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The asymptotic behavior of the solutions of the first-order differential equation ẏ(t) =∑n
i=1 βi(t)[y(t − δi) − y(t − τi)] containing delays is studied with βi : [t0 − τ,∞) → [0,∞),

τ = max{τ1, . . . , τn},
∑n

i=1 βi(t) > 0, τi > δi > 0. The attention is focused on an analysis of
the asymptotical convergence of solutions. A criterion for the asymptotical convergence of all
solutions, characterized by the existence of a strictly increasing bounded solution, is proved.
Relationships with the previous results are discussed, too.

1. Introduction

We investigate the asymptotic behavior of the solutions of a linear homogeneous differential
equation with delayed terms

ẏ(t) =
n∑

i=1

βi(t)
[
y(t − δi) − y(t − τi)

]
(1.1)

as t → ∞. In (1.1) we assume δi, τi ∈ R
+ = (0,+∞), τi > δi, functions βi : I−1 → R+ := [0,+∞)

where I−1 := [t0−τ,∞), t0 ∈ R, τ = max{τ1, . . . , τn} are continuous and such that
∑n

i=1 βi(t) > 0
on I−1. Set I := [t0,∞). Throughout the paper the symbol “·” denotes the right-hand derivative.
Similarly, if necessary, the value of a function at a point of I−1 is understood as the value of
the corresponding limit from the right.

We call a solution y = y(t) of (1.1) asymptotically convergent if it has a finite limit
limt→∞y(t). The main results concern the asymptotical convergence of all solutions of (1.1).
Besides, the proof of the results is based on the comparison of solutions of (1.1)with solutions
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of an auxiliary inequality which formally copies (1.1). At first, we prove that, under certain
conditions, (1.1) has a strictly increasing asymptotically convergent solution. Then we extend
this statement to all the solutions of (1.1). Moreover, in the general case, the asymptotical
convergence of all solutions is characterized by the existence of a strictly increasing bounded
solution.

The problem concerning the asymptotical convergence of solutions of delayed
differential equations (or delayed difference equation, etc.) is a classical one. But the problem
of the asymptotic convergence or divergence of solutions of delayed equations receives
permanent attention. Let us mention at least investigations [1–18]. Comparing the known
investigations with the results presented we conclude that our results give more sharp
sufficient conditions.

The paper is organized as follows. In Section 2 an auxiliary inequality is studied and
the relationship of its solutions with solutions of (1.1) is derived. The existence of a strictly
increasing and convergent solution of (1.1) is established in Section 3. Section 4 contains
results concerning the asymptotical convergence of all the solutions of (1.1). The related
previous results are discussed in Section 5.

Let C := C([−τ, 0],R) be the Banach space of continuous functions mapping the
interval [−τ, 0] into R equipped with the supremum norm.

Let ν ∈ I be given. The function y : [ν − τ,∞) → R is said to be a solution of (1.1) on
[ν − τ,∞) if y is continuous on [ν − τ,∞), continuously differentiable on [ν,∞) and satisfies
(1.1) for t ∈ [ν,∞).

For ν ∈ I, ϕ ∈ C, we say that y(ν, ϕ) is a solution of (1.1) through (ν, ϕ) (or that y(ν, ϕ)
corresponds to the initial point ν) if y(ν, ϕ) is a solution of (1.1) on [ν−τ,∞) and y(ν, ϕ)(ν+θ) =
ϕ(θ) for θ ∈ [−τ, 0].

2. Auxiliary Inequality

The inequality

ω̇(t) ≥
n∑

i=1

βi(t)[ω(t − δi) −ω(t − τi)] (2.1)

plays an important role in the analysis of (1.1). Let ν ∈ I and A > 0 be given. The function
ω : [ν − τ, ν + A) → R is said to be a solution of (2.1) on [ν − τ, ν + A) if ω is continuous
on [ν − τ, ν + A), continuously differentiable on [ν, ν + A), and satisfies inequality (2.1) for
t ∈ [ν, ν + A). If A = ∞, we call the solution ω of (2.1) asymptotically convergent if it has a
finite limit limt→∞ω(t).

2.1. Relationship between the Solutions of Inequality (2.1) and Equation (1.1)

In this part, we will derive some properties of the solutions of type (2.1) inequalities and
compare the solutions of (1.1) with those of inequality (2.1).

Lemma 2.1. Let ϕ ∈ C be strictly increasing (nondecreasing, strictly decreasing, nonincreasing)
on [−τ, 0]. Then the corresponding solution y(t∗, ϕ)(t) of (1.1) with t∗ ∈ I is strictly increasing
(nondecreasing, strictly decreasing, nonincreasing) on [t∗ − τ,∞), respectively. If ϕ is strictly
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increasing (nondecreasing) andω : I−1 → R is a solution of (2.1)withω(t0+θ) = ϕ(θ), θ ∈ [−1, 0],
then ω is strictly increasing (nondecreasing) on I−1.

Proof. This is clear from (1.1) and (2.1) and from βi(t) ≥ 0,
∑n

i=1 βi(t) > 0, t ∈ I, τi > δi > 0,
i = 1, 2, . . . , n.

Theorem 2.2. Let ω(t) be a solution of inequality (2.1) on I−1. Then there exists a solution y(t) of
(1.1) on I−1 such that the inequality

y(t) ≤ ω(t) (2.2)

holds on I−1. In particular, a solution y(t0, φ) of (1.1) with φ ∈ C defined by the relation

φ(θ) := ω(t0 + θ), θ ∈ [−τ, 0] (2.3)

is such a solution.

Proof. Let ω(t) be a solution of inequality (2.1) on I−1. We will show that the solution y(t) :=
y(t0, φ)(t) of (1.1) satisfies inequality (2.2), that is,

y
(
t0, φ

)
(t) ≤ ω(t) (2.4)

on I−1. Define on I−1 the continuous function W(t) = ω(t) − y(t). Then W = 0 on [t0 − τ, t0],
andW is a solution of (2.1) on I−1. Lemma 2.1 implies thatW is nondecreasing. Consequently,
ω(t) − y(t) ≥ ω(t0) − y(t0) = 0 for all t ≥ t0.

Remark 2.3. Let us note that the assertion, opposite in a sense with to that statement of
Theorem 2.2, is obvious. Namely, if a solution y(t) of (1.1) on I−1 is given, then there exists a
solution ω(t) of inequality (2.1) on I−1 such that the inequality

ω(t) ≤ y(t) (2.5)

holds on I−1 since it can be put ω(t) ≡ y(t). Moreover, if we put, for example, ω1(t) ≡ y(t)− 1,
then

ω1(t) < y(t) (2.6)

on I−1.

2.2. A Solution of Inequality (2.1)

It is easy to get a solution of inequality (2.1) in an exponential form.Wewill indicate this form
in the following lemma. This auxiliary result will help us derive concrete sufficient conditions
for the existence of strictly increasing and convergent solution of (1.1).
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Lemma 2.4. Let there exist a function ε : I−1 → R, continuous on I−1 \ {t0} with at most first-order
discontinuity at the point t = t0 and satisfying the inequality

ε(t) +
n∑

i=1

βi(t) exp

[

−
∫ t

t−τi
ε(s)ds

]

≥
n∑

i=1

βi(t) exp

[

−
∫ t

t−δi
ε(s)ds

]

(2.7)

on I. Then there exists a solutionω(t) = ωe(t) of inequality (2.1), defined on I−1, and having the form

ωe(t) := exp

[∫ t

t0−τ
ε(s)ds

]

. (2.8)

Proof. Inequality (2.7) follows immediately from inequality (2.1) for ω = ωe.

3. Existence of an Asymptotically Convergent Solution of (1.1)

In this part we indicate sufficient conditions for the existence of a convergent solution of
(1.1). First, let us introduce two obvious statements concerning asymptotical convergence.
From Theorem 2.2 and Lemma 2.1, we immediately get the following.

Theorem 3.1. If ω is a strictly increasing asymptotically convergent solution of (2.1) on I−1, then
there exists a strictly increasing asymptotically convergent solution y(t) of (1.1) on I−1.

From Lemma 2.1, Theorem 2.2, and Lemma 2.4, we get the following.

Theorem 3.2. If there exists a function ε : I−1 → R
+, continuous on I−1 \ {t0} with at most the first

order discontinuity at the point t = t0 satisfying
∫∞

ε(s)ds < ∞, and the inequality (2.7) on I, the
initial function

ϕ(θ) = exp

[∫ t0+θ

t0−τ
ε(s)ds

]

, θ ∈ [−τ, 0] (3.1)

defines a strictly increasing and asymptotically convergent solution y(t0, ϕ)(t) of (1.1) on I−1
satisfying the inequality

y(t) ≤ exp

[∫ t

t0−τ
ε(s)ds

]

(3.2)

on I.

Theorem 3.3. If there exists a constant α > 1 such that

lim inf
t→∞

t ·
[

1 +
n∑

i=1

βi(t)
[
δi − τi − α

2t

(
τ2i − δ2

i

)]
]

> 0, (3.3)

there exists a strictly increasing and asymptotically convergent solution y(t) of (1.1) as t → ∞.
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Proof. Let us verify that the integral inequality (2.7) has (for every sufficiently large t) a
solution ε such that

∫∞
ε(s)ds < ∞. (3.4)

In inequality (2.7), we put

ε(t) := t−α, (3.5)

where α > 1. Then (3.4) holds. Nowwe perform an auxiliary asymptotical analysis for t → ∞.
The symbol O used below is the Landau order symbol. All asymptotical decompositions are
developed with sufficient accuracy. Let γ be a nonzero constant. Then

∫ t

t−γ
ε(s)ds =

∫ t

t−γ

1
sα

ds

=
1

1 − α

[
1

tα−1
− 1
(
t − γ

)α−1

]

=
1

1 − α

[
1

tα−1
− 1
tα−1

(
1 − γ

t

)1−α]

=
1

1 − α

[
1

tα−1
− 1
tα−1

(

1 − (1 − α)γ
t

− (1 − α)αγ2

2t2
+O

(
1
t3

))]

=
1
tα

[

γ +
αγ2

2t
+O

(
1
t2

)]

.

(3.6)

Moreover

exp

[

−
∫ t

t−γ
ε(s)ds

]

= exp

[

− 1
tα

[

γ +
αγ2

2t
+O

(
1
t2

)]]

= 1 − 1
tα

[

γ +
αγ2

2t
+O

(
1
t2

)]

+
1

2t2α

[

γ +
αγ2

2t
+O

(
1
t2

)]2

+O

(
1
t3α

)

= 1 − γ

tα
− αγ2

2tα+1
+O

(
1

tα+2

)

+O

(
1
t2α

)

.

(3.7)

We use the asymptotical decomposition (3.7) and rewrite the integral inequality (2.7). We get

1
tα

+
n∑

i=1

βi(t)

[

1 − τi
tα

− ατ2i
2tα+1

+O

(
1

tα+2

)

+O

(
1
t2α

)]

≥
n∑

i=1

βi(t)

[

1 − δi
tα

− αδ2
i

2tα+1
+O

(
1

tα+2

)

+O

(
1
t2α

)]

,

(3.8)
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or

1
tα

+
n∑

i=1

βi(t)

[

−τi − δi
tα

− α
(
τ2i − δ2

i

)

2tα+1
+O

(
1

tα+2

)

+O

(
1
t2α

)]

≥ 0. (3.9)

Multiplying this inequality by tα+1, we get

t

[

1 +
n∑

i=1

βi(t)
[

δi − τi − α

2t

(
τ2i − δ2

i

)
+O

(
1
t2

)

+O

(
1
tα

)]]

≥ 0. (3.10)

Analysing inequality (3.10), we conclude that the inequality

1 +
n∑

i=1

βi(t)(δi − τi) > 0 (3.11)

or, equivalently,

n∑

i=1

βi(t)(τi − δi) < 1 (3.12)

is a necessary condition for its validity as t → ∞ (because α > 1 and τi > δi, i = 1, . . . , n).
Consequently,

βi(t) <
1

τi − δi
≤ M := max

i=1,...,n

{
1

τi − δi

}

, i = 1, . . . , n, t ∈ I. (3.13)

Then, inequality (3.10) will be valid as t → ∞ if there exist positive constants d and π ∈
(1,min{2, α}) such that

t

[

1 +
n∑

i=1

βi(t)
[

δi − τi − α

2t

(
τ2i − δ2

i

)
+O

(
1
t2

)

+O

(
1
tα

)]]

> t

[

1 +
n∑

i=1

βi(t)
[
δi − τi − α

2t

(
τ2i − δ2

i

)]
− dnM

tπ

]

= t

[

1 +
n∑

i=1

βi(t)
[
δi − τi − α

2t

(
τ2i − δ2

i

)]
]

− dnM

tπ−1
> 0.

(3.14)

Inequality (3.3) implies that there is a positive constant d∗ such that

t

[

1 +
n∑

i=1

βi(t)
[
δi − τi − α

2t

(
τ2i − δ2

i

)]
]

> d∗. (3.15)
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Finally, since

t

[

1 +
n∑

i=1

βi(t)
[
δi − τi − α

2t

(
τ2i − δ2

i

)]
]

− dnM

tπ−1
> d∗ − dnM

tπ−1
> 0 (3.16)

as t → ∞, we conclude that (3.14) holds and, consequently, the integral inequality (2.7) has
a solution ε(t) = t−α for every sufficiently large t. Lemma 2.4 holds. We finalize the proof by
noticing that the statement of the theorem directly follows from Theorem 3.1.

Assuming that functions βi, i = 1, 2, . . . , n, t ∈ I can be estimated by suitable functions,
wewill prove that (1.1) has an asymptotically convergent solution. This yields two interesting
corollaries directly following from inequality (3.3) in Theorem 3.3.

Corollary 3.4. Let

0 ≤ βi(t) ≤ bi − ci
t
, (3.17)

where bi and ci are nonnegative constants and
∑n

i=1 βi(t) > 0 on I. If, moreover,

n∑

i=1

bi(τi − δi) = q < 1, (3.18)

then there exists a strictly increasing and convergent solution y(t) of (1.1) as t → ∞.

Proof. We show that the inequality (3.3) in Theorem 3.3 holds for any α > 1. Estimating the
left-hand side of (3.3), we get

lim inf
t→∞

t ·
[

1 +
n∑

i=1

βi(t)
[
δi − τi − α

2t

(
τ2i − δ2

i

)]
]

≥ lim inf
t→∞

t ·
[

1 −
n∑

i=1

(
bi − ci

t

)[
τi − δi +

α

2t

(
τ2i − δ2

i

)]
]

= lim inf
t→∞

t ·
[
(
1 − q

)
+

n∑

i=1

ci
t
(τi − δi) − α

2t

n∑

i=1

(
bi − ci

t

)(
τ2i − δ2

i

)
]

> 0

(3.19)

since q ∈ (0, 1).

Corollary 3.5. Let

0 ≤ βi(t) ≤ bi − ci
t
, (3.20)
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where bi and ci are nonnegative constants and
∑n

i=1 βi(t) > 0 on I. If, moreover,

n∑

i=1

bi(τi − δi) = 1 (3.21)

and there exists a constant α > 1 such that

n∑

i=1

ci(τi − δi) >
α

2

n∑

i=1

bi
(
τ2i − δ2

i

)
, (3.22)

then there exists a strictly increasing and convergent solution y = y(t) of (1.1) as t → ∞.

Proof. Employing a part of the proof of Corollary 3.4 with q = 1, we use inequality (3.22).
Then

lim inf
t→∞

t ·
[

1 +
n∑

i=1

βi(t)
[
δi − τi − α

2t

(
τ2i − δ2

i

)]
]

≥ lim inf
t→∞

[
n∑

i=1

ci(τi − δi) − α

2

n∑

i=1

(
bi − ci

t

)(
τ2i − δ2

i

)
]

=
n∑

i=1

ci(τi − δi) − α

2

n∑

i=1

bi
(
τ2i − δ2

i

)
> 0.

(3.23)

Thus, the inequality (3.3) in Theorem 3.3 holds.

4. Asymptotical Convergence of All Solutions

In this part we prove results concerning the asymptotical convergence of all the solutions of
(1.1). First, we use inequality (3.3) to establish conditions for the asymptotical convergence
of all the solutions.

Theorem 4.1. Let there exist α > 1 such that inequality (3.3) holds. Then all the solutions of (1.1)
are asymptotically convergent for t → ∞.

Proof. First we prove that every solution defined by a monotone initial function is
asymptotically convergent. We will assume that a monotone initial function ϕ ∈ C is given.
For the definiteness, let ϕ be strictly increasing or nondecreasing (the strictly decreasing or
nonincreasing case can be dealt with in much the same way). By Lemma 2.1, the solution
y(t0, ϕ)(t) is monotone (either strictly increasing or nondecreasing) on I−1. In what follows,
we will prove that y(t0, ϕ) is asymptotically convergent.

By Theorem 3.3, there exists a strictly increasing and asymptotically convergent
solution Y of (1.1) on I−1. Without loss of generality, we can assume that y(t0, ϕ)(t)/≡Y (t)
on I−1 since, in the opposite case, we can choose another initial function. Moreover, we can
assume that both solutions y(t0, ϕ)(t) and Y (t) are continuously differentiable on I−1. In the
opposite case, we can start our reasoning with the interval I instead of I−1, that is, we can
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replace t0 − τ by t0 and t0 by t0 + τ . Similarly, without loss of generality we can assume that
Ẏ (t) > 0, t ∈ [t0 − τ, t0]. Hence, there is a k > 0 such that

(
Ẏ (t) − kẏ

(
t0, ϕ

)
(t)

)∣
∣
t∈[t0−τ,t0] =

(
Ẏ (t) − kϕ̇(t)

)∣
∣
t∈[t0−τ,t0] > 0. (4.1)

Then, by Lemma 2.1, Y (t) − ky(t0, ϕ)(t) is strictly increasing in I−1. Thus

Y (t) − ky
(
t0, ϕ

)
(t) > Y (t0 − τ) − ky

(
t0, ϕ

)
(t0 − τ), t > t0 − τ,

y
(
t0, ϕ

)
(t) <

1
k
(Y (t) − Y (t0 − τ)) + y

(
t0, ϕ

)
(t0 − τ)

(4.2)

is a bounded function for all t > t0 − τ .
Summarizing the previous part, we state that every monotone solution is asymptoti-

cally convergent. It remains to consider a class of all nonmonotone initial functions. For the
behavior of a solution y(t0, ϕ), generated by a nonmonotone initial function ϕ ∈ C there are
two possibilities: either y(t0, ϕ) is eventually monotone and, consequently, asymptotically
convergent, or y(t0, ϕ) is eventually nonmonotone.

We will also use the known fact that every absolutely continuous function can be
decomposed into the difference of two strictly increasing absolutely continuous functions [19,
page 315]. Assuming that an initial (nonmonotone) function ϕ ∈ C is absolutely continuous
on interval [−τ, 0], we can decompose it on the interval [−τ, 0] into the difference ϕ = ϕ1−ϕ2 of
two strictly increasing absolutely continuous functions ϕ1 ∈ C, ϕ2 ∈ C. In accordance with the
previous part of the proof, every function ϕi, i = 1, 2 defines a strictly increasing convergent
solution y(t0, ϕi). Now it becomes clear that the solution y(t0, ϕ) is asymptotically convergent.
To complete the proof, it remains to prove that, without loss of generality, we can restrict the
set of all initial functions to the set of absolutely continuous initial functions. To this end, we
again consider the solution y(t0, ϕ) defined by ϕ ∈ C and, if necessary, always without loss of
generality, we can replace t0 − τ by t0 and t0 by t0 + τ since the solution has a finite derivative
the interval [t0, t0 + τ]. Finally, we remark that any function satisfying the Lipschitz condition
on an interval [a, b] is absolutely continuous in it [19, page 313].

Tracing the proof of Theorem 4.1, we can see that the inequality (3.3) was used only
as “input” information stating that, in accordance with Theorem 3.3, there exists a strictly
increasing and asymptotically convergent solution Y of (1.1) on I−1. If the existence of a
strictly monotone and asymptotically convergent solution is assumed instead of (3.3), we
obtain the following

Theorem 4.2. If (1.1) has a strictly monotone and convergent solution on I−1, then all the solutions
of (1.1) defined on I−1 are asymptotically convergent.

Moreover, combining the results formulated in Theorems 2.2, 3.1 and 4.2, we obtain
the following

Theorem 4.3. The following three statements are equivalent.

(a) Equation (1.1) has a strictly monotone and asymptotically convergent solution on I−1.

(b) All solutions of (1.1) defined on I−1 are asymptotically convergent.

(c) Inequality (2.1) has a strictly monotone and asymptotically convergent solution on I−1.
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5. Comparison with Previous Results

In [8], conditions for the asymptotical convergence of all the solutions of (1.1)with n = 1 and
δ = 0, that is,

ẏ(t) = β(t)
[
y(t) − y(t − τ)

]
(5.1)

are given. A particular case of (1.1) with n = 1, that is, the case

ẏ(t) = β(t)
[
y(t − δ) − y(t − τ)

]
(5.2)

is treated, for example, in [2, 4, 10, 11]. The following theorem (see [11, Theorems 4, 5, and
9]) gives corresponding results related to (5.2). Its first part gives sufficient conditions for the
existence of a strictly increasing and unbounded solution of (5.2) whereas the second part
provides sufficient conditions for the asymptotical convergence of all its solutions.

Theorem 5.1. (a) Let there exist a constant p ∈ (0, 1) such that the inequality

β(t) ≥ 1
τ − δ

− p

2t
(5.3)

holds for all t ∈ I−1. Then there exists a strictly increasing and unbounded solution of (5.2) as t → ∞.
(b) Let there exist a constant p > 1 such that the inequality

β(t) ≤ 1
τ − δ

− p(τ + δ)
2(τ − δ)t

(5.4)

holds for all t ∈ I−1. Then all solutions of (5.2) defined on I−1 are convergent.

Comparing (5.3) with (5.4), we see that the maximal allowed values for β given in
(5.4) are not strictly opposite with respect to the minimal allowed values for β given in (5.3).
This is a gap since

τ + σ

τ − σ
> 1 (5.5)

and one would expect a pair of opposite inequalities stronger than (5.3) and (5.4). Can one of
the inequalities (5.3) or (5.4) be improved? The following example shows that probably (5.3)
can be improved because (5.4) provides a best possible criterion.

Example 5.2. Consider (5.2) with β(t) = [t ln((t − δ)/(t − τ))]−1, that is,

ẏ(t) =
1

t ln((t − δ)/(t − τ))
· (y(t − δ) − y(t − τ)

)
. (5.6)
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It is easy to verify that y(t) = ln t is a strictly increasing and unbounded solution of (5.6) as
t → ∞. Decomposing asymptotically β(t) as t → ∞we get

β(t) =
1

t ln((t − δ)/(t − τ))
=

1
t[ln(1 − δ/t) − ln(1 − τ/t)]

=
1
t
· 1
−δ/t − δ2/2t2 − δ3/3t3 + τ/t + τ2/2t2 + τ3/3t3 +O

(
1/t4

)

=
1

τ − δ
·
[

1 +
1
2t
(τ + δ) +

1
3t2

(
τ2 + τδ + δ2

)
+O

(
1
t3

)]−1

=
1

τ − δ
·
[

1 − 1
2t
(τ + δ) − 1

3t2
(
τ2 + τδ + δ2

)
+

1
4t2

(τ + δ)2 +O

(
1
t3

)]

=
1

τ − δ
− 1
2t

τ + δ

τ − δ
− τ − δ

12t2
+O

(
1
t3

)

.

(5.7)

We conclude that this function can satisfy the inequality (5.4) as t → ∞, that is, the inequality

β(t) =
1

τ − δ
− 1
2t

τ + δ

τ − δ
− τ − δ

12t2
+O

(
1
t3

)

≤ 1
τ − δ

− p(τ + δ)
2(τ − δ)t

(5.8)

only if p ≤ 1.
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[4] H. Bereketoğlu and M. Pituk, “Asymptotic constancy for nonhomogeneous linear differential
equations with unbounded delays,” Discrete and Continuous Dynamical Systems. Series A, vol. 2003,
supplement, pp. 100–107, 2003.

[5] J. Čermák, “Asymptotic bounds for linear difference systems,” Advances in Difference Equations, vol.
2010, 14 pages, 2010.
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in the critical case,” Journal of Mathematical Analysis and Applications, vol. 331, no. 2, pp. 1361–1370,
2007.
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[18] Z. Šmarda, “Singular cauchy initial value problem for certain classes of integro-differential
equations,” Advances in Difference Equations, vol. 2010, Article ID 810453, 13 pages, 2010.

[19] B. Z. Vulich, Short Course of Theory of Functions of a Real Variable, An Introduction to the Integral Theory,
Nauka, Moscow, Russia, 2nd edition, 1973.


	1. Introduction
	2. Auxiliary Inequality
	2.1. Relationship between the Solutions of Inequality (2.1) and Equation (1.1)
	2.2. A Solution of Inequality (2.1)

	3. Existence of an Asymptotically Convergent Solution of (1.1)
	4. Asymptotical Convergence of All Solutions
	5. Comparison with Previous Results
	Acknowledgments
	References

