lixi = ci, i = 1, . . . , n, (2.2)

where Bij : C[0,ω] → L[0,ω] are linear bounded operators for i, j = 1, . . . , n, and li : C[0,ω] →
R1, i = 1, . . . , n, are linear boundary functionals

Together with problem (2.1), (2.2) let us consider the following auxiliary problem
consisting of the system:

(mix)(t) ≡ x′
i(t) +

n−1∑

j=1

(
Bijxj

)
(t) = fi(t), t ∈ [0, ω], i = 1, . . . , n − 1, (2.3)

of the order n − 1 and the boundary conditions

lixi = ci, i = 1, . . . , n − 1. (2.4)

Let us assume that problem (2.3), (2.4) is uniquely solvable; denote by K(t, s) =
{Kij(t, s)}i,j=1,...,n−1 its Green’s matrix and by G(t, s) = {Gij(t, s)}i,j=1,...,n Green’s matrix of the
problem (2.1), (2.2).

Let us start with the following assertion, explaining how the scalar functional
differential equation for one of the components of the solution vector can be constructed.

Lemma 2.1. The component xn of the solution vector of system (2.1) satisfies the following scalar
functional differential equation:

x′
n(t) + (Bxn)(t) = f∗(t), t ∈ [0, ω], (2.5)

where the operator B : C[0,ω] → L[0,ω] and the function f∗ ∈ L[0,ω] are defined by the equalities

(Bxn)(t) ≡ −
n−1∑

i=1

Bni

⎧
⎨

⎩

∫ω

0

n−1∑

j=1

Kij(·, s)
(
Bjnxn

)
(s)ds

⎫
⎬

⎭(t) + (Bnnxn)(t), t ∈ [0, ω], (2.6)

f∗(t) = fn(t) −
n−1∑

i=1

Bni

⎧
⎨

⎩

∫ω

0

n−1∑

j=1

Kij(·, s)fj(s)ds
⎫
⎬

⎭(t) −
n−1∑

i=1

Bni

⎧
⎨

⎩

n−1∑

j=1

Kij(·, 0)cj

⎫
⎬

⎭(t), (2.7)
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where u = col{u1, . . . , un−1} is the solution of the system

(mix)(t) = 0, t ∈ [0, ω], i = 1, . . . , n − 1, (2.8)

satisfying condition (2.4).

Proof. Using Green’s matrix K(t, s) = {Kij(t, s)}n−1i,j=1 of problem (2.3), (2.4), we obtain

xi(t) = −
∫ω

0

n−1∑

j=1

Kij(t, s)
(
Bjnxn

)
(s)ds +

∫ω

0

n−1∑

j=1

Kij(t, s)fj(s)ds +
n−1∑

j=1

Kij(t, 0)cj , (2.9)

for every i ∈ {1, . . . , n − 1}. Substitution of these representations in the nth equation of the
system (2.1) leads to (2.5), where the operatorB and the function f∗ are described by formulas
(2.6) and (2.7), respectively.

3. Positivity of the Elements in the Fixed nth Row of Green’s Matrices

Consider the boundary value problem

(Mix)(t) ≡ x′
i(t) +

n∑

j=1

(
Bijxj

)
(t) = fi(t), t ∈ [0, ω], i = 1, . . . , n,

lixi = ci, i = 1, . . . , n − 1, xn(ω) = cn,

(3.1)

where Bij : C[0,ω] → L[0,ω] are linear continuous operators for i, j = 1, . . . , n.

Theorem 3.1. Let problem (2.3), (2.4) be uniquely solvable, all elements of its ( n−1)×(n−1)Green’s
matrixK(t, s) nonnegative, and the operators Bin,−Bni and Bnn positive operators for i = 1, . . . , n−1.
Then the following 2 assertions are equivalent:

(1) there exists an absolutely continuous vector function v such that vn(t) > 0, (Miv)(t) ≤ 0,
for t ∈ [0, ω], i = 1, . . . , n, and the solution of the homogeneous equation (miu)(t) = 0
for t ∈ [0, ω], i = 1, . . . , n − 1, satisfying the conditions liui = livi, i = 1, . . . , n − 1, is
nonpositive;

(2) the boundary value problem (3.1) is uniquely solvable for every summable f =
col(f1, . . . , fn) and c = col(c1, . . . , cn) ∈ Rn and elements of the nth row of its Green’s
matrix satisfy the inequalities: Gnj(t, s) ≤ 0 for j = 1, . . . , n, t, s ∈ [0, ω], while
Gnn(t, s) < 0 for 0 ≤ t < s ≤ ω.

Proof. Let us start with the implication (1) ⇒ (2). By virtue of Lemma 2.1, the component xn

of the solution vector of problem (3.1) satisfies (2.5). Condition (1) by virtue of Theorem 1 of
the paper [14] implies that Green’s function GN(t, s) of the boundary value problem

x′
n(t) + (Bxn)(t) = f∗(t), t ∈ [0, ω], x(ω) = 0, (3.2)
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exists and satisfies the inequalities GN(t, s) ≤ 0 for t, s ∈ [0, ω], while GN(t, s) < 0 for 0 ≤ t <
s ≤ ω. Lemma 2.1, the representations of solutions of boundary value problem (3.1) and the
scalar one-point problem (3.2) imply the equality

xn(t) =
∫ω

0

n∑

j=1

Gnj(t, s)fj(s)ds =
∫ω

0
GN(t, s)f∗(s)ds, t ∈ [0, ω]. (3.3)

If Bnj is a negative operator for every j = 1, . . . , n − 1, and fi ≤ 0 for i = 1, . . . , n, then f∗ ≤ 0.
The nonpositivity of GN(t, s) implies that xn is nonnegative and consequently Gnj(t, s) ≤ 0
for t, s ∈ [0, ω] and j = 1, . . . , n.

If we set fj = 0 for j = 1, . . . , n − 1, and ljxj = 0 for j = 1, . . . , n, then

xn(t) =
∫ω

0
Gnn(t, s)fn(s)ds =

∫ω

0
GN(t, s)fn(s)ds, t ∈ [0, ω], (3.4)

and it is clear that Gnn(t, s) = GN(t, s). It is known from Theorem 1 of the paper [14] that
GN(t, s) < 0 for 0 ≤ t < s ≤ ω. This implies that Gnn(t, s) < 0 for 0 ≤ t < s ≤ ω.

In order to prove (2) ⇒ (1), let us define vi (1 = 1, . . . , n) by the following way:

vi(t) = wi(t), i = 1, . . . , n − 1, vn(t) = wn(t) + 1, t ∈ [0, ω], (3.5)

where wi (1 = 1, . . . , n) is a solution to the problem

w′
i(t) +

n∑

j=1

(
Bijwj

)
(t) = −(Bin1)(t), i = 1, . . . , n, t ∈ [0, ω]. (3.6)

It is clear that the functions vi (1 = 1, . . . , n) satisfy the homogeneous system

v′
i(t) +

n∑

j=1

(
Bijvj

)
(t) = 0, i = 1, . . . , n, t ∈ [0, ω], (3.7)

and vn(t) > 0 for t ∈ [0, ω].

Theorem 3.2. Let problem (2.3), (2.4) be uniquely solvable, all elements of its ( n − 1) × (n − 1)
Green’s matrix K(t, s) nonpositive, and Bnn,−Bin and −Bni positive operators for i = 1, . . . , n − 1.
Then the following 2 assertions are equivalent:

(1∗) there exists an absolutely continuous vector function v such that vn(t) > 0, (Mnv)(t) ≤
0, (Miv)(t) ≥ 0 for t ∈ [0, ω], i = 1, . . . , n − 1, and the solution of the homogeneous
equation (miu)(t) = 0 for t ∈ [0, ω], i = 1, . . . , n − 1, satisfying the conditions liui =
livi, i = 1, . . . , n − 1, is nonnegative;

(2∗) the boundary value problem (3.1) is uniquely solvable for every summable f =
col(f1, . . . , fn) and c = col(c1, . . . , cn) ∈ Rn and elements of the nth row of its Green’s
matrix satisfies the inequalities: Gnj(t, s) ≥ 0 for j = 1, . . . , n − 1, Gnn(t, s) ≤ 0 for
t, s ∈ [0, ω] while Gnn(t, s) < 0 for 0 ≤ t < s ≤ ω.

The proof of this theorem is analogous to the proof of Theorem 3.1.
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4. Sufficient Conditions of Nonpositivity of the Elements in
the nth Row of Green’s Matrices for System of Ordinary
Differential Equations

In this paragraph, we consider the system of the ordinary differential equations

x′
i(t) +

n∑

j=1

pij(t)xj(t) = fi(t), i = 1, . . . , n, t ∈ [0, ω], (4.1)

with the boundary conditions

xi(0) = xi(ω) + ci, i = 1, . . . , n − 1, xn(ω) = cn. (4.2)

Theorem 4.1. Let the following conditions be fulfilled:

(1) pij ≤ 0 for i /= j, i, j = 1, . . . , n − 1;

(2) pjn ≥ 0, pnj ≤ 0 for j = 1, . . . , n − 1, pnn ≥ 0;

(3) there exists a positive number α such that

pnn(t) −
n−1∑

j=1

pnj(t) ≤ α ≤ min
1≤i≤n−1

⎧
⎨

⎩−pin(t) +
n−1∑

j=1

pij(t)

⎫
⎬

⎭, t ∈ [0, ω]. (4.3)

Then problem (4.1), (4.2) is uniquely solvable for every summable f = col(f1, f2, fn) and c =
col(c1, c2, . . . , cn) ∈ Rn, and the elements of the nth row of Green’s matrix of boundary value problem
(4.1), (4.2) satisfy the inequalities: Gnj(t, s) ≤ 0 for j = 1, . . . , n, for t, s ∈ [0, ω], Gnn(t, s) < 0 for
0 ≤ t < s ≤ ω.

Proof. Let us prove that all elements of Green’s matrixK(t, s) of the auxiliary boundary value
problem

x′
i(t) +

n−1∑

j=1

pij(t)xj(t) = fi(t), i = 1, . . . , n − 1, t ∈ [0, ω],

xi(0) = xi(ω) + ci, i = 1, . . . , n − 1,

(4.4)

are nonnegative. The conditions (1), (2), and the inequality

0 < α ≤ min
1≤i≤n−1

⎧
⎨

⎩−pin(t) +
n−1∑

j=1

pij(t)

⎫
⎬

⎭, t ∈ [0, ω], (4.5)

imply that the conditions (1) and (2) of Theorem 3.1 of the paper [13] are fulfilled. Assertion
(a) of Theorem 3.1 [13] is fulfilled. To prove it, we set vi = 1 for 1 = 1, . . . , n−1 in this assertion.
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Now according to equivalence of assertions (a) and (b) in Theorem 3.1 of the paper [13], we
get the nonnegativity of all elements of its Green’s matrix K(t, s).

Let us set vi(t) = −e−αt for i = 1, . . . , n − 1, and vn(t) = e−αt in the condition (1) of
Theorem 3.1. We obtain that this condition is satisfied if α satisfies the following system of
the inequalities:

α ≤ −pin(t) +
n−1∑

j=1

pij(t), i = 1, . . . , n − 1, t ∈ [0, ω],

pnn(t) −
n−1∑

j=1

pnj(t) ≤ α, t ∈ [0, ω].

(4.6)

Now by virtue of Theorem 3.1, all elements of the nth row of Green’s matrix satisfy the
inequalities Gnj(t, s) ≤ 0 for j = 1, . . . , n − 1, and, using [14], we can conclude that Gnn(t, s) <
0 for 0 ≤ t < s ≤ ω.

Consider now the following ordinary differential system of the second order;

x′
1(t) + p11(t)x1(t) + p12(t)x2(t) = f1(t),

x′
2(t) + p21(t)x1(t) + p22(t)x2(t) = f2(t),

t ∈ [0, ω], (4.7)

with the conditions

x1(0) = x1(ω) + c1, x2(ω) = c2. (4.8)

From Theorem 4.1 as a particular case for n = 2, we obtain the following assertion.

Theorem 4.2. Let the following two conditions be fulfilled:

(1) p11 ≥ 0, p12 ≥ 0, p21 ≤ 0, p22 ≥ 0;

(2) there exists a positive α such that

p22(t) − p21(t) ≤ α ≤ p11(t) − p12(t), t ∈ [0, ω]. (4.9)

Then problem (4.7), (4.8) is uniquely solvable for every summable f = col(f1, f2) and c =
{c1, c2} ∈ R2, and the elements of the second row of Green’s matrix of problem (4.7), (4.8) satisfy the
inequalities: G2i(t, s) ≤ 0 for 1 = 1, 2, t ∈ [0, ω], G22(t, s) < 0 for 0 ≤ t < s < ω.

Remark 4.3. If coefficients pij are constants, the second condition in Theorem 4.2 is as follows:

p22 − p21 ≤ p11 − p12, p11 − p12 > 0. (4.10)
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Remark 4.4. Let us demonstrate that inequality (4.10) is best possible in a corresponding case
and the condition

p22 − p21 ≤ p11 − p12 + ε, p11 − p12 + ε > 0 (4.11)

cannot be set instead of (4.10). The characteristic equation of the system

x′
1(t) + p11x1(t) + p12x2(t) = 0,

x′
2(t) + p21x1(t) + p22x2(t) = 0,

t ∈ [0, ω], (4.12)

with constant coefficients is as follows:

λ2 +
(
p11 + p22

)
λ + p11p22 − p12p21 = 0. (4.13)

If we set p11 = p22 = 0, p21 < 0, p12 > 0, p12 − p21 < ε, then the roots are λ1 = i
√−p12p21,

λ2 = −i√−p12p21, and the problem

x′
1(t) + p12x2(t) = 0,

x′
2(t) + p21x1(t) = 0,

t ∈ [0, ω],

x1(0) = x1(ω), x2(ω) = 0

(4.14)

has nontrivial solution for ω = 2π/
√−p12p21.

5. Sufficient Conditions of Nonpositivity of the Elements in
the nth Row of Green’s Matrices for Systems with Delay

Let us consider the system of the delay differential equations

x′
i(t) +

n∑

j=1

pij(t)xj

(
t − τij(t)

)
= fi(t), i = 1, . . . , n, t ∈ [0, ω]. (5.1)

xi(ξ) = 0 for ξ < 0, i = 1, . . . , n, (5.2)

with the boundary conditions

xi(0) = xi(ω) + ci, i = 1, . . . , n − 1, xn(ω) = cn. (5.3)

We introduce the denotations: p∗ij = ess sup pij(t), pij∗ = ess inf pij(t), τ∗ij =
ess sup τij(t), and τij∗ = ess inf τij(t).
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Theorem 5.1. Let the following conditions be fulfilled:

(1) pij ≤ 0 for i /= j, i, j = 1, . . . , n − 1;

(2) pjn ≥ 0, pnj ≤ 0 for j = 1, . . . , n − 1, pnn ≥ 0;

(3) τii = 0 for i = 1, . . . , n − 1;

(4) there exists a positive number α such that

pnn(t)eατnn(t) −
n−1∑

j=1

pnj(t)eατnj (t)

≤ α ≤ min
1≤i≤n−1

⎧
⎨

⎩−pin(t)eατin(t) + pii(t) +
n−1∑

j=1,i /= j

pij(t)eατij (t)

⎫
⎬

⎭, t ∈ [0, ω].

(5.4)

Then problem (5.1), (5.3) is uniquely solvable for every summable f = col(f1, . . . , fn) and
c = {c1, . . . , cn} ∈ Rn, and the elements of the nth row of Green’s matrix of problem (5.1), (5.3)
satisfy the inequalities: Gnj(t, s) ≤ 0 for t, s ∈ [0, ω], j = 1, . . . , n, Gnn(t, s) < 0 for 0 ≤ t < s ≤ ω.

Proof. Repeating the explanations in the beginning of the proof of Theorem 4.1, we can obtain
on the basis of Theorem 3.1 of the paper [13] that all the elements of (n − 1) × (n − 1) Green’s
matrix K(t, s) of the auxiliary problem, consisting of the system

x′
i(t) +

n−1∑

j=1

pij(t)xj

(
t − τij(t)

)
= fi(t), i = 1, . . . , n − 1, t ∈ [0, ω], (5.5)

and the boundary conditions xi(0) = xi(ω) + ci, i = 1, . . . , n − 1, are nonnegative.
Let us set vi(t) = −e−αt for i = 1, . . . , n − 1, and vn(t) = e−αt in the condition (1) of

Theorem 3.1. We obtain that the condition (1) of Theorem 3.1 is satisfied if α satisfies the
following system of the inequalities:

α ≤ −pin(t)eατin(t) + pii(t) +
n−1∑

j=1,i /= j

pij(t)eατij (t), i = 1, . . . , n − 1, t ∈ [0, ω], (5.6)

pnn(t)eατnn(t) −
n−1∑

j=1

pnj(t)eατnj (t) ≤ α, t ∈ [0, ω]. (5.7)

Nowby virtue of Theorem 3.1, all elements of the nth row of Green’smatrix of problem
(5.1), (5.3) satisfy the inequalities Gnj(t, s) ≤ 0 for t, s ∈ [0, ω], j = 1, . . . , n, while Gnn(t, s) <
0 for 0 ≤ t < s ≤ ω.

Remark 5.2. It was explained in the previous paragraph that in the case of ordinary system
(τij = 0, i, j = 1, . . . , n) with constant coefficients pij , inequality (5.4) is best possible in a
corresponding case.
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Let us consider the second-order scalar differential equation

y′′(t) + p11(t)y′(t) + p12(t)y(t − τ12(t)) = f1(t), t ∈ [0, ω], (5.8)

where y(ξ) = y′(ξ) = 0 for ξ < 0, with the boundary conditions

y′(0) = y′(ω) + c1, y(ω) = c2, (5.9)

and the corresponding differential system of the second order

x′
1(t) + p11(t)x1(t) + p12(t)x2(t − τ12(t)) = f1(t),

x′
2(t) − x1(t) = 0,

t ∈ [0, ω], (5.10)

where x1(ξ) = x2(ξ) = 0 for ξ < 0, with the boundary conditions

x1(0) = x1(ω) + c1, x2(ω) = c2. (5.11)

It should be noted that the element G21(t, s) of Green’s matrix of system (5.10), (5.11)
coincides with Green’s function W(t, s) of the problem (5.8), (5.9) for scalar second-order
equation.

Theorem 5.3. Assume that p12 ≥ 0 and there exists a positive number α such that

α2 + p12(t)eατ12(t) ≤ αp11(t), t ∈ [0, ω]. (5.12)

Then problem (5.10), (5.11) is uniquely solvable for every summable f = col(f1, f2) and
c = col(c1, c2) ∈ R2,and the elements of the second row of Green’s matrix of this problem satisfy the
inequalities: G2j(t, s) ≤ 0, j = 1, 2, t, s ∈ (0, ω), while G22(t, s) < 0 for 0 ≤ t < s < ω.

In order to prove Theorem 5.3, we set v1(t) = −αe−αt, v2(t) = e−αt in the assertion (1)
of Theorem 3.1.

Remark 5.4. Inequality (5.12) is best possible in the following sense. Let us add ε in its right
hand side. We get that the inequality

α2 + p12(t)eατ12(t) ≤ αp11(t) + ε, t ∈ [0, ω], (5.13)

and the assertion of Theorem 5.3 is not true. Let us set that coefficients are constants: p11 = 0
and 0 < p12 < ε. It is clear that the inequality (5.13) is fulfilled if we set α small enough.
Consider the following homogeneous boundary value problem:

x′
1(t) + p12x2(t) = 0,

x′
2(t) − x1(t) = 0,

x1(0) = x1(ω), x2(ω) = 0.

t ∈ [0, ω], (5.14)
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The components x1, x2 of the solution vector are periodic and for ω = 2π/√p12 the boundary
value problem (5.14) has a nontrivial solution.

Let us prove the following assertions, giving an efficient test of nonpositivity of the
elements in the nth row of Green’s matrix in the case when the coefficients |pnj | are small
enough for j = 1, . . . , n − 1.

Theorem 5.5. Let the following conditions be fulfilled:

(1) pij ≤ 0 for i /= j, i, j = 1, . . . , n − 1;

(2) pjn ≥ 0, pnj ≤ 0, pnn ≥ 0 for j = 1, . . . , n − 1;

(3) τnn = const > 0, and other delays τij are zeros;

(4) the inequalities

pnn(t)τnn exp

⎧
⎨

⎩τnn
n−1∑

j=1

∣∣pnj
∣∣∗
⎫
⎬

⎭ ≤ 1
e
, t ∈ [0, ω], (5.15)

1
τnn

+
n−1∑

j=1

∣∣pnj
∣∣∗ ≤ min

1≤i≤n−1

⎧
⎨

⎩−pin(t) +
n∑

j=1,i /= j

pij(t)

⎫
⎬

⎭, t ∈ [0, ω], (5.16)

are fulfilled.
Then problem (5.1), (5.3) is uniquely solvable for every summable f = col(f1, f2, . . . , fn) and

c = (c1, c2, . . . , cn) ∈ Rn, and the elements of the nth row of its Green’s matrix satisfy the inequalities:
Gnj(t, s) ≤ 0 for j = 1, . . . , n, while Gnn(t, s) < 0 for 0 < t < s < ω.

Proof. Let us set vi(t) = −e−αt for i = 1, . . . , n − 1, and vn(t) = e−αt in the condition (1) of
Theorem 3.1.

pnn(t)eατnn −
n−1∑

j=1

pnj(t) ≤ α ≤ min
1≤i≤n−1

⎧
⎨

⎩−pin(t) +
n∑

j=1,i /= j

pij(t)

⎫
⎬

⎭, t ∈ [0, ω]. (5.17)

In the left-hand side, we have the inequality

pnn(t)eατnn −
n−1∑

j=1

pnj(t) ≤ α, t ∈ [0, ω], (5.18)

which is fulfilled when

pnn(t) ≤
⎧
⎨

⎩α −
n−1∑

j=1

∣∣pnj
∣∣∗
⎫
⎬

⎭e−ατnn , [0, ω]. (5.19)

The right-hand side in inequality (5.18) gets its maximum for α = 1/τnn +
∑n−1

j=1 |pnj |∗.
Substituting this α into (5.19) and the right part of (5.17), we obtain inequalities (5.15) and
(5.16).
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Remark 5.6. It can be stressed that we do not require a smallness of the interval [0, ω] in
Theorems 5.1–5.5.

Remark 5.7. It can be noted that inequality (5.15) is best possible in the following sense. If
pnj = 0 for j = 1, . . . , n − 1, pnn = const > 0, then system (5.1) and inequality (5.15) become of
the following forms:

x′
i(t) = fi(t), i = 1, . . . , n − 1, x′

n(t) + pnnxn(t − τnn) = fn(t), t ∈ [0, ω]. (5.20)

pnnτnn ≤ 1
e
, t ∈ [0, ω], (5.21)

respectively. The opposite to (5.21) inequality pnnτnn > 1/e implies oscillation of all solutions
[15] of the equation

x′
n(t) + pnnx(t − τnn) = 0, t ∈ [0, ω]. (5.22)

It implies that the homogeneous problem

x′
i(t) = 0, i = 1, . . . , n − 1, x′

n(t) + pnnxn(t − τnn) = 0, t ∈ [0, ω],

xi(0) = xi(ω), i = 1, . . . , n − 1, xn(ω) = 0
(5.23)

has nontrivial solutions for corresponding ω. Now it is clear that we cannot substitute

pnn(t)τnn exp

⎧
⎨

⎩τnn
n−1∑

j=1

∣∣pnj
∣∣∗
⎫
⎬

⎭ ≤ 1 + ε

e
, t ∈ [0, ω], (5.24)

where ε is any positive number instead of inequality (5.15).
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[15] I. Győri and G. Ladas, Oscillation Theory of Delay Differential Equations, Oxford Mathematical
Monographs, The Clarendon Press, Oxford University Press, New York, NY, USA, 1991.


	1. Introduction
	2. Construction of Equation for nth Component of Solution Vector
	3. Positivity of the Elements in the Fixed nth Row of Green’s Matrices

	4. Sufficient Conditions of Nonpositivity of the Elements in the nth Row of Green’s Matrices for System of Ordinary
Differential Equations
	5. Sufficient Conditions of Nonpositivity of the Elements in the nth Row of Green’s Matrices for Systems with Delay
	Acknowledgments
	References

