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5 Department of Complex System Modeling, Faculty of Cybernetics, Taras,
Shevchenko National University of Kyiv, Vladimirskaya Str. 64, 01033 Kyiv, Ukraine

Correspondence should be addressed to A. Boichuk, boichuk@imath.kiev.ua

Received 16 January 2010; Revised 27 April 2010; Accepted 12 May 2010

Academic Editor: Ağacik Zafer
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Conditions are derived of the existence of solutions of linear Fredholm’s boundary-value problems
for systems of ordinary differential equations with constant coefficients and a single delay,
assuming that these solutions satisfy the initial and boundary conditions. Utilizing a delayed
matrix exponential and a method of pseudoinverse by Moore-Penrose matrices led to an explicit
and analytical form of a criterion for the existence of solutions in a relevant space and, moreover,
to the construction of a family of linearly independent solutions of such problems in a general case
with the number of boundary conditions (defined by a linear vector functional) not coinciding
with the number of unknowns of a differential system with a single delay. As an example of
application of the results derived, the problem of bifurcation of solutions of boundary-value
problems for systems of ordinary differential equations with a small parameter and with a finite
number of measurable delays of argument is considered.

1. Introduction

First we mention auxiliary results regarding the theory of differential equations with delay.
Consider a system of linear differential equations with concentrated delay

ż(t) −A(t)z(h(t)) = g(t), if t ∈ [a, b], (1.1)
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assuming that

z(s) := ψ(s), if s /∈ [a, b], (1.2)

where A is an n × n real matrix, and g is an n-dimensional real column vector, with
components in the space Lp[a, b] (where p ∈ [1,∞)) of functions integrable on [a, b] with
the degree p; the delay h(t) ≤ t is a function h : [a, b] → R measurable on [a, b];
ψ : R \ [a, b] → R

n is a given vector function with components in Lp[a, b]. Using the
denotations

(Shz)(t) :=

⎧
⎨

⎩

z(h(t)), if h(t) ∈ [a, b],

θ, if h(t)/∈ [a, b],
(1.3)

ψh(t) :=

⎧
⎨

⎩

θ, if h(t) ∈ [a, b],

ψ(h(t)), if h(t)/∈ [a, b],
(1.4)

where θ is an n-dimensional zero column vector, and assuming t ∈ [a, b], it is possible to
rewrite (1.1), (1.2) as

(Lz)(t) := ż(t) −A(t)(Shz)(t) = ϕ(t), t ∈ [a, b], (1.5)

where ϕ is an n-dimensional column vector defined by the formula

ϕ(t) := g(t) +A(t)ψh(t) ∈ Lp[a, b]. (1.6)

We will investigate (1.5) assuming that the operator L maps a Banach space Dp[a, b] of
absolutely continuous functions z : [a, b] → R

n into a Banach space Lp[a, b] (1 ≤ p < ∞)
of function ϕ : [a, b] → R

n integrable on [a, b] with the degree p ; the operator Sh maps
the space Dp[a, b] into the space Lp[a, b]. Transformations of (1.3), (1.4) make it possible to
add the initial vector function ψ(s), s < a to nonhomogeneity, thus generating an additive and
homogeneous operation not depending on ψ, and without the classical assumption regarding
the continuous connection of solution z(t)with the initial function ψ(t) at t = a.

A solution of differential system (1.5) is defined as an n-dimensional column vector
function z ∈ Dp[a, b], absolutely continuous on [a, b] with a derivative ż in a Banach space
Lp[a, b] (1 ≤ p < ∞) of functions integrable on [a, b]with the degree p, satisfying (1.5) almost
everywhere on [a, b]. Throughout this paper we understand the notion of a solution of a
differential system and the corresponding boundary value problem in the sense of the above
definition.

Such treatment makes it possible to apply the well-developed methods of linear
functional analysis to (1.5) with a linear and bounded operator L. It is well known (see, e.g.,
[1–4]) that a nonhomogeneous operator equation (1.5) with delayed argument is solvable in
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the space Dp[a, b] for an arbitrary right-hand side ϕ ∈ Lp[a, b] and has an n-dimensional
family of solutions (dimkerL = n) in the form

z(t) = X(t)c +
∫b

a

K(t, s)ϕ(s)ds, ∀c ∈ R
n, (1.7)

where the kernel K(t, s) is an n × n Cauchy matrix defined in the square [a, b] × [a, b] which
is, for every s ≤ t, a solution of the matrix Cauchy problem:

(LK(·, s))(t) := ∂K(t, s)
∂t

−A(t)(ShK(·, s))(t) = Θ, K(s, s) = I, (1.8)

where K(t, s) ≡ Θ if a ≤ t < s ≤ b, and Θ is the n × n null matrix. A fundamental n × n matrix
X(t) for the homogeneous (ϕ ≡ θ) (1.5) has the form X(t) = K(t, a), X(a) = I.

A serious disadvantage of this approach, when investigating the above-formulated
problem, is the necessity to find the Cauchy matrix K(t, s) [5, 6]. It exists but, as a rule, can
only be found numerically. Therefore, it is important to find systems of differential equations
with delay such that this problem can be solved directly. Below, we consider the case of a
system with what is called a single delay [7]. In this case, the problem of how to construct
the Cauchy matrix is solved analytically thanks to a delayed matrix exponential, as defined
below.

2. A Delayed Matrix Exponential

Consider a Cauchy problem for a linear nonhomogeneous differential system with constant
coefficients and with a single delay τ

ż(t) = Az(t − τ) + g(t), (2.1)

z(s) = ψ(s), if s ∈ [−τ, 0] (2.2)

with n × n constant matrix A, g : [0,∞) → R
n, ψ : [−τ, 0] → R

n, τ > 0 and an unknown
vector solution z : [−τ,∞) → R

n. Together with a nonhomogeneous problem (2.1), (2.2), we
consider a related homogeneous problem

ż(t) = Az(t − τ), (2.3)

z(s) = ψ(s), if s ∈ [−τ, 0]. (2.4)
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Denote by eAt
τ a matrix function called a delayed matrix exponential (see [7]) and

defined as

eAt
τ :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Θ, if −∞ < t < −τ,
I, if − τ ≤ t < 0,

I +A
t

1!
, if 0 ≤ t < τ,

I +A
t

1!
+A2 (t − τ)2

2!
, if τ ≤ t < 2τ,

· · ·

I +A
t

1!
+ · · · +Ak (t − (k − 1)τ)k

k!
, if (k − 1)τ ≤ t < kτ,

· · · .

(2.5)

This definition can be reduced to the following expression:

eAt
τ =

[t/τ]+1∑

n=0

An (t − (n − 1)τ)n

n!
, (2.6)

where [t/τ] is the greatest integer function. The delayed matrix exponential equals a unit
matrix I on [−τ, 0] and represents a fundamental matrix of a homogeneous system with a
single delay.

We mention some of the properties of eAt
τ given in [7]. Regarding the system without

delay (τ = 0), the delayed matrix exponential does not have the form of a matrix series, but
it is a matrix polynomial, depending on the time interval in which it is considered. It is easy
to prove directly that the delayed matrix exponential X(t) := e

A(t−τ)
τ satisfies the relations

Ẋ(t) = AX(t − τ), for t ≥ 0, X(s) = 0, for s ∈ [τ, 0), X(0) = I. (2.7)

By integrating the delayed matrix exponential, we get

∫ t

0
eAs
τ ds = I

t

1!
+A

(t − τ)2

2!
+ · · · +Ak (t − (k − 1)τ)k+1

(k + 1)!
, (2.8)

where k = [t/τ] + 1. If, moreover, the matrix A is regular, then

∫ t

0
eAs
τ ds = A−1 ·

(
e
A(t−τ)
τ − eAτ

τ

)
. (2.9)
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Delayed matrix exponential eAt
τ , t > 0 is an infinitely many times continuously differentiable

function except for the nodes kτ , k = 0, 1, . . . where there is a discontinuity of the derivative
of order (k + 1):

lim
t→ kτ−0

(
eAt
τ

)(k+1)
= 0, lim

t→ kτ+0

(
eAt
τ

)(k+1)
= Ak+1. (2.10)

The following results (proved in [7] and being a consequence of (1.7) with K(t, s) = e
A(t−τ−s)
τ

as well) hold.

Theorem 2.1. (A) The solution of a homogeneous system (2.3) with a single delay satisfying the
initial condition (2.4) where ψ(s) is an arbitrary continuously differentiable vector function can be
represented in the form

z(t) = eAt
τ ψ(−τ) +

∫0

−τ
e
A(t−τ−s)
τ ψ ′(s)ds. (2.11)

(B) A particular solution of a nonhomogeneous system (2.1) with a single delay satisfying the
zero initial condition z(s) = 0 if s ∈ [−τ, 0] can be represented in the form

z(t) =
∫ t

0
e
A(t−τ−s)
τ g(s)ds. (2.12)

(C) A solution of a Cauchy problem of a nonhomogeneous system with a single delay (2.1)
satisfying a constant initial condition

z(s) = ψ(s) = c ∈ R
n, if s ∈ [−τ, 0] (2.13)

has the form

z(t) = e
A(t−τ)
τ c +

∫ t

0
e
A(t−τ−s)
τ g(s)ds. (2.14)

3. Main Results

Without loss of generality, let a = 0. The problem (2.1), (2.2) can be transformed (h(t) := t−τ)
to an equation of type (1.1) (see (1.5)):

ż(t) −A(Shz)(t) = ϕ(t), t ∈ [0, b], (3.1)
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where, in accordance with (1.3), (1.4),

(Shz)(t) =

⎧
⎨

⎩

z(t − τ), if t − τ ∈ [0, b],

θ, if t − τ /∈ [0, b],

ϕ(t) = g(t) +A ψh(t) ∈ Lp[0, b],

ψh(t) =

⎧
⎨

⎩

θ, if t − τ ∈ [0, b],

ψ(t − τ), if t − τ /∈ [0, b].

(3.2)

A general solution of a Cauchy problem for a nonhomogeneous system (3.1) with a
single delay satisfying a constant initial condition

z(s) = ψ(s) = c ∈ R
n, if s ∈ [−τ, 0] (3.3)

has the form (1.7):

z(t) = X(t)c +
∫b

0
K(t, s)ϕ(s)ds, ∀c ∈ R

n, (3.4)

where, as can easily be verified (in view of the above-defined delayed matrix exponential) by
substituting into (3.1),

X(t) = eA(t−τ)
τ , X(0) = e−Aτ

τ = I (3.5)

is a normal fundamental matrix of the homogeneous system related to (3.1) (or (2.1)) with
the initial data X(0) = I, and the Cauchy matrix K(t, s) has the form

K(t, s) = e
A(t−τ−s)
τ , if 0 ≤ s < t ≤ b,

K(t, s) ≡ Θ, if 0 ≤ t < s ≤ b.
(3.6)

Obviously,

K(t, 0) = e
A(t−τ)
τ = X(t), K(0, 0) = e

A(−τ)
τ = X(0) = I, (3.7)

and, therefore, the initial problem (3.1) for systems of ordinary differential equations with
constant coefficients and a single delay, satisfying a constant initial condition, has an n-
parametric family of linearly independent solutions

z(t) = e
A(t−τ)
τ c +

∫ t

0
e
A(t−τ−s)
τ ϕ(s)ds, ∀c ∈ R

n. (3.8)

Now we will consider a general Fredholm boundary value problem for system (3.1).
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3.1. Fredholm Boundary Value Problem

Using the results in [8, 9], it is easy to derive statements for a general boundary value problem
if the number m of boundary conditions does not coincide with the number n of unknowns
in a differential system with a single delay.

We consider a boundary value problem

ż(t) −Az(t − τ) = g(t), if t ∈ [0, b],

z(s) := ψ(s), if s /∈ [0, b],
(3.9)

assuming that

�z = α ∈ R
m (3.10)

or, using (3.2), in an equivalent form

ż(t) −A(Shz)(t) = ϕ(t), t ∈ [0, b], (3.11)

�z = α ∈ R
m, (3.12)

where α is anm-dimensional constant vector column, and � : Dp[0, b] → R
m is a linear vector

functional. It is well known that, for functional differential equations, such problems are of
Fredholm’s type (see, e.g., [1, 9]). We will derive the necessary and sufficient conditions and
a representation (in an explicit analytical form) of the solutions z ∈ Dp[0, b], ż ∈ Lp[0, b] of
the boundary value problem (3.11), (3.12).

We recall that, because of properties (3.6)–(3.7), a general solution of system (3.11) has
the form

z(t) = e
A(t−τ)
τ c +

∫b

0
K(t, s)ϕ(s)ds, ∀c ∈ R

n. (3.13)

In the algebraic system

Qc = α − �

∫b

0
K(·, s)ϕ(s)ds, (3.14)

derived by substituting (3.13) into boundary condition (3.12); the constant matrix

Q := �X(·) = �e
A(·−τ)
τ (3.15)

has a size ofm × n. Denote

rankQ = n1, (3.16)
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where, obviously, n1 ≤ min(m,n). Adopting the well-known notation (e.g., [9]), we define an
n × n-dimensional matrix

PQ := I −Q+Q (3.17)

which is an orthogonal projection projecting space Rn to kerQ of the matrix Q where I is an
n × n identity matrix and an m ×m-dimensional matrix

PQ∗ := Im −QQ+ (3.18)

which is an orthogonal projection projecting spaceRm to kerQ∗ of the transposedmatrixQ∗ =
QT where Im is anm×m identity matrix andQ+ is an n×m-dimensional matrix pseudoinverse
to them × n-dimensional matrix Q. Using the property

rankPQ∗ = m − rankQ∗ = d := m − n1, (3.19)

where rankQ∗ = rankQ = n1, we will denote by PQ∗
d
a d ×m-dimensional matrix constructed

from d linearly independent rows of the matrix PQ∗ . Moreover, taking into account the
property

rankPQ = n − rankQ = r = n − n1, (3.20)

we will denote by PQr an n × r-dimensional matrix constructed from r linearly independent
columns of the matrix PQ.

Then (see [9, page 79, formulas (3.43), (3.44)]) the condition

PQ∗
d

(

α − �

∫b

0
K(·, s)ϕ(s)ds

)

= θd (3.21)

is necessary and sufficient for algebraic system (3.14) to be solvable where θd is (throughout
the paper) a d-dimensional column zero vector. If such condition is true, system (3.14) has a
solution

c = PQr cr +Q+

(

α − �

∫b

0
K(·, s)ϕ(s)ds

)

, ∀cr ∈ R
r . (3.22)

Substituting the constant c ∈ R
n defined by (3.22) into (3.13), we get a formula for a

general solution of problem (3.11), (3.12):

z(t) = z(t, cr) := X(t)PQr cr +
(
Gϕ

)
(t) +X(t)Q+α, ∀cr ∈ R

r , (3.23)
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where (Gϕ)(t) is a generalized Green operator. If the vector functional � satisfies the relation
[9, page 176]

�

∫b

0
K(·, s)ϕ(s)ds =

∫b

0
�K(·, s)ϕ(s)ds, (3.24)

which is assumed throughout the rest of the paper, then the generalized Green operator takes
the form

(
Gϕ

)
(t) :=

∫b

0
G(t, s)ϕ(s)ds, (3.25)

where

G(t, s) := K(t, s) − e
A(t−τ)
τ Q+�K(·, s) (3.26)

is a generalized Green matrix, corresponding to the boundary value problem (3.11), (3.12),
and the Cauchy matrix K(t, s) has the form of (3.6). Therefore, the following theorem holds
(see [10]).

Theorem 3.1. Let Q be defined by (3.15) and rankQ = n1. Then the homogeneous problem

ż(t) −A(Shz)(t) = θ, t ∈ [0, b],

�z = θm ∈ R
m

(3.27)

corresponding to the problem (3.11), (3.12) has exactly r = n − n1 linearly independent solutions

z(t, cr) = X(t)PQr cr = e
A(t−τ)
τ PQr cr , ∀cr ∈ R

r . (3.28)

Nonhomogeneous problem (3.11), (3.12) is solvable if and only if ϕ ∈ Lp[0, b] and α ∈ R
m satisfy

d linearly independent conditions (3.21). In that case, this problem has an r-dimensional family of
linearly independent solutions represented in an explicit analytical form (3.23).

The case of rankQ = n implies the inequality m ≥ n. If m > n, the boundary value
problem is overdetermined, the number of boundary conditions is more than the number of
unknowns, and Theorem 3.1 has the following corollary.

Corollary 3.2. If rankQ = n, then the homogeneous problem (3.27) has only the trivial solution.
Nonhomogeneous problem (3.11), (3.12) is solvable if and only if ϕ ∈ Lp[0, b] and α ∈ R

m satisfy d
linearly independent conditions (3.21) where d = m − n. Then the unique solution can be represented
as

z(t) =
(
Gϕ

)
(t) +X(t)Q+α. (3.29)
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The case of rank Q = m is interesting as well. Then the inequality m ≤ n, holds. If
m < n the boundary value problem is not fully defined. In this case, Theorem 3.1 has the
following corollary.

Corollary 3.3. If rankQ = m, then the homogeneous problem (3.27) has an r-dimensional (r =
n −m) family of linearly independent solutions

z(t, cr) = X(t)PQr cr = e
A(t−τ)
τ PQr cr , ∀cr ∈ R

r . (3.30)

Nonhomogeneous problem (3.11), (3.12) is solvable for arbitrary ϕ ∈ Lp[0, b] and α ∈ Rm and has an
r-parametric family of solutions

z(t, cr) = X(t)PQr cr +
(
Gϕ

)
(t) +X(t)Q+α, ∀cr ∈ R

r . (3.31)

Finally, combining both particular cases mentioned in Corollaries 3.2 and 3.3, we get a
noncritical case.

Corollary 3.4. If rankQ = m = n (i.e., Q+ = Q−1), then the homogeneous problem (3.27) has only
the trivial solution. The nonhomogeneous problem (3.11), (3.12) is solvable for arbitrary ϕ ∈ Lp[0, b]
and α ∈ Rn and has a unique solution

z(t) =
(
Gϕ

)
(t) +X(t)Q−1α, (3.32)

where

(
Gϕ

)
(t) :=

∫b

0
G(t, s)ϕ(s)ds (3.33)

is a Green operator, and

G(t, s) := K(t, s) − e
A(t−τ)
τ Q−1�K(·, s) (3.34)

is a related Green matrix, corresponding to the problem (3.11), (3.12).

4. Perturbed Boundary Value Problems

As an example of application of Theorem 3.1, we consider the problem of bifurcation from
point ε = 0 of solutions z : [0, b] → R

n, b > 0 satisfying, for a.e. t ∈ [0, b], systems of ordinary
differential equations

ż(t) = Az(h0(t)) + ε
k∑

i=1

Bi(t)z(hi(t)) + g(t), (4.1)

where A is n × n constant matrix, B(t) = (B1(t), . . . , Bk(t)) is an n × N matrix, N = nk,
consisting of n × n matrices Bi : [0, b] → R

n×n, i = 1, 2, . . . , k, having entries in Lp[0, b],



Advances in Difference Equations 11

ε is a small parameter, delays hi : [0, b] → R are measurable on [0, b], hi(t) ≤ t, t ∈ [0, b],
i = 0, 1, . . . , k, g : [0, b] → R, g ∈ Lp[0, b], and satisfying the initial and boundary conditions

z(s) = ψ(s), if s < 0, �z = α, (4.2)

where α ∈ R
m, ψ : R \ [0, b] → R

n is a given vector function with components in Lp[a, b],
and � : Dp[0, b] → R

m is a linear vector functional. Using denotations (1.3), (1.4), and (1.6),
it is easy to show that the perturbed nonhomogeneous linear boundary value problem (4.1),
(4.2) can be rewritten as

ż(t) = A(Sh0z)(t) + εB(t)(Shz)(t) + ϕ(t, ε), �z = α. (4.3)

In (4.3) we specify h0 : [0, b] → R as a single delay defined by formula h0(t) := t − τ (τ > 0);

(Shz)(t) = col[(Sh1z)(t), . . . , (Shkz)(t)] (4.4)

is an N-dimensional column vector, and ϕ(t, ε) is an n-dimensional column vector given by

ϕ(t, ε) = g(t) +A ψh0(t) + ε
k∑

i=1

Bi(t)ψhi(t). (4.5)

It is easy to see that ϕ ∈ Lp[0, b]. The operator Sh maps the space Dp into the space

LN
p = Lp × · · · × Lp

︸ ︷︷ ︸
k times

,
(4.6)

that is, Sh : Dp → LN
p . Using denotation (1.3) for the operator Shi : Dp → Lp, we have the

following representation:

(Shiz)(t) =
∫b

0
χhi(t, s)ż(s)ds + χhi(t, 0)z(0), (4.7)

where

χhi(t, s) =

⎧
⎨

⎩

1, if (t, s) ∈ Ωi,

0, if (t, s)/∈Ωi

(4.8)

is the characteristic function of the set

Ωi := {(t, s) ∈ [0, b] × [0, b] : 0 ≤ s ≤ hi(t) ≤ b}, i = 1, 2, . . . , k. (4.9)
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Assume that nonhomogeneities ϕ(t, 0) ∈ Lp[0, b] and α ∈ R
m are such that the shortened

boundary value problem

ż(t) = A(Sh0z)(t) + ϕ(t, 0), lz = α, (4.10)

being a particular case of (4.3) for ε = 0, does not have a solution. In such a case, according to
Theorem 3.1, the solvability criterion (3.21) does not hold for problem (4.10). Thus, we arrive
at the following question.

Is it possible to make the problem (4.10) solvable by means of linear perturbations and, if this
is possible, then of what kind should the perturbations Bi and the delays hi, i = 1, 2, . . . , k be for the
boundary value problem (4.3) to be solvable?

We can answer this question with the help of the d × r-matrix

B0 :=
∫b

0
H(s)B(s)

(
ShXPQr

)
(s)ds =

∫b

0
H(s)

k∑

i=1

Bi(s)
(
ShiXPQr

)
(s)ds, (4.11)

where

H(s) := PQ∗
d
�K(·, s) = PQ∗

d
�e

A(·−τ−s)
τ , X(t) := e

A(t−τ)
τ , Q := �X = �e

A(·−τ)
τ , (4.12)

constructed by using the coefficients of the problem (4.3).
Using the Vishik and Lyusternik method [11] and the theory of generalized inverse

operators [9], we can find bifurcation conditions. Below we formulate a statement (proved
using [8] and [9, page 177]) which partially answers the above problem. Unlike an earlier
result [9], this one is derived in an explicit analytical form. We remind that the notion of a
solution of a boundary value problem was specified in part 1.

Theorem 4.1. Consider system

ż(t) = Az(t − τ) + ε
k∑

i=1

Bi(t)z(hi(t)) + g(t), (4.13)

where A is n × n constant matrix, B(t) = (B1(t), . . . , Bk(t)) is an n ×N matrix, N = nk, consisting
of n×nmatrices Bi : [0, b] → R

n×n, i = 1, 2, . . . , k, having entries in Lp[0, b], ε is a small parameter,
delays hi : [0, b] → R are measurable on [0, b], hi(t) ≤ t, t ∈ [0, b], g : [0, b] → R, g ∈ Lp[0, b],
with the initial and boundary conditions

z(s) = ψ(s), if s < 0, �z = α, (4.14)

where α ∈ R
m, ψ : R \ [0, b] → R

n is a given vector function with components in Lp[a, b], and
� : Dp[0, b] → R

m is a linear vector functional, and assume that

ϕ(t, 0) = g(t) +Aψh0(t), h0(t) := t − τ (4.15)
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(satisfying ϕ ∈ Lp[0, b]) and α are such that the shortened problem

ż(t) = A(Sh0z)(t) + ϕ(t, 0), �z = α (4.16)

does not have a solution. If

rankB0 = d or PB∗
0
:= Id − B0B

+
0 = 0, (4.17)

then the boundary value problem (4.13), (4.14) has a set of ρ := n −m linearly independent solutions
in the form of the series

z(t, ε) =
∞∑

i=−1
εizi

(
t, cρ

)
,

z(·, ε) ∈ Dp[0, b], ż(·, ε) ∈ Lp[0, b], z(t, ·) ∈ C(0, ε∗],

(4.18)

converging for fixed ε ∈ (0, ε∗], where ε∗ is an appropriate constant characterizing the domain of the
convergence of the series (4.18), and zi(t, cρ) are suitable coefficients.

Remark 4.2. Coefficients zi(t, cρ), i = −1, . . . ,∞, in (4.18) can be determined. The procedure
describing the method of their deriving is a crucial part of the proof of Theorem 4.1 where we
give their form as well.

Proof. Substitute (4.18) into (4.3) and equate the terms that are multiplied by the same powers
of ε. For ε−1, we obtain the homogeneous boundary value problem

ż−1(t) = A(Sh0z−1)(t), �z−1 = 0, (4.19)

which determines z−1(t).
By Theorem 3.1, the homogeneous boundary value problem (4.19) has an r-parametric

(r = n − n1) family of solutions z−1(t) : z−1(t, c−1) = X(t)PQr (t)c−1 where the r-dimensional
column vector c−1 ∈ R

r can be determined from the solvability condition of the problem for
z0(t).

For ε0, we get the boundary value problem

ż0(t) = A(Sh0z0)(t) + B(t)(Shz−1)(t) + ϕ(t, 0), �z0 = α, (4.20)

which determines z0(t) := z0(t, c0).
It follows from Theorem 3.1 that the solvability criterion (3.21) for problem (4.20) has

the form

PQ∗
d
α −

∫b

0
H(s)

(
ϕ(s, 0) + B(s)

(
ShXPQr

)
(s)c−1

)
ds = 0, (4.21)



14 Advances in Difference Equations

from which we receive, with respect to c−1 ∈ R
r , an algebraic system

B0c−1 = PQ∗
d
α −

∫b

0
H(s)ϕ(s, 0)ds. (4.22)

The right-hand side of (4.22) is nonzero only in the case that the shortened problem does not
have a solution. The system (4.22) is solvable for arbitrary ϕ(t, 0) ∈ Lp[0, b] and α ∈ R

m if the
condition (4.17) is satisfied [9, page 79]. In this case, system (4.22) becomes resolvable with
respect to c−1 ∈ R

r up to an arbitrary constant vector PB0c ∈ R
r from the null-space of matrix

B0 and

c−1 = −B+
0

(

PQ∗
d
α −

∫b

0
H(s)ϕ(s, 0)ds

)

+ PB0c
(
PB0 = Ir − B+

0B0
)
. (4.23)

This solution can be rewritten in the form

c−1 = c−1 + PBρcρ, ∀cρ ∈ R
ρ, (4.24)

where

c−1 = −B+
0

(

PQ∗
d
α −

∫b

0
H(s)ϕ(s, 0)ds

)

, (4.25)

and PBρ is an r × ρ-dimensional matrix whose columns are a complete set of ρ linearly
independent columns of the r × r-dimensional matrix PB0 with

ρ := rankPB0 = r − rankB0 = r − d = n −m. (4.26)

So, for the solutions of the problem (3.14), we have the following formulas:

z−1
(
t, cρ

)
= z−1(t, c−1) +X(t)PQrPBρcρ, ∀cρ ∈ R

ρ,

z−1(t, c−1) = X(t)PQr c−1.
(4.27)

Assuming that (3.24) and (4.17) hold, the boundary value problem (4.20) has the r-parametric
family of solutions

z0(t, c0) = X(t)PQr c0 +X(t)Q+α

+
∫b

0
G(t, s)

[
ϕ(s, 0) + B(s)Sh

(
z−1(·, c−1) +X(·)PQrPBρcρ

)
(s)

]
ds.

(4.28)

Here, c0 is an r-dimensional constant vector, which is determined at the next step from
the solvability condition of the boundary value problem for z1(t).



Advances in Difference Equations 15

For ε1, we get the boundary value problem

ż1(t) = A(Sh0z1)(t) + B(t)(Shz0)(t) +
k∑

i=1

Bi(t)ψhi(t), �z1 = 0, (4.29)

which determines z1(t) := z1(t, c1). The solvability criterion for the problem (4.29) has the
form (in computations belowwe need a composition of operators and the order of operations
is following the inner operator Sh which acts to matrices and vector function having an
argument denoted by ” · ” and the outer operator Sh which acts to matrices having an
argument denoted by ” � ”)

∫b

0
H(s)

k∑

i=1

Bi(s)ψhi(s)ds

+
∫b

0
H(s)B(s)Sh

×
(

X(�)PQr c0 +X(�)Q+α

+
∫b

0
G(�, s1)

[
ϕ(s1, 0) + B(s)Sh

(
z−1(·, c−1) +X(·)PQrPBρcρ

)
(s1)

]
ds1

)

(s)ds = 0

(4.30)

or, equivalently, the form

B0c0 = −
∫b

0
H(s)

k∑

i=1

Bi(s)ψhi(s)ds

−
∫b

0
H(s)B(s)Sh

×
(

X(�)Q+α

+
∫b

0
G(�, s1)

[
ϕ(s1, 0) + B(s1)Sh

(
z−1(·, c−1) +X(·)PQrPBρcρ

)
(s1)

]
ds1

)

(s)ds.

(4.31)

Assuming that (4.17) holds, the algebraic system (4.31) has the following family of solutions:

c0 = c0 +

[

Ir − B+
0

∫b

0
H(s)B(s)Sh

(∫b

0
G(�, s1)B(s1)

(
ShX(·)PQr

)
(s1)ds1

)

(s)ds

]

PBρcρ,

(4.32)



16 Advances in Difference Equations

where

c0 = −B+
0

∫b

0
H(s)

k∑

i=1

Bi(s)ψhi(s)ds

− B+
0

∫b

0
H(s)B(s)Sh

×
(

X(�)Q+α +
∫b

0
G(�, s1)

[
ϕ(s1, 0) + B(s1)(Shz−1(·, c−1))(s1)

]
ds1

)

(s)ds.

(4.33)

So, for the ρ-parametric family of solutions of the problem (4.20), we have the following
formula:

z0
(
t, cρ

)
= z0(t, c0) +X0(t)PBρcρ, ∀cρ ∈ R

ρ, (4.34)

where

z0(t, c0) = X(t)PQr c0 +X(t)Q+α +
∫b

0
G(t, s)

[
ϕ(s, 0) + B(s)(Shz−1(·, c−1))(s)

]
ds,

X0(t) = X(t)PQr

[

Ir − B+
0

∫b

0
H(s)B(s)Sh

(∫b

0
G(�, s1)B(s1)

(
ShX(·)PQr

)
(s1)ds1

)

(s)ds

]

+
∫b

0
G(t, s)B(s)

(
ShX(·)PQr

)
(s)ds.

(4.35)

Again, assuming that (4.17) holds, the boundary value problem (4.29) has the r-parametric
family of solutions

z1(t, c1) = X(t)PQr c1 +
∫b

0
G(t, s)B(s)Sh

(
z0(·, c0) +X0(·)PBρcρ

)
(s)ds. (4.36)

Here, c1 is an r-dimensional constant vector, which is determined at the next step from the
solvability condition of the boundary value problem for z2(t):

ż2(t) = A(Sh0z2)(t) + B(t)(Shz1)(t), �z2 = 0. (4.37)

The solvability criterion for the problem (4.37) has the form

∫b

0
H(s)B(s)Sh

(

X(�)PQr c1 +
∫b

0
G(�, s1)B(s1)Sh

(
z0(·, c0) +X0(·)PBρcρ

)
(s1)ds1

)

(s)ds = 0

(4.38)
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or, equivalently, the form

B0c1 = −
∫b

0
H(s)B(s)

(

Sh

(∫b

0
G(�, s1)B(s1)Sh

(
z0(·, c0) +X0(·)PBρcρ

)
(s1)ds1

))

(s)ds.

(4.39)

Under condition (4.17), the last equation has the ρ-parametric family of solutions

c1 = c1 +

[

Ir − B+
0

∫b

0
H(s)B(s)

(

Sh

(∫b

0
G(�, s1)B(s1)

(
ShX0(·)

)
(s1)ds1

))

(s)ds

]

PBρcρ,

(4.40)

where

c1 = −B+
0

∫b

0
H(s)B(s)

(

Sh

(∫b

0
G(�, s1)B(s1)(Shz0(·, c0))(s1)ds1

))

(s)ds. (4.41)

So, for the coefficient z1(t, c1) = z1(t, cρ), we have the following formula:

z1
(
t, cρ

)
z1(t, c1) +X1(t)PBρcρ, ∀cρ ∈ R

ρ, (4.42)

where

z1(t, c1) = X(t)PQr c1 +
∫b

0
G(t, s)B(s)(Shz0(·, c0))(s)ds,

X1(t) = X(t)PQr

[

Ir − B+
0

∫b

0
H(s)B(s)Sh

(∫b

0
G(�, s1)B(s1)

(
ShX0(·)

)
(s1)ds1

)

(s)ds

]

+
∫b

0
G(t, s)B(s)

(
ShX0(·)

)
(s)ds.

(4.43)

Continuing this process, by assuming that (4.17) holds, it follows by induction that the
coefficients zi(t, ci) = zi(t, cρ) of the series (4.18) can be determined, from the relevant
boundary value problems as follows:

zi
(
t, cρ

)
= zi(t, ci) +Xi(t)PBρcρ, ∀cρ ∈ R

ρ, (4.44)
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where

zi(t, ci) = X(t)PQr c1 +
∫b

0
G(t, s)B(s)Shzi−1(·, ci−1)(s)ds,

ci = −B+
0

∫b

0
H(s)B(s)

(

Sh

(∫b

0
G(�, s1)B(s1)Shzi−1(·, ci−1)(s1)ds1

))

(s)ds, i = 2, . . . ,

Xi(t) = X(t)PQr

[

Ir − B+
0

∫b

0
H(s)B(s)Sh

(∫b

0
G(�, s1)B(s1)

(
ShXi−1(·)

)
(s1)ds1

)

(s)ds

]

+
∫b

0
G(t, s)B(s)

(
ShXi−1(·)

)
(s)ds, i = 0, 1, 2, . . . ,

(4.45)

and X−1(t) = X(t)PQr .
The convergence of the series (4.18) can be proved by traditional methods of

majorization [9, 11].
In the casem = n, the condition (4.17) is equivalent with detB0 /= 0, and problem (4.13),

(4.14) has a unique solution.

Example 4.3. Consider the linear boundary value problem for the delay differential equation

ż(t) = z(t − τ) + ε
k∑

i=1

Bi(t)z(hi(t)) + g(t), hi(t) ≤ t ∈ [0, T],

z(s) = ψ(s), if s < 0, and z(0) = z(T),

(4.46)

where, as in the above, Bi, g, ψ ∈ Lp[0, T] and hi(t) are measurable functions. Using the
symbols Shi and ψhi (see (1.3), (1.4), (1.6), and (4.7)), we arrive at the following operator
system:

ż(t) = z(t − τ) + εB(t)(Shz)(t) + ϕ(t, ε),

�z := z(0) − z(T) = 0,
(4.47)

where B(t) = (B1(t), . . . , Bk(t)) is an n ×N matrix (N = nk), and

ϕ(t, ε) = g(t) + ψh0(t) + ε
k∑

i=1

Bi(t)ψhi(t) ∈ Lp[0, T]. (4.48)

Under the condition that the generating boundary value problem has no solution, we
consider the simplest case of T ≤ τ . Using the delayed matrix exponential (2.5), it is easy to
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see that, in this case, X(t) = e
I(t−τ)
τ = I is a normal fundamental matrix for the homogeneous

unperturbed system ż(t) = z(t − τ), and

Q := �X(·) = e−Iττ − e
I(T−τ)
τ = 0,

PQ = PQ∗ = I (r = n, d = m = n),

K(t, s)

⎧
⎨

⎩

e
I(t−τ−s)
τ = I, if 0 ≤ s ≤ t ≤ T,

Θ, if s > t,

�K(·, s) = K(0, s) −K(T, s) = −I,
H(τ) = PQ∗�K(·, s) = −I,

(ShiI)(t) = χhi(t, 0)I = I ·
⎧
⎨

⎩

1, if 0 ≤ hi(t) ≤ T,

0, if hi(t) < 0.

(4.49)

Then the n × n matrix B0 has the form

B0 =
∫T

0
H(s)B(s)(ShI)(s)ds = −

∫T

0

k∑

i=1

Bi(s)(ShiI)(s)ds

= −
k∑

i=1

∫T

0
Bi(s)χhi(s, 0)ds.

(4.50)

If detB0 /= 0, problem (4.46) has a unique solution z(t, ε)with the properties

z(·, ε) ∈ Dp[0, T], ż(·, ε) ∈ Lp[0, T], z(t, ·) ∈ C(0, ε∗]. (4.51)

Let, say, hi(t) := t −Δi where 0 < Δi = const < T , i = 1, . . . , k, then

χhi(t, 0) =

⎧
⎨

⎩

1, if 0 ≤ hi(t) = t −Δi ≤ T,

0, if hi(t) = t −Δi < 0,
(4.52)

or, equivalently,

χhi(t, 0) =

⎧
⎨

⎩

1, if Δi ≤ t ≤ T + Δi,

0, if t < Δi.
(4.53)

Now the matrix B0 turns into

B0 = −
k∑

i=1

∫T

0
Bi(s)χhi(s, 0)ds = −

k∑

i=1

∫T

Δi

Bi(s)ds, (4.54)
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and the boundary value problem (4.46) is uniquely solvable if

det

[

−
k∑

i=1

∫T

Δi

Bi(s)ds

]

/= 0. (4.55)
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