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77146 Olomouc, Czech Republic

Correspondence should be addressed to Irena Rachůnková, rachunko@inf.upol.cz
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The paper provides conditions sufficient for the existence of strictly increasing solutions of the
second-order nonautonomous difference equation x(n + 1) = x(n) + (n/(n + 1))2(x(n) − x(n −
1) + h2f(x(n))), n ∈ N, where h > 0 is a parameter and f is Lipschitz continuous and has three
real zeros L0 < 0 < L. In particular we prove that for each sufficiently small h > 0 there exists a
solution {x(n)}∞n=0 such that {x(n)}∞n=1 is increasing, x(0) = x(1) ∈ (L0, 0), and limn→∞x(n) > L.
The problem is motivated by some models arising in hydrodynamics.

1. Formulation of Problem

We will investigate the following second-order non-autonomous difference equation

x(n + 1) = x(n) +
(

n

n + 1

)2(
x(n) − x(n − 1) + h2f(x(n))

)
, n ∈ N, (1.1)

where f is supposed to fulfil

L0 < 0 < L, f ∈ Liploc[L0,∞), f(L0) = f(0) = f(L) = 0, (1.2)

xf(x) < 0 for x ∈ (L0, L) \ {0}, f(x) ≥ 0 for x ∈ (L,∞), (1.3)

∃B ∈ (L0, 0) such that
∫L

B

f(z)dz = 0. (1.4)
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Let us note that f ∈ Liploc[L0,∞) means that for each [L0, A] ⊂ [L0,∞) there exists KA > 0
such that |f(x) − f(y)| ≤ KA|x − y| for all x, y ∈ [L0, A]. A simple example of a function f
satisfying (1.2)–(1.4) is f(x) = c(x − L0)x(x − L), where c is a positive constant.

A sequence {x(n)}∞n=0 which satisfies (1.1) is called a solution of (1.1). For each values
B, B1 ∈ [L0,∞) there exists a unique solution {x(n)}∞n=0 of (1.1) satisfying the initial conditions

x(0) = B, x(1) = B1. (1.5)

Then {x(n)}∞n=0 is called a solution of problem (1.1), (1.5).
In [1] we have shown that (1.1) is a discretization of differential equations which

generalize some models arising in hydrodynamics or in the nonlinear field theory; see [2–
6]. Increasing solutions of (1.1), (1.5) with B = B1 ∈ (L0, 0) has a fundamental role in these
models. Therefore, in [1], we have described the set of all solutions of problem (1.1), (1.6),
where

x(0) = B, x(1) = B, B ∈ (L0, 0). (1.6)

In this paper, using [1], we will prove that for each sufficiently small h > 0 there exists at least
one B ∈ (L0, 0) such that the corresponding solution of problem (1.1), (1.6) fulfils

x(0) = x(1), lim
n→∞

x(n) > L, {x(n)}∞n=1 is increasing. (1.7)

Note that an autonomous case of (1.1) was studied in [7]. We would like to point out
that recently there has been a huge interest in studying the existence of monotonous and
nontrivial solutions of nonlinear difference equations. For papers during last three years see,
for example, [8–22]. A lot of other interesting references can be found therein.

2. Four Types of Solutions

Here we present some results of [1]which we need in next sections. In particular, we will use
the following definitions and lemmas.

Definition 2.1. Let {x(n)}∞n=0 be a solution of problem (1.1), (1.6) such that

{x(n)}∞n=1 is increasing, lim
n→∞

x(n) = 0. (2.1)

Then {x(n)}∞n=0 is called a damped solution.

Definition 2.2. Let {x(n)}∞n=0 be a solution of problem (1.1), (1.6) which fulfils

{x(n)}∞n=1 is increasing, lim
n→∞

x(n) = L. (2.2)

Then {x(n)}∞n=0 is called a homoclinic solution.
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Definition 2.3. Let {x(n)}∞n=0 be a solution of problem (1.1), (1.6). Assume that there exists
b ∈ N, such that {x(n)}b+1n=1 is increasing and

x(b) ≤ L < x(b + 1). (2.3)

Then {x(n)}∞n=0 is called an escape solution.

Definition 2.4. Let {x(n)}∞n=0 be a solution of problem (1.1), (1.6). Assume that there exists
b ∈ N, b > 1, such that {x(n)}bn=1 is increasing and

0 < x(b) < L, x(b + 1) ≤ x(b). (2.4)

Then {x(n)}∞n=0 is called a non-monotonous solution.

Lemma 2.5 (see [1] (on four types of solutions)). Let {x(n)}∞n=0 be a solution of problem (1.1),
(1.6). Then {x(n)}∞n=0 is just one of the following four types:

(I) {x(n)}∞n=0 is an escape solution;

(II) {x(n)}∞n=0 is a homoclinic solution;

(III) {x(n)}∞n=0 is a damped solution;

(IV) {x(n)}∞n=0 is a non-monotonous solution.

Lemma 2.6 (see [1] (estimates of solutions)). Let {x(n)}∞n=0 be a solution of problem (1.1), (1.6).
Then there exists a maximal b ∈ N ∪ {∞} satisfying

x(n) ∈ [B, L) for n = 1, . . . , b, if b ∈ N,

x(n) ∈ [B, L) for n ∈ N, if b = ∞.
(2.5)

Further, if b > 1, then moreover

{x(n)}bn=1 is increasing, (2.6)

Δx(n) < h
√
(L − 2L0)M0 + h2M0 (2.7)

for n = 1, . . . , b − 1 if b ∈ N, and for n ∈ N if b = ∞, where

M0 = max
{∣∣f(x)∣∣ : x ∈ [L0, L]

}
. (2.8)

In [1] we have proved that the set consisting of damped and non-monotonous
solutions of problem (1.1), (1.6) is nonempty for each sufficiently small h > 0. This is
contained in the next lemma.

Lemma 2.7 (see [1] (on the existence of non-monotonous or damped solutions)). Let B ∈
(B, 0), where B is defined by (1.4). There exists hB > 0 such that if h ∈ (0, hB], then the corresponding
solution {x(n)}∞n=0 of problem (1.1), (1.6) is non-monotonous or damped.
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In Section 4 of this paper we prove that also the set of escape solutions of problem
(1.1), (1.6) is nonempty for each sufficiently small h > 0. Note that in our next paper [23] we
prove this assertion for the set of homoclinic solutions.

3. Properties of Solutions

Now, we provide other properties of solutions important in the investigation of escape
solutions.

Lemma 3.1. Let {x(n)}∞n=0 be an escape solution of problem (1.1), (1.6). Then {x(n)}∞n=1 is
increasing.

Proof. Due to (1.1), {x(n)}∞n=0 fulfils

Δx(n) =
(

n

n + 1

)2(
Δx(n − 1) + h2f(x(n))

)
, n ∈ N. (3.1)

According to Definition 2.3 there exists b ∈ N, such that {x(n)}b+1n=1 is increasing and (2.3)
holds. By (1.3) we get f(x(b + 1)) ≥ 0. Consequently, by (3.1) and (2.3), Δx(b + 1) ≥
(b + 1)2/(b + 2)2Δx(b) > 0 and f(x(b+2)) ≥ 0. SimilarlyΔx(b+j) ≥ (b + j)2/(b + 1 + j)

2
Δx(b+

j − 1) and

Δx
(
b + j

) ≥
(

b + 1
b + 1 + j

)2

Δx(b), j ∈ N. (3.2)

This yields that {x(n)}∞n=1 is increasing.

Lemma 3.2. Assume that f(x) = 0 for x > L. Choose an arbitrary � > 0. Let B1, B2 ∈ (L0, 0) and let
{x(n)}∞n=0 and {y(n)}∞n=0 be a solution of problem (1.1), (1.6) with B = B1 and B = B2, respectively.
Let KL be the Lipschitz constant for f on [L0, L]. Then

∣∣x(n) − y(n)
∣∣ ≤ |B1 − B2|e�2KL, (3.3)

∣∣∣∣Δx(n) −Δy(n)
h

∣∣∣∣ ≤ |B1 − B2|�KL e�
2KL, (3.4)

where n ∈ N, n ≤ �/h.

Proof. By (3.1) we have

(
j + 1

)2Δx
(
j
) − j2Δx

(
j − 1

)
= h2j2f

(
x
(
j
))
, j ∈ N. (3.5)

Summing it for j = 1, . . . , k, we get by (1.6)

Δx(k) = h2 1

(k + 1)2

k∑
j=1

j2f
(
x
(
j
))
, k ∈ N. (3.6)
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Summing it again for k = 1, . . . , n − 1, we get

x(n) = B1 + h2
n−1∑
k=1

1

(k + 1)2

k∑
j=1

j2f
(
x
(
j
))
, n ∈ N, (3.7)

and similarly

y(n) = B2 + h2
n−1∑
k=1

1

(k + 1)2

k∑
j=1

j2f
(
y
(
j
))
, n ∈ N. (3.8)

From this and by using summation by parts we easily obtain

∣∣x(n) − y(n)
∣∣ ≤ |B1 − B2| + h2

n−1∑
k=1

1

(k + 1)2

k∑
j=1

j2
∣∣f(x(j)) − f

(
y
(
j
))∣∣

≤ |B1 − B2| + (n − 1)h2KL

n−1∑
j=1

∣∣x(j) − y
(
j
)∣∣, n ∈ N.

(3.9)

By the discrete analogue of the Gronwall-Bellman inequality (see, e.g., [24, Lemma 4.34]), we
get

∣∣x(n) − y(n)
∣∣ ≤ |B1 − B2|e(n−1)

2h2KL for n ∈ N, (3.10)

which yields (3.3).
By (3.6) and (3.3) we have for n ∈ N, n ≤ �/h,

∣∣∣∣Δx(n) −Δy(n)
h

∣∣∣∣ ≤ h
1

(n + 1)2

n∑
j=1

j2
∣∣f(x(j)) − f

(
y
(
j
))∣∣

≤ hKL

n∑
j=1

∣∣x(j) − y
(
j
)∣∣ ≤ |B1 − B2|�KLe�

2KL.

(3.11)

4. Existence of Escape Solutions

Lemma 4.1. Assume that C ∈ (L0, B) and {Bk}∞k=1 ⊂ (L0, C). Let {xk(n)}∞n=0 be a solution of
problem (1.1), (1.6) with B = Bk, k ∈ N. For k ∈ N choose a maximal bk ∈ N ∪ {∞} such that
xk(n) ∈ [Bk, L) for n = 1, . . . , bk if bk is finite, and for n ∈ N if bk = ∞, and {xk(n)}bkn=1 is increasing
if bk > 1. Then there exists h∗ > 0 such that for any h ∈ (0, h∗] there exists a unique γk ∈ N, γk < bk,
such that

xk

(
γk
) ≥ C, xk

(
γk − 1

)
< C. (4.1)
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Moreover, if the sequence {γk}∞k=1 is unbounded, then there exists � ∈ N such that the solution
{x�(n)}∞n=0 of problem (1.1), (1.6) with B = B� ∈ (L0, B) is an escape solution.

Proof. Choose h0 > 0 such that

h0

√
(L − 2L0)M0 + h2

0M0 < |C|. (4.2)

For k ∈ N denote by {xk(n)}∞n=0 a solution of problem (1.1), (1.6)with B = Bk. The existence of
bk is guaranteed by Lemma 2.6. By Lemma 2.5, {xk(n)}∞n=0 is just one of the types (I)–(IV), and
if h ∈ (0, h0], then the monotonicity of {xk(n)}bkn=0 yields a unique γk ∈ N, γk < bk, satisfying
(4.1).

For h ∈ (0, h0), consider the sequence {γk}∞k=1 and assume that it is unbounded. Then
we have

lim
k→∞

γk = ∞ (4.3)

(otherwise we take a subsequence.) Assume on the contrary that for any k ∈ N, {xk(n)}∞n=0
is not an escape solution. Choose k ∈ N. If {xk(n)}∞n=0 is damped, then by Definition 2.1, we
have bk = ∞ and

xk(bk) := lim
k→∞

xk(n) = 0, Δxk(bk) := lim
k→∞

Δxk(n) = 0. (4.4)

If {xk(n)}∞n=0 is homoclinic, then by Definition 2.2, we have bk = ∞ and

xk(bk) := lim
k→∞

xk(n) = L, Δxk(bk) := lim
k→∞

Δxk(n) = 0. (4.5)

If {xk(n)}∞n=0 is non-monotonous, then by Definition 2.4, we have bk < ∞ and

xk(bk) ∈ (0, L), Δxk(bk) ≤ 0. (4.6)

To summarize if {xk(n)}∞n=0 is not an escape solution, then by (4.4), (4.5), and (4.6), we have

xk(bk) ∈ [0, L], Δxk(bk) ≤ 0. (4.7)

Since Δxk(0) = 0, there exists γk ∈ N satisfying

γk ≤ γk < bk, Δxk

(
γk
)
= max

{
Δxk

(
j
)
: γk ≤ j ≤ bk − 1

}
. (4.8)
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Consider (3.5)with x = xk. By dividing it by j2, multiplying such obtained equality by xk(j +
1) − xk(j − 1) and summing in j from 1 to nwe get

(Δxk(n))2 − h2
n∑
j=1

f
(
xk

(
j
))(

xk

(
j + 1

) − xk

(
j − 1

))

= −
n∑
j=1

2j + 1
j2

Δxk

(
j
)(
xk

(
j + 1

) − xk

(
j − 1

))
, n ∈ N.

(4.9)

Denote

Ek(n + 1) = (Δxk(n))2 − h2
n∑
j=1

f
(
xk

(
j
))(

xk

(
j + 1

) − xk

(
j − 1

))
. (4.10)

Then we get

Ek(n + 1) = −
n∑
j=1

2j + 1
j2

Δxk

(
j
)(
xk

(
j + 1

) − xk

(
j − 1

))
, n ∈ N. (4.11)

Let us put n = γk − 1 and n = bk − 1 to (4.11) and subtract. By (4.7) and (4.8) we get

Ek

(
γk
) − Ek(bk) =

bk−1∑
j=γk

2j + 1
j2

Δxk

(
j
)(
xk

(
j + 1

) − xk

(
j − 1

))

≤ 2
2γk + 1

γ2k
Δxk

(
γk
)
(L − L0).

(4.12)

Let us put n = γk − 1 and n = bk − 1 to (4.10) and subtract. We get

Ek

(
γk
) − Ek(bk) =

(
Δxk

(
γk − 1

))2 − (Δxk(bk − 1))2

+ 2h2
bk−1∑
j=γk

f
(
xk

(
j
))xk

(
j + 1

) − xk

(
j − 1

)
2

.
(4.13)

Choose ε > 0 and h1 > 0 such that

ε <
1
2

∫L

C

f(z)dz, h1M0 <
√
ε. (4.14)

Let bk < ∞. Then (4.6) holds. Since Δxk(bk − 1) > 0, f(xk(bk)) < 0 and Δxk(bk) ≤ 0, (3.1)
yields

(
bk + 1
bk

)2∣∣Δxk(bk)
∣∣ + Δxk(bk − 1) = h2∣∣f(xk(bk))

∣∣, (4.15)
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and hence

0 < Δxk(bk − 1) ≤ −h2f(xk(bk)) < h2M0 < h
√
ε for h ∈ (0, h1]. (4.16)

Clearly, if bk = ∞, then by (4.4) and (4.5), inequality (4.16) holds, as well. By (1.2), f is
integrable on [L0, L]. So, having in mind (4.1), we can find δ > 0 such that if

xk

(
j + 1

) − xk

(
j − 1

)
2

< δ, j = γk, . . . , bk − 1, (4.17)

then

∣∣∣∣∣∣
bk−1∑
j=γk

f
(
xk

(
j
))xk

(
j + 1

) − xk

(
j − 1

)
2

−
∫bk

C

f(z)dz

∣∣∣∣∣∣ < ε. (4.18)

Therefore, due to (1.3) and (4.7),

bk−1∑
j=γk

f
(
xk

(
j
))xk

(
j + 1

) − xk

(
j − 1

)
2

>

∫bk

C

f(z) dz − ε ≥
∫L

C

f(z)dz − ε. (4.19)

Let h2 > 0 be such that

h2

(√
(L − 2L0)M0 + h2M0

)
< δ. (4.20)

If h ∈ (0, h2], then (2.7) implies (4.17) and hence (4.19) holds.
Now, let us put h∗ = min{h0, h1, h2} and choose h ∈ (0, h∗]. Then, (4.2), (4.14), (4.20),

and (4.13)–(4.19) yield

Ek

(
γk
) − Ek(bk) > −h2ε + 2h2

(∫L

C

f(z)dz − ε

)

= 2h2

(∫L

C

f(z)dz − 3
2
ε

)
> h2ε > 0.

(4.21)

Finally, (4.12) and (4.21) imply

0 < h2ε < Ek

(
γk
) − Ek(bk) ≤ 2

2γk + 1

γ2k
Δxk

(
γk
)
(L − L0),

h2ε

2(L − L0)
· γ2

k

2γk + 1
< Δxk

(
γk
)
.

(4.22)
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Letting k → ∞, we obtain, by (4.3), that limk→∞Δxk(γk) = ∞, contrary to (4.17). Therefore
an escape solution {x�(n)}∞n=0 of problem (1.1), (1.6)with B = B� ∈ (L0, B) must exist.

Now, we are in a position to prove the next main result.

Theorem 4.2 (On the existence of escape solutions). There exists h∗ > 0 such that for any h ∈
(0, h∗] the initial value problem (1.1), (1.6) has an escape solution for some B ∈ (L0, B).

Proof. We have the following steps.

Step 1. Let us define

f̃(x) =

⎧⎨
⎩
f(x) for x ≤ L,

0 for x > L,
(4.23)

and consider an auxiliary equation

x(n + 1) = x(n) +
(

n

n + 1

)2(
x(n) − x(n − 1) + h2f̃(x(n))

)
, n ∈ N. (4.24)

Let h∗ > 0 be the constant of Lemma 4.1 for problem (4.24), (1.6). Choose h ∈ (0, h∗], C ∈
(L0, B) and let KL be the Lipschitz constant for f̃ on [L0,∞). Consider a sequence {Bk}∞k=1 ⊂
(L0, C) such that limk→∞Bk = L0. Then, for each m ∈ N there exists km ∈ N such that

|Bkm − L0| < e−m
2KL(C − L0). (4.25)

Let x̃0(0) = x̃0(n) = L0 for n ∈ N. Then the sequence {x̃0(n)}∞n=0 is the unique solution of
problem (4.24), (1.6) with B = L0. Let {x̃k(n)}∞n=0 be a solution of problem (4.24), (1.6) with
B = Bk, k ∈ N, and let {γk}∞k=1 be the sequence corresponding to {x̃k(n)}∞n=0 by Lemma 4.1. We
prove that {γk}∞k=1 is unbounded. According to Lemma 3.2, for each m ∈ N,

|x̃km(n) − x̃0(n)| ≤ |Bkm − L0|em2KL, n ≤ m

h
. (4.26)

Consequently, (4.25) and (4.26) give

|x̃km(n) − x̃0(n)| ≤ C − L0, n ≤ m

h
, (4.27)

and hence

x̃km(n) ≤ C, n ≤ m

h
. (4.28)

Therefore

γkm(n) ≥
m

h
, m ∈ N, (4.29)
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which yields that {γk}∞k=1 is unbounded. By Lemma 4.1, the auxiliary initial value problem
(4.24), (1.6) has an escape solution for some B = B� ∈ (L0, B̃). Denote this solution by
{x̃�(n)}∞n=0.

Step 2. By Definition 2.3, there exists b ∈ N such that

{x̃(n)}b+1n=1 is increasing, x̃�(b) ≤ L < x̃�(b + 1). (4.30)

Now, consider the solution {x�(n)}∞n=0 of our original problem (1.1), (1.6) with B = B� . Due
to (4.23), x�(n) = x̃�(n) for n = 0, 1, . . . , b + 1. Using (4.30) and Definition 2.3, we get that
{x�(n)}∞n=0 is an escape solution of problem (1.1), (1.6).
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