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We investigate the singular differential equation (p(t)u′(t))′ = p(t)f(u(t)) on the half-line [0,∞),
where f satisfies the local Lipschitz condition on R and has at least two simple zeros. The function
p is continuous on [0,∞) and has a positive continuous derivative on (0,∞) and p(0) = 0. We
bring additional conditions for f and p under which the equation has oscillatory solutions with
decreasing amplitudes.

1. Introduction

We study the equation

(
p(t)u′(t)

)′ = p(t)f(u(t)) (1.1)

on the half-line [0,∞), where

f ∈ Liploc(R), p ∈ C1(0,∞) ∩ C[0,∞), (1.2)

p(0) = 0, p′(t) > 0, t > 0, lim
t→∞

p′(t)
p(t)

= 0. (1.3)
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Equation (1.1) is singular at t = 0 because p(0) = 0. If f in (1.1) fulfils moreover assumptions

there exists L > 0 such that f(x) = 0 for x ≥ L, (1.4)

xf(x) < 0 for x ∈ (−∞, 0) ∪ (0, L), (1.5)

there exists B < 0 such that
∫L

B

f(z)dz = 0, (1.6)

then (1.1) generalizes equations which appear in hydrodynamics or in the nonlinear field
theory [1–5].

Definition 1.1. A function u ∈ C1[0,∞)which has continuous second derivative on (0,∞) and
satisfies (1.1) for all t ∈ (0,∞) is called a solution of (1.1).

Consider B < 0 and the initial conditions

u(0) = B, u′(0) = 0. (1.7)

The initial value problem (1.1), (1.7) has been investigated, for example, in [6–12]. In
particular in [10] it was proved that for each negative B there exists a unique solution of
problem (1.1), (1.7) under the assumptions (1.2)–(1.6). Consider such solution u and denote

usup = sup{u(t) : t ∈ [0,∞)}. (1.8)

Definition 1.2. If usup < L (usup = L or usup > L), then u is called a damped solution (a homoclinic
solution or an escape solution) of problem (1.1), (1.7).

In [10, 12] these three types of solutions of problem (1.1), (1.7) have been studied,
and the existence of each type has been proved for sublinear or linear asymptotic behaviour
of f near −∞. In [11], f has been supposed to have a zero L0 < 0. Here we generalize and
extend the results of [10–12] concerning damped solutions. We prove their existence under
weaker assumptions than in the above papers. Moreover, we bring conditions under which
each damped solution is oscillatory; that is, it has an unbounded set of isolated zeros.

We replace assumptions (1.4)–(1.6) by the following ones.
There exist L0 < 0, L > 0, CL > 0 such that

xf(x) < 0 for x ∈ (L0, 0) ∪ (0, L), (1.9)

0 ≤ f(x) ≤ CL for x ≥ L (1.10)

(L0 = −∞ is possible).
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2. Damped Solutions

Theorem 2.1 (Existence and uniqueness). Assume that (1.2), (1.3), (1.9), and (1.10) hold and let
B ∈ (L0, 0). Then problem (1.1), (1.7) has a unique solution u, and moreover the solution u satisfies

u(t) ≥ B for t ∈ [0,∞). (2.1)

Proof.

Step 1. Put

fB(x) =

⎧
⎨

⎩

f(x) for x ≥ B,

f(B) for x < B.
(2.2)

We will study the auxiliary differential equation:

(
p(t)u′(t)

)′ = p(t)fB(u(t)). (2.3)

By virtue of (1.2) we find the Lipschitz constant K > 0 for f on [B − 1, |B| + 1], and due to
(1.2), (1.10), and (2.2), we findMB > 0 such that

∣∣fB(x)
∣∣ ≤ MB for x ∈ R. (2.4)

Put ϕ(t) =
∫ t
0 p(s)ds/p(t) for t > 0. Having in mind (1.3), we see that p is increasing and so

0 < ϕ(t) ≤ t for t > 0, lim
t→ 0+

ϕ(t) = 0. (2.5)

Consequently we can choose η > 0 such that

∫η

0
ϕ(t)dt ≤ min

{
1
2K

,
1

MB

}
. (2.6)

Consider the Banach space C[0, η] (with the maximum norm) and define an operator F :
C[0, η] → C[0, η] by

(Fu)(t) = B +
∫ t

0

1
p(s)

∫s

0
p(τ)fB(u(τ))dτ ds. (2.7)

Using (2.4) and (2.6), we have

‖Fu‖C[0,η] ≤ |B| +MB

∫η

0
ϕ(s)ds ≤ |B| + 1; (2.8)
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that is F maps the ball B(0, |B| + 1) = {u ∈ C[0, η] : ‖u‖C[0,η] ≤ |B| + 1} to itself. Due to (2.2)
and the choice of K, we have for u1, u2 ∈ B(0, |B| + 1)

‖Fu1 − Fu2‖C[0,η] ≤
∫η

0

1
p(s)

∫s

0
p(τ)

∣
∣fB(u1(τ)) − fB(u2(τ))

∣
∣dτ ds

≤ K‖u1 − u2‖C[0,η]
∫η

0
ϕ(s)ds ≤ 1

2
‖u1 − u2‖C[0,η].

(2.9)

Hence F is a contraction on B(0, |B| + 1), and the Banach fixed point theorem yields a unique
fixed point u ∈ B(0, |B| + 1) of F.

Step 2. The fixed point u of Step 1 fulfils

u(0) = B, u′(t) =
1

p(t)

∫ t

0
p(s)fB(u(s))ds, t ∈ (

0, η
]
. (2.10)

Hence u satisfies (2.3) on (0, η]. Finally, (2.4) and (2.5) yield

lim
t→ 0+

∣∣u′(t)
∣∣ ≤ MB lim

t→ 0+
ϕ(t) = 0. (2.11)

Consequently u fulfils (1.7). Choose an arbitrary b > η. Then, by (2.5) and (2.10),

∣∣u′(t)
∣∣ ≤ MBb, |u(t)| ≤ |B| +MBb

2, t ∈ [0, b]. (2.12)

Having in mind that fB ∈ Liploc(R), u can be (uniquely) extended as a function satisfying
(2.3) onto [0, b]. Since b is arbitrary, u can be extended onto [0,∞) as a solution of (2.3). We
have proved that problem (2.3), (1.7) has a unique solution.

Step 3. According to Step 2 we have

u′′(t) +
p′(t)
p(t)

u′(t) = fB(u(t)) for t ∈ (0,∞). (2.13)

Multiplying (2.13) by u′ and integrating between 0 and t, we get

u′2(t)
2

+
∫ t

0

p′(s)
p(s)

u′2(s)ds =
∫ t

0
fB(u(s))u′(s)ds, t ∈ (0,∞). (2.14)

Put

FB(x) = −
∫x

0
fB(z)dz, x ∈ R. (2.15)
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So,(2.14) has the form

u′2(t)
2

+
∫ t

0

p′(s)
p(s)

u′2(s)ds + FB(u(t)) = FB(B), t ∈ (0,∞). (2.16)

Let u(t1) ∈ (L0, B) for some t1 > 0. Then (2.16) yields FB(u(t1)) ≤ FB(B) which is not possible
because FB is decreasing on (L0, 0) by (1.9) and (2.2). Therefore u(t) ≥ B for t ∈ [0,∞).
Consequently, due to (2.2), u is a solution of (1.1).

Step 4. Assume that there exists another solution ũ of problem (1.1), (1.7). Then we can prove
similarly as in Step 3 that ũ(t) ≥ B for t ∈ [0,∞). This implies that ũ is also a solution of
problem (2.3), (1.7) and by Step 2, ũ ≡ u. We have proved that problem (1.1), (1.7) has a
unique solution.

Lemma 2.2. Let C ∈ {0, L} and let u be a solution of (1.1). Assume that there exists a > 0 such that

u(a) = C, u′(a) = 0. (2.17)

Then u(t) = C for all t ∈ [0,∞).

Proof. We see that the constant function ũ ≡ C is a solution of (1.1). Let u be a solution of
(1.1) satisfying (2.17) and let u(t)/= ũ(t) for some t ∈ [0,∞). Then the regular initial problem
(1.1), (2.17) has two different solutions u and ũ, which contradicts (1.2).

Remark 2.3. Let us put

F(x) = −
∫x

0
f(z)dz for x ∈ R. (2.18)

Due to (1.2) and (1.9) we see that F is continuous on R, decreasing and positive on (L0, 0),
increasing and positive on (0, L). Therefore we can define B < 0 by

B = inf{B0 ∈ (L0, 0) : F(B) < F(L) ∀B ∈ (B0, 0)} (2.19)

(B = −∞ is possible).

Theorem 2.4 (Existence of damped solutions). Assume that (1.2), (1.3), (1.9), and (1.10) hold.
Let B be given by (2.19), and assume that u is a solution of problem (1.1), (1.7) with B ∈ (B, 0). Then
u is a damped solution.

Proof. Since B ∈ (B, 0), we can find ε > 0 such that

F(B) ≤ F(L − ε). (2.20)
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Assume on the contrary that u is not damped, that is,

sup{u(t) : t ∈ [0,∞)} ≥ L. (2.21)

Then, according to Lemma 2.2, there exists θ ∈ (0,∞) such that

u(θ) = 0, u′(θ) > 0, u(t) ∈ [B, 0) for t ∈ [0, θ). (2.22)

By (1.1), (1.3), and (1.9) we have (pu′)′ > 0 on (0, θ]. So, pu′ is increasing and positive on
(0, θ] and hence u′ > 0 on (0, θ]. Assumption (2.21) implies that there exists b ∈ (θ,∞) such
that

u(b) = L − ε, u(t) ∈ [B, L − ε) for t ∈ [0, b). (2.23)

Since u fulfils (1.1), we have

u′′(t) +
p′(t)
p(t)

u′(t) = f(u(t)) for t ∈ (0,∞). (2.24)

Multiplying (2.24) by u′ and integrating between 0 and b we get

0 <
u′2(b)
2

+
∫b

0

p′(s)
p(s)

u′2(s)ds = F(B) − F(L − ε). (2.25)

This contradicts (2.20).

3. Oscillatory Solutions

In this section we assume that, in addition to our basic assumptions (1.2), (1.3), (1.9), and
(1.10), the following conditions are fulfilled:

lim
x→ 0−

f(x)
x

< 0, lim
x→ 0+

f(x)
x

< 0, (3.1)

p ∈ C2(0,∞), lim sup
t→∞

∣∣∣∣
p′′(t)
p′(t)

∣∣∣∣ < ∞. (3.2)

Then the next lemmas can be proved.

Lemma 3.1. Let u be a solution of problem (1.1), (1.7) with B ∈ (L0, 0). Then there exists θ > 0 such
that

u(θ) = 0, u′(t) > 0 for t ∈ (0, θ]. (3.3)
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Proof.

Step 1. Assume that such θ does not exist. Then

u(t) < 0 for t ∈ [0,∞). (3.4)

Hence (1.1), (1.7), and (1.9) yield (pu′)′ > 0 and u′ > 0 on (0,∞). Therefore u is increasing on
(0,∞) and

lim
t→∞

u(t) = � ∈ (B, 0]. (3.5)

Multiplying (2.24) by u′ and integrating between 0 and t, we get due to (2.18)

u′2(t)
2

+
∫ t

0

p′(s)
p(s)

u′2(s)ds = F(B) − F(u(t)), t ∈ (0,∞). (3.6)

Letting t → ∞, we get

lim
t→∞

u′2(t)
2

= − lim
t→∞

∫ t

0

p′(s)
p(s)

u′2(s)ds + F(B) − F(�). (3.7)

Since the function
∫ t
0 p

′(s)/p(s)u′2(s)ds is positive and increasing, it follows that there exists
limt→∞u′(t) ≥ 0. If limt→∞u′(t) > 0, then limt→∞u(t) = ∞ contrary to (3.5). Consequently,

lim
t→∞

u′(t) = 0. (3.8)

Letting t → ∞ in (2.24), we get by (1.3), (1.9), and (3.5)

lim
t→∞

u′′(t) = f(�) ≥ 0. (3.9)

Due to (3.8), we conclude that f(�) = 0 and hence � = 0.We have proved that if θ > 0 fulfilling
(3.3) does not exist, then

lim
t→∞

u(t) = 0, lim
t→∞

u′(t) = 0. (3.10)

Step 2. We define a function

v(t) =
√
p(t)u(t), t ∈ [0,∞). (3.11)
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By (1.3) and (3.2), we have v ∈ C2(0,∞),

v′(t) =
p′(t)u(t)

2
√
p(t)

+
√
p(t)u′(t), (3.12)

v′′(t) = v(t)

[
1
2
p′′(t)
p(t)

− 1
4

(
p′(t)
p(t)

)2

+
f(u(t))
u(t)

]

, t ∈ (0,∞), (3.13)

lim
t→∞

p′′(t)
p(t)

= lim
t→∞

p′′(t)
p′(t)

p′(t)
p(t)

= 0. (3.14)

Due to (1.3), (3.1), (3.10) and (3.14) there exist ω > 0 and R > 0 such that

1
2
p′′(t)
p(t)

− 1
4

(
p′(t)
p(t)

)2

+
f(u(t))
u(t)

< −ω for t ≥ R. (3.15)

Due to (3.4), (3.11), (3.13), and (3.15), we get

v′′(t) > −ωv(t) > 0 for t ≥ R. (3.16)

Thus, v′ is increasing on [R,∞) and has the limit

lim
t→∞

v′(t) = V. (3.17)

If V > 0, then limt→∞v(t) = ∞, which contradicts (3.4) and (3.11). If V ≤ 0, then v′ < 0 on
[R,∞) and

v(t) ≤ v(R) < 0 for t ∈ [R,∞). (3.18)

In view of (3.16) we can see that

0 < −ωv(R) ≤ −ωv(t) < v′′(t) for t ∈ [R,∞). (3.19)

We get limt→∞v′(t) = ∞ which contradicts V ≤ 0. The obtained contradictions imply that
(3.4) cannot occur and hence θ > 0 satisfying (3.3)must exist.

Corollary 3.2. Let u be a solution of problem (1.1), (1.7) with B ∈ (L0, 0). Further assume that there
exist b1 > 0 and B1 ∈ (B, 0) such that

u(b1) = B1, u′(b1) = 0. (3.20)

Then there exists θ1 > b1 such that

u(θ1) = 0, u′(t) > 0 for t ∈ (b1, θ1]. (3.21)
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Proof. We can argue as in the proof of Lemma 3.1 working with b1 and B1 instead of 0 and
B.

Lemma 3.3. Let u be a solution of problem (1.1), (1.7) with B ∈ (L0, 0). Further assume that there
exist a1 > 0 and A1 ∈ (0, L) such that

u(a1) = A1, u′(a1) = 0. (3.22)

Then there exists δ1 > a1 such that

u(δ1) = 0, u′(t) < 0 for t ∈ (a1, δ1]. (3.23)

Proof. We argue similarly as in the proof of Lemma 3.1.

Step 1. Assume that such δ1 > a1 does not exist. Then

u(t) > 0 for t ∈ [a1,∞). (3.24)

By (1.1), (1.7), and (1.9) we deduce u′ < 0 on (a1,∞) and

lim
t→∞

u(t) = �1 ∈ [0, A1). (3.25)

Multiplying (2.24) by u′, integrating between a1 and t, and using (2.18), we obtain

u′2(t)
2

+
∫ t

a1

p′(s)
p(s)

u′2(s)ds = F(A1) − F(u(t)), t ∈ (a1,∞), (3.26)

and we derive as in the proof of Lemma 3.1 that (3.10) holds.

Step 2. We define v by (3.11) and get (3.13) for t ∈ (a1,∞). As in the proof of Lemma 3.1 we
find ω > 0 and R > 0 satisfying (3.15). Due to (3.24), (3.11), (3.13), and (3.15) we get

v′′(t) < −ωv(t) < 0 for t ≥ R. (3.27)

So, v′ is decreasing on [R,∞) and limt→∞v′(t) = V . If V < 0, then limt→∞v(t) = −∞ which
contradicts (3.24) and (3.11). If V ≥ 0, then v′ > 0 on [R,∞) and

v(t) ≥ v(R) > 0 for t ∈ [R,∞). (3.28)

In view of (3.27) we can see that

v′′(t) < −ωv(t) ≤ −ωv(R) < 0 for t ∈ [R,∞). (3.29)

We get limt→∞v′(t) = −∞ contrary to V ≥ 0. The obtained contradictions imply that (3.24)
cannot occur and that δ1 > a1 satisfying (3.23) must exist.
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Theorem 3.4. Assume that (1.2), (1.3), (1.9), (1.10), (3.1), and (3.2) hold. Let u be a solution of
problem (1.1), (1.7)with B ∈ (L0, 0). If u is a damped solution, then u is oscillatory and its amplitudes
are decreasing.

Proof. Let u be a damped solution. By (2.1) and Definition 1.2, we can find L1 ∈ (0, L) such
that

B ≤ u(t) ≤ L1 for t ∈ [0,∞). (3.30)

Step 1. Lemma 3.1 yields θ > 0 satisfying (3.3). Hence there exists a maximal interval (θ, a1)
such that u′ > 0 on (θ, a1). Let a1 = ∞. Then, by (3.30), we get u ∈ (0, L), u′ > 0 on (θ,∞) and

lim
t→∞

u(t) = �0 ∈ (0, L). (3.31)

By (1.1), (1.3), and (1.9), we have (pu′)′ < 0 on (θ,∞). So pu′ and u′ are decreasing on (θ,∞)
and, due to (3.31),

lim
t→∞

u′(t) = 0. (3.32)

Letting t → ∞ in (2.24) and using (1.3), (1.9), and (3.31), we get

lim
t→∞

u′′(t) = f(�0) < 0, (3.33)

which contradicts (3.32). Therefore a1 < ∞ and there exists A1 ∈ (0, L) such that (3.22) holds.
Lemma 3.3 yields δ1 > a1 satisfying (3.23). Therefore u has just one positive local maximum
A1 = u(a1) between its first zero θ and second zero δ1.

Step 2. By (3.23) there exists a maximal interval (δ1, b1), where u′ < 0. Let b1 = ∞. Then, by
(3.30), we have u ∈ [B, 0), u′ < 0 on (δ1,∞), and

lim
t→∞

u(t) = �1 ∈ [B, 0). (3.34)

By (1.1), (1.3), and (1.9), we get (pu′)′ > 0 on (δ1,∞) and so pu′ is increasing on (δ1,∞). Since
u′ < 0, we deduce that u′ is increasing on (δ1,∞) and, by (3.34), we get (3.32). Letting t → ∞
in (1.1) and using (1.3), (1.9), and (3.34), we get

lim
t→∞

u′′(t) = f(�1) > 0, (3.35)

which contradicts (3.32). Therefore b1 < ∞ and there exists B1 ∈ [B, 0) such that (3.20) holds.
Corollary 3.2 yields θ1 > b1 satisfying (3.21). Therefore u has just one negative minimum
B1 = u(b1) between its second zero δ1 and third zero θ1.
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Step 3. We can continue as in Step 1 and Step 2 and get the sequences {An}∞n=1 ⊂ (0, L) and
{Bn}∞n=1 ⊂ [B, 0) of local maxima and local minima of u attained at an and bn, respectively.
Now, put x1(t) = u(t), x2(t) = u′(t) and write (1.1) as a system

x′
1(t) = x2(t), x′

2(t) = −p
′(t)
p(t)

x2(t) + f(x1(t)). (3.36)

Consider F of (2.18) and define a Lyapunov function V by

V (x1, x2) = F(x1) +
x2
2

2
for (x1, x2) ∈ D, (3.37)

whereD = (L0, L)×R. By Remark 2.3, we see that V (0, 0) = 0 and V (x1, x2) > 0 onD\{(0, 0)}.
By (3.6) and (3.37), we have ,

V
(
u(t), u′(t)

)
=

u′2(t)
2

+ F(u(t)) = F(B) −
∫ t

0

p′(t)
p(t)

u′2(s)ds,

V̇ (t) =
dV (u(t), u′(t))

dt
= −p

′(t)
p(t)

u′2(t) ≤ 0 for t ∈ (0,∞).

(3.38)

Therefore

V̇ (t) < 0 for t ∈ (0,∞), t /=an, bn, n ∈ N. (3.39)

By (3.30), (u(t), u′(t)) ∈ D for t ∈ [0,∞). We see that V (u(t), u′(t)) is positive and decreasing
(for the damped solution u) and hence

lim
t→∞

V
(
u(t), u′(t)

)
= cB ≥ 0. (3.40)

So, sequences {F(An)}∞n=1 and {F(Bn)}∞n=1 are decreasing:

F(An) = V
(
u(an), u′(an)

)
, F(Bn) = V

(
u(bn), u′(bn)

)
(3.41)

for n ∈ N and

lim
n→∞

F(An) = lim
n→∞

F(Bn) = cB. (3.42)
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Further, due to Remark 2.3, the sequence {An}∞n=1 is decreasing and the sequence {Bn}∞n=1 is
increasing. Consequently,

lim
n→∞

An ∈ [0, L), lim
n→∞

Bn ∈ (B, 0]. (3.43)

Remark 3.5. There are two cases for the number cB from the proof of Theorem 3.4: cB = 0 and
cB > 0. Denote

lim
n→∞

An = A∞, lim
n→∞

Bn = B∞. (3.44)

If cB = 0, then F(A∞) = F(B∞) = 0 and hence A∞ = B∞ = 0, that is, limt→∞u(t) = 0.
Let cB > 0. Consider an arbitrary sequence {tn}∞n=1 such that limn→∞tn = ∞. By (3.40)

we have limn→∞V (u(tn), u′(tn)) = cB. By (3.30) and (3.6), the sequence {(u(tn), u′(tn))}∞n=1 is
bounded and so there exists a subsequence

{(
u(tmn), u

′(tmn)
)}∞

n=1 (3.45)

such that limn→∞(u(tmn), u
′(tmn)) = (xB

1 , x
B
2 ), where (xB

1 , x
B
2 ) is a point of the level curve:

F(x1) +
x2
2

2
= cB. (3.46)

Note that

cB = 0 iff
∫∞

0

p′(s)
p(s)

u′2(s)ds = F(B),

cB > 0 iff
∫∞

0

p′(s)
p(s)

u′2(s)ds < F(B).

(3.47)

Theorem 3.6 (Existence of oscillatory solutions). Assume that (1.2), (1.3), (1.9), (1.10), (3.1),
and (3.2) hold. Let B be given by (2.19) and let u be a solution of problem (1.1), (1.7) with B ∈ (B, 0).
Then u is an oscillatory solution with decreasing amplitudes.

Proof. The assertion follows from Theorems 2.4 and 3.4.

Remark 3.7. The assumption (1.10) in Theorem 3.6 can be omitted, because it has no influence
on the existence of oscillatory solutions. It follows from the fact that (1.10) imposes conditions
on the function values of the function f for arguments greater than L; however, the function
values of oscillatory solutions are lower than this constant L. This condition (used only in
Theorem 2.1) guaranteed the existence of solution of each problem (1.1), (1.7) for each B < 0
on the whole half-line, which simplified the investigation of the problem.
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