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We consider the problem of existence and structure of solutions bounded on the entire real axis of
nonhomogeneous linear impulsive differential systems. Under assumption that the corresponding
homogeneous system is exponentially dichotomous on the semiaxes R− and R+ and by using
the theory of pseudoinverse matrices, we establish necessary and sufficient conditions for the
indicated problem.

The research in the theory of differential systems with impulsive action was originated by
Myshkis and Samoilenko [1], Samoilenko and Perestyuk [2], Halanay and Wexler [3], and
Schwabik et al. [4]. The ideas proposed in these works were developed and generalized
in numerous other publications [5]. The aim of this contribution is, using the theory of
impulsive differential equations, using the well-known results on the splitting index by
Sacker [6] and by Palmer [7] on the Fredholm property of the problem of bounded solutions
and using the theory of pseudoinverse matrices [5, 8], to investigate, in a relevant space,
the existence of solutions bounded on the entire real axis of linear differential systems with
impulsive action.

We consider the problem of existence and construction of solutions bounded on the
entire real axis of linear systems of ordinary differential equations with impulsive action at
fixed points of time

ẋ = A(t)x + f(t), t /= τi,

Δx|t=τi = γi, i ∈ Z, t, τi ∈ R, γi ∈ R
n,

(1)

where A(t) ∈ BC(R \ {τi}I) is an n × n matrix of functions; f(t) ∈ BC(R \ {τi}I) is an n × 1
vector function; BC(R\{τi}I) is the Banach space of real vector functions continuous for t ∈ R
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with discontinuities of the first kind at t = τi; γi are n-dimensional column constant vectors;
· · · < τ−2 < τ−1 < τ0 = 0 < τ1 < τ2 < · · · .

The solution x(t) of the problem (1) is sought in the Banach space of n-dimensional
piecewise continuously differentiable vector functions with discontinuities of the first kind at
t = τi: x(t) ∈ BC1(R \ {τi}I).

Parallel with the nonhomogeneous impulsive system (1) we consider the homoge-
neous system

ẋ = A(t)x, t ∈ R, (2)

which is the homogeneous system without impulses.
Assume that the homogeneous system (2) is exponentially dichotomous (e-dichot-

omous) on semiaxes R− = (−∞, 0] and R+ = [0,∞); i.e. there exist projectors P and Q (P 2 =
P, Q2 = Q) and constants Ki ≥ 1, αi > 0 (i = 1, 2) such that the following inequalities are
satisfied:

∥
∥
∥X(t)PX−1(s)

∥
∥
∥ ≤ K1e

−α1(t−s), t ≥ s,

∥
∥
∥X(t)(I − P)X−1(s)

∥
∥
∥ ≤ K1e

−α1(s−t), s ≥ t, t, s ∈ R+,

∥
∥
∥X(t)QX−1(s)

∥
∥
∥ ≤ K2e

−α2(t−s), t ≥ s,

∥
∥
∥X(t)(I −Q)X−1(s)

∥
∥
∥ ≤ K2e

−α2(s−t), s ≥ t, t, s ∈ R−,

(3)

where X(t) is the normal fundamental matrix of system (2).
By using the results developed in [5] for problems without impulses, the general

solution of the problem (1) bounded on the semiaxes has the form

x(t, ξ) = X(t)

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pξ +
∫ t

0
PX−1(s)f(s)ds −

∫∞

t

(I − P)X−1(s)f(s)ds

+
j
∑

i=1

PX−1(τi)γi −
∞∑

i=j+1

(I − P)X−1(τi)γi, t ≥ 0;

(I −Q)ξ +
∫ t

−∞
QX−1(s)f(s)ds −

∫0

t

(I −Q)X−1(s)f(s)ds

+
−(j+1)
∑

i=−∞
QX−1(τi)γi −

−1∑

i=−j
(I −Q)X−1(τi)γi, t ≤ 0.

(4)

For getting the solution x(t) ∈ BC1(R \ {τi}I) bounded on the entire axis, we assume that it
has continuity in t = 0:

x(0+, ξ) − x(0−, ξ) = γ0 = 0 (5)
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or

Pξ −
∫∞

0
(I − P)X−1(s)f(s)ds −

∞∑

i=1

(I − P)X−1(τi)γi

= (I −Q)ξ +
∫0

−∞
QX−1(s)f(s)ds +

−1∑

i=−∞
QX−1(τi)γi.

(6)

Thus, the solution (4) will be bounded on R if and only if the constant vector ξ ∈ R
n is the

solution of the algebraic system:

Dξ =
∫0

−∞
QX−1(s)f(s)ds +

∫∞

0
(I − P)X−1(s)f(s)ds +

−1∑

i=−∞
QX−1(τi)γi +

∞∑

i=1

(I − P)X−1(τi)γi,

(7)

where D is an n × n matrix, D := P − (I −Q). The algebraic system (7) is solvable if and only
if the condition

PD∗

{∫0

−∞
QX−1(s)f(s)ds +

∫∞

0
(I − P)X−1(s)f(s)ds

+
−1∑

i=−∞
QX−1(τi)γi +

∞∑

i=1

(I − P)X−1(τi)γi

}

= 0

(8)

is satisfied, where PD∗ is the n × n matrix-orthoprojector; PD∗ : Rn → N(D∗).
Therefore, the constant ξ ∈ R

n in the expression (4) has the form

ξ = D+

{∫0

−∞
QX−1(s)f(s)ds +

∫∞

0
(I − P)X−1(s)f(s)ds

+
−1∑

i=−∞
X(t)QX−1(τi)γi +

∞∑

i=1

X(t)(I − P)X−1(τi)γi

}

+ PDc, ∀c ∈ R
n,

(9)

where PD is the n × n matrix-orthoprojector; PD : R
n → N(D); D+ is a Moore-Penrose

pseudoinverse matrix to D. Since PD∗D = 0, we have PD∗Q = PD∗(I − P). Let

d = rank[PD∗Q] = rank[PD∗(I − P)] ≤ n. (10)

Then we denote by [PD∗Q]d a d × n matrix composed of a complete system of d linearly
independent rows of the matrix [PD∗Q] and by Hd(t) = [PD∗Q]dX

−1(t) a d × nmatrix.
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Thus, the necessary and sufficient condition for the existence of the solution of problem
(1) has the form

∫∞

−∞
Hd(t)f(t)dt +

∞∑

i=−∞
Hd(τi)γi = 0 (11)

and consists of d linearly independent conditions.
If we substitute the constant ξ ∈ R

n given by relation (9) into (4), we get the general
solution of problem (1) in the form

x(t, c) = X(t)

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

PPDc +
∫ t

0
PX−1(s)f(s)ds −

∫∞

t

(I − P)X−1(s)f(s)ds

+
j
∑

i=1

PX−1(τi)γi −
∞∑

i=j+1

(I − P)X−1(τi)γi

+PD+

{∫0

−∞
QX−1(s)f(s)ds +

∫∞

0
(I − P)X−1(s)f(s)ds

+
−1∑

i=−∞
QX−1(τi)γi +

∞∑

i=1

(I − P)X−1(τi)γi

}

, t ≥ 0;

(I −Q)PDc +
∫ t

−∞
QX−1(s)f(s)ds −

∫0

t

(I −Q)X−1(s)f(s)ds

+
−(j+1)
∑

i=−∞
QX−1(τi)γi −

−1∑

i=−j
(I −Q)X−1(τi)γi

+(I −Q)D+

{∫0

−∞
QX−1(s)f(s)ds +

∫∞

0
(I − P)X−1(s)f(s)ds

+
−1∑

i=−∞
QX−1(τi)γi +

∞∑

i=1

(I − P)X−1(τi)γi

}

, t ≤ 0.

(12)

Since DPD = 0, we have PPD = (I −Q)PD. Let

r = rank[PPD] = rank[(I −Q)PD] ≤ n. (13)

Then we denote by [PPD]r an n × r matrix composed of a complete system of r linearly
independent columns of the matrix [PPD].

Thus, we have proved the following statement.

Theorem 1. Assume that the linear nonhomogeneous impulsive differential system (1) has the
corresponding homogeneous system (2) e-dichotomous on the semiaxes R− = (−∞, 0] and R+ =
[0,∞) with projectors P and Q, respectively. Then the homogeneous system (2) has exactly r (r =
rank PPD = rank (I −Q)PD, D = P − (I −Q)) linearly independent solutions bounded on the entire
real axis. If nonhomogenities f(t) ∈ BC(R \ {τi}I) and γi ∈ R

n satisfy d (d = rank [PD∗Q] =
rank [PD∗(I − P)]) linearly independent conditions (11), then the nonhomogeneous system (1)
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possesses an r-parameter family of linearly independent solutions bounded on the entire real axis R in
the form

x(t, cr) = Xr(t)cr +
(

G

[
f
γi

])

(t), ∀cr ∈ R
r , (14)

where

Xr(t) := X(t)[PPD]r = X(t)[(I −Q)PD]r (15)

is an n × r matrix formed by a complete system of r linearly independent solutions of homogeneous
problem (2) and

(

G
[
f
γi

])

(t) is the generalized Green operator of the problem of finding solutions of
the impulsive problem (1) bounded on R, acting upon f(t) ∈ BC(R \ {τi}I) and γi ∈ R

n, defined by
the formula

(

G

[
f
γi

])

(t) = X(t)

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ t

0
PX−1(s)f(s)ds −

∫∞

t

(I − P)X−1(s)f(s)ds

+
j
∑

i=1

PX−1(τi)γi −
∞∑

i=j+1

(I − P)X−1(τi)γi

+PD+

{∫0

−∞
QX−1(s)f(s)ds +

∫∞

0
(I − P)X−1(s)f(s)ds

+
−1∑

i=−∞
QX−1(τi)γi +

∞∑

i=1

(I − P)X−1(τi)γi

}

, t ≥ 0;

∫ t

−∞
QX−1(s)f(s)ds −

∫0

t

(I −Q)X−1(s)f(s)ds

+
−(j+1)
∑

i=−∞
QX−1(τi)γi −

−1∑

i=−j
(I −Q)X−1(τi)γi

+(I −Q)D+

{∫0

−∞
QX−1(s)f(s)ds +

∫∞

0
(I − P)X−1(s)f(s)ds

+
−1∑

i=−∞
QX−1(τi)γi +

∞∑

i=1

(I − P)X−1(τi)γi

}

, t ≤ 0.

(16)

The generalized Green operator (16) has the following property:

(

G

[
f
γi

])

(0 − 0) −
(

G

[
f
γi

])

(0 + 0) =
∫∞

−∞
H(t)f(t)dt +

∞∑

i=−∞
H(τi)γi, (17)

whereH(t) = [PD∗Q]X−1(t).
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We can also formulate the following corollaries.

Corollary 2. Assume that the homogeneous system (2) is e-dichotomous on R+ and R− with projec-
tors P and Q, respectively, and such that PQ = QP = Q. In this case, the system (2) has r-parameter
set of solutions bounded on R in the form (14). The nonhomogeneous impulsive system (1) has for
arbitrary f(t) ∈ BC(R \ {τi}I) and γi ∈ R

n an r-parameter set of solutions bounded on R in the form

x(t, cr) = Xr(t)cr +
(

G

[
f
γi

])

(t), ∀cr ∈ R
r , (18)

where
(

G
[
f
γi

])

(t) is the generalized Green operator (16) of the problem of finding bounded solutions
of the impulsive system (1) with the property

(

G

[
f
γi

])

(0 − 0) −
(

G

[
f
γi

])

(0 + 0) = 0. (19)

Proof. Since DP = (P − (I − Q))P = QP = Q and PD∗D = 0, we have PD∗Q = PD∗DP = 0.
Thus condition (11) for the existence of bounded solution of system (1) is satisfied for all
f(t) ∈ BC(R \ {τi}I) and γi ∈ R

n.

Corollary 3. Assume that the homogenous system (2) is e-dichotomous onR+ andR− with projectors
P and Q, respectively, and such that PQ = QP = P . In this case, the system (2) has only trivial
solution bounded on R. If condition (11) is satisfied, then the nonhomogeneous impulsive system (1)
possesses a unique solution bounded on R in the form

x(t) =
(

G

[
f
γi

])

(t), (20)

where
(

G
[
f
γi

])

(t) is the generalized Green operator (16) of the problem of finding bounded solutions
of the impulsive system (1).

Proof. Since PD = (PP −(I−Q)) = PQ = P andDPD = 0, we have PPD = PDPD = 0. By virtue
of Theorem 1, we have r = 0 and thus the homogenous system (2) has only trivial solution
bounded on R. Moreover, the nonhomogeneous impulsive system (1) possesses a unique
solution bounded on R for f(t) ∈ BC(R \ {τi}I) and γi ∈ R

n satisfying the condition (11).

Corollary 4. Assume that the homogenous system (2) is e-dichotomous onR+ andR− with projectors
P and Q, respectively, and such that PQ = QP = P = Q. Then the system (2) is e-dichotomous on
R and has only trivial solution bounded on R. The nonhomogeneous impulsive system (1) has for
arbitrary f(t) ∈ BC(R \ {τi}I) and γi ∈ R

n a unique solution bounded on R in the form

x(t) =
(

G

[
f
γi

])

(t), (21)

where
(

G
[
f
γi

])

(t) is the Green operator (16) (D+ = D−1) of the problem of finding bounded solutions
of the impulsive system (1).
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Proof. Since PQ = QP = Q = P and det D /= 0, we have PD∗ = PD = 0, D+ = D−1. By virtue of
Theorem 1, we have r = d = 0 and thus the homogenous system (2) has only trivial solution
bounded on R. Moreover, the nonhomogeneous impulsive system (1) possesses a unique
solution bounded on R for all f(t) ∈ BC(R \ {τi}I) and γi ∈ R

n.

Regularization of Linear Problem

The condition of solvability (11) of impulsive problem (1) for solutions bounded onR enables
us to analyze the problem of regularization of linear problem that is not solvable everywhere
by adding an impulsive action.

Consider the problem of finding solutions bounded on the entire real axis of the system

ẋ = A(t)x + f(t), A(t) ∈ BC(R), f(t) ∈ BC(R), (22)

the corresponding homogeneous problem of which is e-dichotomous on the semiaxes R+ and
R−. Assume that this problem has no solution bounded on R for some f0(t) ∈ BC(R); i.e. the
solvability condition of (22) is not satisfied. This means that

∫∞

−∞
Hd(t)f0(t)dt /= 0. (23)

In this problem, we introduce an impulsive action for t = τ1 ∈ R as follows:

Δx|t=τ1 = γ1, γ1 ∈ R
n, (24)

and we consider the existence of solution of the impulsive problem (22)-(24) from the space
BC1(R \ {τ1}I) bounded on the entire real axis. The parameter γ1 is chosen from a condition
similar to (11) guaranteeing that the impulsive problem (22)-(24) is solvable for any f0(t) ∈
BC(R) and some γ1 ∈ R

n:

∫∞

−∞
Hd(t)f0(t)dt +Hd(τ1)γ1 = 0, (25)

whereHd(τ1) is a d ×nmatrix,H+
d
(τ1) is an n×d matrix pseudoinverse to the matrixHd(τ1),

PN(H∗
d
) is a d × d matrix (othoprojector), PN(H∗

d
) : Rd → N(H∗

d), and PN(Hd) is an n × nmatrix
(othoprojector), PN(Hd) : Rn → N(Hd). The algebraic system (25) is solvable if and only if
the condition

PN(H∗
d
)

{∫∞

−∞
Hd(t)f0(t)dt

}

= 0 (26)

is satisfied. Thus, Theorem 1 yields the following statement.
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Corollary 5. By adding an impulsive action, the problem of finding solutions bounded on R of linear
system (22), that is solvable not everywhere, can be made solvable for any f0(t) ∈ BC(R) if and only if

PN(H∗
d
) = 0 or rankHd(τ1) = d. (27)

The indicated additional (regularizing) impulse γ1 should be chosen as follows:

γ1 = −H+
d (τ1)

{∫∞

−∞
Hd(t)f0(t)dt

}

+ PN(Hd)c, ∀c ∈ Rn. (28)

So the impulsive action can be regarded as a control parameter which guarantees the
solvability of not everywhere solvable problems.

Example 6. In this example we illustrate the assertions proved above.
Consider the impulsive system

ẋ = A(t)x + f(t), t /= τi,

Δx|t=τi = γi =

⎛

⎜
⎜
⎜
⎝

γ
(1)
i

γ
(2)
i

γ
(3)
i

⎞

⎟
⎟
⎟
⎠

∈ R
3, t, τi ∈ R, i ∈ Z,

(29)

whereA(t) = diag{− tanh t,− tanh t, tanh t}, f(t) = col(f1(t), f2(t), f3(t)) ∈ BC(R). The normal
fundamental matrix of the corresponding homogenous system

ẋ = A(t)x, t /= τi, Δx|t=τi = 0 (30)

is

X(t) = diag
{

2
et + e−t

,
2

et + e−t
,
et + e−t

2

}

, (31)

and this system is e-dichotomous (as shown in [9]) on the semiaxesR+ andR− with projectors
P = diag{1, 1, 0} and Q = diag{0, 0, 1}, respectively. Thus, we have

D = 0, D+ = 0, PN(D) = PN(D∗) = I3,

r = rankPPN(D) = 2, d = rankPN(D∗)Q = 1,

Xr(t) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

2
et + e−t

0

0
2

et + e−t

0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

Hd(t) =
(

0, 0,
2

et + e−t

)

.

(32)
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In order that the impulsive system (29) with the matrix A(t) specified above has
solutions bounded on the entire real axis, the nonhomogenities f(t) = (col f1(t), f2(t), f3(t)) ∈
BC(R) and γi ∈ R

3 must satisfy condition (11). In the analyzed impulsive problem, this
condition takes the following form:

∫∞

−∞

2f3(t)
et + e−t

dt +
∞∑

i=−∞

2
eτi + e−τi

γ
(3)
i = 0, ∀f1(t), f2(t) ∈ BC(R), ∀γ (1)i , γ

(2)
i ∈ R. (33)

If we consider the system (29) only with one point of discontinuity of the first kind
t = τ1 ∈ Rwith impulse

Δx|t=τ1 = γ1 ∈ R
3, (34)

then we rewrite the condition (33) in the form

∫∞

−∞

2f3(t)
et + e−t

dt +
2

eτ1 + e−τ1
γ
(3)
1 = 0. (35)

It is easy to see that (35) is always solvable and, according to Corollary 5, the analyzed
impulsive problem has bounded solution for arbitrary f0(t) ∈ BC(R) if the pulse parameter
γ1 should be chosen as follows:

γ
(3)
1 = −(eτ1 + e−τ1

)
∫∞

−∞

f3(t)
et + e−t

dt, ∀γ (1)1 , γ
(2)
1 ∈ R. (36)

Remark 7. It seems that a possible generalization to systems with delay will be possible.
In a particular case when the matrix of linear terms is constant, a representation of the
fundamental matrix given by a special matrix function (so-called delayedmatrix exponential,
etc.), for example, in [10, 11] (for a continuous case) and in [12, 13] (for a discrete case),
can give concrete formulas expressing solution of the considered problem in analytical
form.
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