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We establish some new criteria for the oscillation of third-order difference equations of
the form A((1/ax(n))(A(1/a; (n))(Ax(n))*)*) + dq(n) f (x[g(n)]) = 0, where A is the for-
ward difference operator defined by Ax(n) = x(n+ 1) — x(n).

1. Introduction

In this paper, we are concerned with the oscillatory behavior of the third-order difference
equation

Lsx(n)+38q(n) f (x[g(n)]) =0, (1.1;9)

where § = =1, ne N ={0,1,2,...},

1 a

Lox(n) = x(n),  Lix(n) = (ALox(n))™,
ai(n) (1.2)

Lyx(n) = . (AL;x(n))“, Lsx(n) = AL,x(n).
ax(n)
In what follows, we will assume that
(i) {ai(n)},i=1,2,and {q(n)} are positive sequences and

> (ai(m) " =0, =12 (1.3)

(ii) {g(n)} is a nondecreasing sequence, and lim, .. g(n) = oo;

(iii) f € @(R,R), xf(x) >0, and f'(x) = 0 for x # 0;

(iv) a4, i = 1,2, are quotients of positive odd integers.

The domain %(Ls) of Ls is defined to be the set of all sequences {x(n)}, n > ny >0
such that {L;x(n)}, 0 < j < 3 exist for n > ny.

A nontrivial solution {x(n)} of (1.1;0) is called nonoscillatory if it is either eventually
positive or eventually negative and it is oscillatory otherwise. An equation (1.1;8) is called
oscillatory if all its nontrivial solutions are oscillatory.
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The oscillatory behavior of second-order half-linear difference equations of the form

A(al( )(Ax(n)) >+6q(n)f( [g(n)]) = (1.4;8)

where 8, a1, q, &, f, and a are as in (1.1;6) and/or related equations has been the sub-
ject of intensive study in the last decade. For typical results regarding (1.4;8), we refer
the reader to the monographs [1, 2, 4, 8, 12], the papers [3, 6, 11, 15], and the ref-
erences cited therein. However, compared to second-order difference equations of type
(1.4;0), the study of higher-order equations, and in particular third-order equations of
type (1.1;8) has received considerably less attention (see [9, 10, 14]). In fact, not much
has been established for equations with deviating arguments. The purpose of this paper
is to present a systematic study for the behavioral properties of solutions of (1.1;8), and
therefore, establish criteria for the oscillation of (1.1;6).

2. Properties of solutions of equation (1.1;1)

We will say that {x(n)} is of type By if

x(n) >0, Lix(n) <0, Lrx(n) >0, Lsx(n) <0 eventually, (2.1)
it is of type B, if

x(n) >0, Lix(n) >0, Lrx(n) >0, Lsx(n) <0  eventually. (2.2)

Clearly, any positive solution of (1.1;1) is either of type By or B,. In what follows, we
will present some criteria for the nonexistence of solutions of type By for (1.1;1).

TaEOREM 2.1. Let conditions (i)—(iv) hold, g(n) < n for n = ny = 0, and

—f(=xy) = f(xy) = f(x)f(y) forxy>DO. (2.3)

Moreover, assume that there exists a nondecreasing sequence {&(n)} such that g(n) < &(n)
< n for n = ng. If all bounded solutions of the second-order half-linear difference equation

é(n)

A(azzn) (Ay(”))a2> “1(”)f< >, ﬂi/“l(k)) fEm]) =0 (2.4)

k=g(n)

are oscillatory, then (1.1;1) has no solution of type B.

Proof. Let {x(n)} be a solution of (1.1;1) of type By. There exists ny € N so large that
(2.1) holds for all n > ny. For t > s > ng, we have

x(s) =x(t+1) Za}/“l(]) 1/a|

(]) (Z al/txl ) ( l/ou (t)) (2.5)
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Replacing s and t by g(n) and &(n) respectively in (2.5), we have

&(n)
2( . a%“’“(j))( L x[E(m)]) (2.6)

j=g(n)

for n = n; € N for some n; = ny. Now using (2.3) and (2.6) in (1.1;1) and letting y(n) =
—Lix(n) >0 for n = n;, we easily find

&(n)
A(a ) (Ay(n))* ) ( Z al/al ) ()/Wl [f(”)]) >0 forn=n;. (2.7)

j=g(n)

A special case of [16, Lemma 2.4] guarantees that (2.4) has a positive solution, a contra-
diction. This completes the proof. O

THEOREM 2.2. Let conditions (i)—(iv) and (2.3) hold, and assume that there exists a nonde-
creasing sequence {&(n)} such that g(n) < &(n) < n for n > ny. Then, (1.1;1) has no solution
of type By if either one of the following conditions holds:

(S1)
/(araz)
7].(“114 ) >1 foru+0, (2.8)
el Ek) En) Ve
limsup > q(k)f( > a}/“‘(j)) f (Z a;/“z(i)) >1,  (2.9)
e k=E(n) j=g(k) i=E(k)
(S2)
%0 asu—0, (2.10)
f(ul/(mlxz))

n-1 £(k) Em) Ve
limsup > q(k)f( > a}/“l(j))f ( > aé/“Z(i)) >0. (2.11)
TR k=&(n) j=g(k) i=&(k)

Proof. Let {x(n)} be a solution of (1.1;1) of type By. Proceeding as in the proof of
Theorem 2.1 to obtain the inequality (2.7), it is easy to check that y(n) >0and Ay(n) <0
for n > ny. Let np > n; be such that inf . ,, £(n) > ny. Now

T n 1 o 1/,
Y@=y 1) - X (az(])< yi)®)

(i o) s

(2.12)

1/(X2
04
y(1)) z) fort >0 > n,.
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Replacing o and 7 by &(k) and £(n) respectively in (2.12), we have

&(n) 1/
ylEK)] = ( > a;/“Z(j)) <M(—Ay[f(n)])az) forn>=k=n.  (2.13)

j=§k)

Summing (2.7) from &(n) to (n — 1) and letting Y(n) = (—Ay(n))%/a,(n) for n = n,, we
get

n-1 (k)
Y[é(n)] = Y(n)+ Z q(k (Z l/m )

k=&(n j=g(k)

E(n) /ey
Xf([( Z l/ocz() Yl/az[f(l’l ]:| ) for n > n,.
i=§(k)

Using condition (2.3) in (2.14), we have

(2.14)

Y[E(m)] = f(YV @) [E(m)])

n-1 £(k) En) Ve
<| 2 q(k)f< > ai““(j)) f (Z a?‘“(i)) , nzm.
k=§(n) j=g(k) i=&(k)

(2.15)
Using (2.8) in (2.15) we have

n-1 &(k) E(n) 1/
1= > q(k)f( > ai/"”(j))f ( > ai/“z(i)) . (2.16)

k=E&(n) j=g(k) i=§ (k)

Taking limsup of both sides of the above inequality as n — oo, we obtain a contradiction
to condition (2.9).

Next, using (2.10) in (2.15) and taking limsup of the resulting inequality, we obtain a
contradiction to condition (2.11). This completes the proof. O

THEOREM 2.3. Let the hypotheses of Theorem 2.2 hold. Then, (1.1;1) has no solutions of type
By if one of the following conditions holds:
(O1)

fl/azg{ 1/a1) > foru#O, (2‘17)

n-1 £G) Ve
limsup Z a;/“Z(k)(Z q(])f( > a}/“'(i))> >1, (2.18)

T k=t j=k i=g(j)
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(02)
u
W — 0 asu—20, (219)
n-1 £G) e
limsup Z ay® (k) (Z q(j)f( Z al® (i) )) > 0. (2.20)
=00 k=E(n) j=k i=g(j)

Proof. Let {x(n)} be a solution of (1.1;1) of type By. As in the proof of Theorem 2.1, we
obtain the inequality (2.7) for n > n;. Also, we see that y(n) >0and Ay(n) < 0 for n > n;.
Next, we let n, = n; be as in the proof of Theorem 2.2, and summing inequality (2.7)
from s > n, to (n — 1), we have

1 . 1 n—1 E(k)
(—Ay(s)™ = (—Aym)*+ > qll)f ( > a%/“l(j)) f(yYE)]),
J

a(s) ax(n) Pt w78
(2.21)
which implies

k=s

el &(k) 1/ay
~Ay(s) = a"(s) (Z q(k) f ( > @ (j)) Flyre [E(k)])) : (222)

Now,

n—1 -

yw) =ym)+> (- Z —Ay(s)) forn—1=s>n,. (2.23)

S=V s=v

Substituting (2.23) in (2.22) and setting v = &(n), we have

ne1 et £K) e
mlz > a%/‘“(s)(Z q(k)f( 2. ai/“‘(ﬂ)f(y”“l [E(k)]))
k=s

s=&(n) j=g(k) (2.24)

o nml £(k) Ve
Zfl/otz (yl/m[f(n)]) Z a;/m(s) (z q(k)f ( z a%/tn(j))) .
k=s j=g(k)

s=&(n) i=g(

The rest of the proof is similar to that of Theorem 2.2 and hence is omitted. O
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THEOREM 2.4. Let conditions (i)—(iv), (2.3) hold, g(n) = n — 1, where 7 is a positive integer
and assume that there exist two positive integers such that T > T > 7. If the first-order delay
equation

_ 1/
Ay(n)+q(n)f ( Z al®(j ) (( Z 7 ( 1)) )f(yl/(“'a”[n—f]) =0
j=n-1

i=n—T
(2.25)
is oscillatory, then (1.1;1) has no solution of type By.

Proof. Let {x(n)} be a solution of (1.1;1) of type By. As in the proof of Theorem 2.1, we
obtain (2.6) for n > n;, which takes the form

[n—1] = ( Z al®(j ) (—L}/a‘x[n—f]) for n = n. (2.26)
j=n-t
Similarly, we find
—Lix[n-7] = ( > a%/“z(i)) (L;/“Zx[n - ‘I’]) forn = n, = n,. (2.27)

Combining (2.26) with (2.27) we have

n-t 1/(X1
( Z 1/“‘ ) ( Z awz( ) Lé/(“”mx[n —17] form=n;=>n,.
i=n—T

. (2.28)
Using (2.3) and (2.28) in (1.1;1) and setting Z(n) = L,x(n), we have

n-7 _ 1/ay
v F(3))

X f(zV@®) [y —F]) <0 forn= ns.

By a known result in [2, 12], we see that (2.25) has a positive solution which is a contra-
diction. This completes the proof. O

As an application of Theorem 2.4, we have the following result.
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CoRrOLLARY 2.5. Let conditions (i)—(iv), (2.3) hold, g(n) = n — 1, 7 is a positive integer and
let there exist two positive integers T, T such that T >7T > 7. Then, (1.1;1) has no solution of
type By if either one of the following conditions holds:

(Iy) in addition to (2.8),

n—1 k-7 - Ve PN
11m1nf Z qk) f ( al® ( ) ( Z Ve z)) > (l+f> , (2.30)
j i=k-7

k=n-7 j=k—1 i=k—

(I)

du
o0

Jo ity <=

) k-7 k—7 /ey
> q<k>f< > e/ (j)) f (( > aé/‘“(i)) ) = o0, (2.32)
k=no j=k-1 i=k-7

Next, we will present some criteria for the nonexistence of solutions of type B, of
(1.1;1).

THEOREM 2.6. Let conditions (i)—(iv) and (2.3) hold. If

(2.31)

00 g(j)-1
Zq(j)f( > a}/“'u)) = oo, (2.33)

i:no
then (1.1;1) has no solution of type B,.

Proof. Let {x(n)} be a solution of (1.1;1). There exists an integer ny € N so large that
(2.2) holds for n = ng. From (2.2), there exist a constant ¢ > 0 and an integer n; > ng such
that

ﬁ (ALox(m)® = Lyx(n) > c, (2.34)

or
Ax(n) = (cal(n))l/‘x1 for n = n. (2.35)
Summing (2.35) from n,; to g(n) — 1(= n;) we obtain

g(n)—1

x[gm] =" > a™(j). (2.36)

j=m
Using (2.3) and (2.36) in (1.1;1) we have
—Lsx(n) = q(n) f (x[g(n)])

g(n)—1

zq(n)f(cl/"")f( > ai/“l(j)) forn > ny > ny.

j=m

(2.37)
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Summing (2.37) from n, to n — 1(> n,) we obtain
00 > Lrx(ny) = —Lyx(n) + Lyx(ny)
n—1 g(k)-1
2.38
() S gk f ( S al ) e a2
k=n, j=m
a contradiction. This completes the proof. O

THEOREM 2.7. Let conditions (i)—(iv) and (2.3) hold, and g(n) = n — 1, n = ny > 0, where
T is a positive integer. If the first-order delay equation

n—-1-1 k-1 Ve
Ay(n) +q(n)f( > (m(k) > aé/“z(j)) )f(yl/(““"”[n— T]) =0 (2.39)

k=ny j=no

is oscillatory, then (1.1;1) has no solution of type B,.

Proof. Let {x(n)} be a solution of (1.1;1) of type B,. There exists an integer 7y > 0 so large
that (2.2) holds for n > ny. Now,

LlX(l’l le 7’10 Z Ale

j=no

= Lix(n) Z ay* (j) (a3 (j)AL1x(j) )

] no

1 (2.40)
= Lix(no) + > &/ (j)L;*x(j)
j=no
1/“2 x(n) z al/“z for n > ny,
j=no
or
! (Ax(n))™ = LY*x(n) z al/”‘2 (2.41)
a1 (n) j=no
Thus,
o1 1/
Ax(n) = (al(n) > a%/“z(j)) LY@y () for n= ny. (2.42)
j=no

Summing (2.42) from ng to g(n) — 1 > ny, we have

g(n)-1 k-1 Ve
x[gm)]=| > (al(k) > aé/“z(j)> [Y(@ez) x[g(n)] forn=n; >ny  (2.43)

k=ng Jj=no
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Using (2.3), (2.43), g(n) = n — 7, and letting y(n) = L,x(n), n = n;, we obtain

k—

-1 k-1 Ve
> (al(k) > aé/“z(j)) )f(yl/(“‘“Z)[n— T]) <0. (2.44)
k=ng

Ay(n)+q(n)f(
j=no

The rest of the proof is similar to that of Theorem 2.4 and hence is omitted. O

TaEOREM 2.8. Let conditions (i)—(iv) and (2.3) hold and g(n) > n+1 for n = ny € N. If the
half-linear difference equation

A(l Ay(n)™ ) + g(nz 7 Vei(n)) =0 245
oy 70" g A ()] F(mm) =0 (245)

is oscillatory, then (1.1;1) has no solution of type B,.

Proof. Let {x(n)} be a solution of (1.1;1) of type B,. Then there exists an #ny € N suffi-
ciently large so that (2.2) holds for n > ny. Now, for m > s > ny we get

x(m) — x(s) = Z al ™ (GYLY " x(j), (2.46)
] S

or

(deuﬂlm() (2.47)

]j=s

Replacing m and s in (2.47) by g(n) and n, respectively, we have

g(n)—-1
x[g(n)] = ( > ay® (j)) LV“x(n) forg(n)=n+1=n; = n. (2.48)
j=n

Using (2.3) and (2.48) in (1.1;1) and letting Z(n) = L1x(n) for n = n,, we obtain

g(n)—1

1 o oy o
A(a2(n) (AZ(n)) )+q(n)f( S aY (]))f(Zl/l(n))SO forn>n. (249

j=n

By [16, Lemma 2.3], we see that (2.45) has a positive solution, a contradiction. This com-
pletes the proof. O

Remark 2.9. We note that a corollary similar to Corollary 2.5 can be deduced from
Theorem 2.7. Here, we omit the details.

Remark 2.10. We note that the conclusion of Theorems 2.1-2.4 can be replaced by “all
bounded solutions of (1.1;1) are oscillatory.”

Next, we will combine our earlier results to obtain some sufficient conditions for the
oscillation of (1.1;1).
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THEOREM 2.11. Let conditions (i)—(iv) and (2.3) hold, g(n) < n for n = ny € N. Moreover,
assume that there exists a nondecreasing sequence {&(n)} such that g(n) < £(n) <n forn >
no. If either conditions (S1) or (S2) of Theorem 2.2 and condition (2.33) hold, the equation
(1.1;1) is oscillatory.

Proof. Let {x(n)} be a nonoscillatory solution of (1.1;1), say, x(n) >0 for n > ny € N.
Then, {x(n)} is either of type By or B,. By Theorem 2.2, {x(n)} is not of type By and by
Theorem 2.6, {x(n)} is not of type B,. This completes the proof. O

TaEOREM 2.12. Let conditions (i)—(iv), (2.3) hold, g(n) = n — 1, n = ny € N, where 7 is
a positive integer. Moreover, assume that there exist two positive integers T and T such that
T >7 > T. If both first-order delay equations (2.25) and (2.39) are oscillatory, then (1.1;1) is
oscillatory.

Proof. The proof follows from Theorems 2.4 and 2.7. ]

Next, we will apply Theorems 2.11 and 2.12 to a special case of (1.1;1), namely, the
equation

1 1 o © 3 -
Mt (Am(n) (ax(n)™) ") +qOnelgtn)] =0, (2.50)

where « is the ratio of positive odd integers.

CoROLLARY 2.13. Let conditions (i)—(iv) hold, g(n) < n for n = ny € N, and assume that
there exists a nondecreasing sequence {&(n)} such that g(n) < &(n) < n for n = ny. Equation
(2.50) is oscillatory if either one of the following conditions holds:

(A1) a=ara,

IS ¢(j)-1 o
2. q(j)< > ai/“‘(i)) = oo, (2.51)

Jj=no=0 i=ng
n-1 £(j) V{0 *
limsup > q()| > a/™G)] | D a6 | >1, (2.52)
nTe j=En) i=g(j) i=£(j)

(Ay) a < oy and condition (2.51) hold, and

n—1 £(j) * k) e
limsup > q(j)( > a}/“l(i)) ( > a;/“Z(i)) > 0. (2.53)

nTe L j=En) i=g(j) i=E(j)

CoOROLLARY 2.14. Let conditions (i)—(iv) hold, g(n) = n— 1, n = ny € N, where 7 is a pos-
itive integer, and assume that there exist two positive integers T, T such that T >7 > 7. If
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the first-order delay equations

Ay(n)+q(n)( nir ai/“l(j)> ( i Ve ) ZY¥@m©) [y 5] =0, (2.54)

j=n-t i=n-T

n—-1—1 j-1 Ve
AZ<n>+q<n)( > (m(j)Zaé/“%i)) ) 78/ @e) [n 7] =0 (2.55)

j:no i:f’lo

are oscillatory, then (2.50) is oscillatory.

For the mixed difference equations of the form

Lsx(t) + q1(t) fi (x[g1(m)]) + q2(n) fo (x[g2(n)]) = (2.56)

where L3 is defined as in (1.1;1), {a;(n)}, i = 1,2 are as in (i) satisfying (1.3), &; and a
are as in (iv), {gqi(n)}, i = 1,2 are positive sequences, {gi(n)}, i = 1,2 are nondecreasing
sequences with lim, .. gi(n) = 00, i = 1,2, fi € 6(R,R), xfi(x) >0 and fi(x) = 0 forx # 0
and i = 1,2. Also, fi, f, satisfy condition (2.3) by replacing f by f; and/or f,.

Now, we combine Theorems 2.1 and 2.8 and obtain the following interesting result.

THEOREM 2.15. Let the above hypotheses hold for (2.56), gi(n) < n and g,(n) >n+1 for
n = ng € N and assume that there exists a nondecreasing sequence {&(n)} such that g(n) <
&(n) < n for n > ny. If all bounded solutions of the equation

&(n)
(a( j (Ay(m)°® )W)fl( 2. ai/“'(k))ﬁ(y”“l[f(n)])=0 (2.57)
k=g1(n)
are oscillatory and all solutions of the equation
1 g(n)—
A(az(n) (aZ(m))* )*‘JZ ( > ai/“l(J))fz(Z”“l (n)) = (2.58)

are oscillatory, then (2.56) is oscillatory.

3. Properties of solutions of equation (1.1;-1)

We will say that {x(n)} is of type By if
x(n) >0, Lix(n) >0, Lrx(n) <0, L3x(n) =0 eventually, (3.1)
it is of type B if
x(n) >0, Lix(n) >0, i=1,2, Lsx(n) =0 eventually. (3.2)

Clearly, any positive solution of (1.1;-1) is either of type B; or Bs. In what follows, we
will give some criteria for the nonexistence of solutions of type B for (1.1;-1).
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THEOREM 3.1. Assume that conditions (i)—(iv) hold. If

>q(j) =, (3.3)

then (1.1;-1) has no solution of type B.

Proof. Let {x(n)} be a solution of (1.1;-1) of type B;. Then there exists an ny € N suf-
ficiently large so that (3.1) holds for n > ny. Next, there exist an integer n; > ng and a
constant ¢ > 0 such that

x[g(n)] = ¢ forn=n;. (3.4)

Summing (1.1;-1) from n; to n — 1 = n; and using (3.4), we have

Lox(n) = Lox(ni) = Eq(j)f(x[g(j)]), (3.5)
j=m
or
00 > —Lyx(ny) f(c)Zq ) — o0 asn— oo, (3.6)
j=m
a contradiction. This completes the proof. O

THEOREM 3.2. Let conditions (i)—(iv) and (2.3) hold and g(n) < n for n = ny € N. If all
bounded solutions of the half-linear equation

g(n)—1

(g5 900" ) = a0 ( 2 ai/“‘U))f(y”“' gm])=0  (7)

j=no

are oscillatory, then (1.1;-1) has no solutions of type B.

Proof. Let {x(n)} be a solution of (1.1;-1) of type B;. There exists an ny € N such that
(3.1) holds for n > ng. Now

x(n) = x(no) = Z Ax(j Z @™ (LY x(). (3.8)
Jj=no Jj=no
Thus,
n—1
> (Z al/® (j)) LY*x(n) forn = ny. (3.9)
Jj=no

There exists an n; > ng such that

g(n)—1
(Z al®(j ) L/ x[g(n)] forn=n. (3.10)

j=no
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Using (2.3) and (3.10) in (1.1;-1) and letting y(n) = L1x(n) for n > n;, we have

g(n)—-1

A( ! (Ay(n))az)Zq(n (2 al/"‘1 ) (yYalg(n)]) forn=n. (3.11)

ax(n) o

The rest of the proof is similar to that of Theorem 2.1 and hence is omitted. g

Next, we state the following criteria which are similar to Theorems 2.2, 2.3, and 2.4.
Here, we omit the proofs.

TueOREM 3.3. Let conditions (i)—(iv) and (2.3) hold, and g(n) < n for n = ny € N. Then,
(1.1;-1) has no solution of type By if either one of the following conditions holds:
(C1) condition (2.8) holds, and

-1 g1 gln) Ve
limsup > 1 q(k) f( > a{/“l(j)) f (Z a;/“Z(i)> >1, (3.12)
=0 k=g(n) j=n9=0 i=g(k)

(Cy) condition (2.10) holds, and

el g1 g(n) ey
limsup > 1 q(k) f( > ai/m(j)) f (z a;/“Z(i)> >0. (3.13)
= k=g(n) j=no=0 i=g(k)

TaEOREM 3.4. Let the hypotheses of Theorem 3.3 be satisfied. Then, (1.1;-1) has no solutions
of type By if either one of the following conditions holds:
(Dy) condition (2.17) holds, and

n—1 n—1 g(j)-1 Ve
limsup Z ay® (k )(Zq(j)f( Z ai”’”(i))) >1, (3.14)

=% k=g(n) j=k i=np=0

(D) condition (2.19) holds, and

n—1 n—1 g(j)- Ve,
limsup > a;/“Z(k)(Z ( > a]/“l(z)) > 0. (3.15)

= k=g(n) j=k i=np=0
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TueOREM 3.5. Let conditions (i)—(iv) and (2.3) hold, g(n) =n —1,n = ny € N where tisa
positive integer, and assume that there exists an integer T > 0 such that T > 7. If the first-order
delay equation

n—1—1 n—7 Ve
y(n)+q(n)f ( > a Var( )f(( > aé/az(j)) )f(}’l/(“”m[n—?]) =0

j=no j=n-t
(3.16)
is oscillatory, then (1.1;-1) has no solution of type B;.

Next, we will present some results for the nonexistence of solutions of type Bs for
(1.1;-1).

THEOREM 3.6. Let conditions (i)—(iv) and (2.3) hold, g(n) >n+1 for n = ny € N, and
assume that there exists a nondecreasing sequence {1(n)} such that g(n) >#y(n) >n+1 for
n = ny. Then, (1.1;-1) has no solution of type Bs if either one of the following conditions
holds:

(E1) condition (2.8) holds, and

(-1 o(k)-1 (k-1 ey
limsup > q(k)f( S afe(j ) (( S aye(j ) >>1, (3.17)
j=

n—oo

k=n j=n(k) n(n
(E2)
u
W — 0 asu— oo, (318)
n(n)—1 ¢(k)-1 (k) -1 Ve
limsup > q(k)f( S ay(j ) ( > ay ])> > 0. (3.19)
" k=n j=nk)

Proof. Let {x(n)} be a solution of (1.1;-1) of type Bs. Then there exists a large integer
ny € N such that (3.2) holds for n > ny. Now

o—1
x(0) = x(7) + > Ax(j) = x(7) + Z ay™ (G)LY ™ x(j)
I o (3.20)
(Z a’® (])) LY x(1) foro =12 ny.
j=T
Letting 0 = g(n), T = 5(n) in (3.20), we see that
g(n)—1
x[g(n)] = ( > a}/“‘(j)> LY“x[n(n)] forn=n; = n,. (3.21)
j=n(n)
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Using (3.21) in (1.1;-1) and letting y(n) = L1x(n), n = n; we have

1 - g(n)—-1 .
A(az(n) (Ay(n)) > >q(n)f (j%n)ai/ 1(])) fOYalnn)]) forn=n. (3.22)

Clearly, y(n) >0 and Ay(n) >0 for n > n. As in the above proof, we can easily find

n(k)—
yn(k ( > aé/“z(])) (LY*2y[n(n)]) fork=n—1=n, (3.23)

j=n(n)

where Ly(n) = (Ay(n))*/a,(n). Using (2.3) and (3.23) in (3.22), we have

j=n(k) j=n(k)

g(k)-1 nk)—1 Ve
A(Ly(k)) zq(k)f( > ai““(j))f(( > aé/‘“(j)) )f(L”(“‘“Z’y[n(n)])
(3.24)

for k = n—1 = n;. Summing (3.24) from » to #(n) — 1 = n, we have

Lyln(n)] = Ly[n(n)] - Ly(n)
q(kH g(k)-1 Ve
> ( Z al/m ) (( Z a;/az(j)) )f(Ll/(txlocz)y[rl(k)]))
)

j=n(k) j=n(n
(3.25)
or

1/0(1
L (k (k)1 g(k)-1 . g(k)-1 .
f<L1/<“yl£Zy[):7]<n>]) = 2 af| 2 &™) > a™()] | (26
= J

j=n(n) j=n(n)

Taking limsup of both sides of (3.26) as n — oo and applying the hypotheses, we arrive at
the desired contradiction. O

THEOREM 3.7. Let the hypotheses of Theorem 3.6 be satisfied. Then, (1.1;-1) has no solution
of type Bs if either one of the following conditions holds:
(F1) condition (2.17) holds, and

n(n)—1

k-1 ¢(j)-1 Ve
limsup > a;/“Z(k)(Z q(j) f( > a}/“l(i)>> >1, (3.27)
j=n

— 00
n k=n
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(F2)
%0 asu— 0, (3.28)
fl/ocz (ul/fxl)
n(n)—1 k-1 g(j)—1 Ve
limsup > ay*® (k) (Z q(i) f ( > a}/“l(i))) > 0. (3.29)
n—eo k=n j=n i=n(j)

Proof. Let {x(n)} be a solution of (1.1;-1) of type Bs. As in the proof of
Theorem 3.6, we obtain the inequality (3.22) and we see that y(n) >0 and Ay(n) >0
for n = ny. Summing inequality (3.22) from nto k — 1 = n > n, > n;, we have

k-1 g(j)-1
Ly =S aif | S a6 ] £y n())) (3.30)
a2(k) j=n i=n(j)
which implies that

k-1 ¢(j)-1 Va;
Ay(k) = ay® (k) (Z q(j)f( > a}/“l(i)) f(y”"“[n(j)])) forn>mn,  (3.31)

j=n i=n(j)

Combining (3.31) with the relation
y(s) = Z Ay(k) fors—1zn=mn, (3.32)

and setting s = 5(n), we have

y[n(n)] n(n)—1 y k—1 - 1/ 1/ay
Ve (y/a [ (n)]) > > af®(k) (J;q(ﬂf( z )) for n > n,.

k=n i=n(j
(3.33)

Taking limsup of both sides of (3.33) as n — oo, we arrive at the desired contradiction.
O

TaEOREM 3.8. Let conditions (i)—(iv) and (3.2) hold, g(n) = n+ o for n = ny € N, where o
is a positive integer, and assume that there exist two positive integers ¢ and ¢ > 1 such that
0—2>0—1>4. If the first-order advanced equation

n+o—1 n+o—1 Van
Ay(n) —q(?l)f( Z ai/(X} (])) f (( Z d%/az(].)) )f(yl/(otlaz)[n+5~]) =0

j=n+o j=n+o
(3.34)
is oscillatory, then (1.1;-1) has no solution of type Bs.
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Proof. Let {x(n)} be a solution of (1.1;-1) of type Bs. As in the proof of Theorem 3.6, we
obtain the inequality (3.21) for n > n, that is,

n+o—1
x[n+o] = ( > a}/“‘(j)) L x[n+7] forn=n. (3.35)

j=n+o
Similarly, we see that

n+o—1

Lix[n+7] = ( > ay® (j )) ( ]/“Zx[n+6]> for n = ny, = n,. (3.36)

] n+ao

Combining (3.35) and (3.36), we have

nto—1 n+o—1 Ve
x[n+o0] 2( > a%/“l(j)) ( > ay*(j ) LV %)yt 5] fornz=mny (3.37)

j=n+o j=n+o

Using (2.3) and (3.37) in (1.1;-1) and letting Z(n) = L x(n), n = n,, we have

n+o—1 n+o—1 Veq
AZ(n) = n)f(Z ai”’“(j))f (Z ““Zm) f(ZV @D n+5]).  (3.38)

j=n+o j=n+c
By a known result in [2, 12], we see that (3.34) has an eventually positive solution, a
contradiction. This completes the proof. O

Next, we will combine our earlier results to obtain some sufficient conditions for the
oscillation of (1.1;-1), as an example, we state the following result.

THEOREM 3.9. Let conditions (i)—(iv) and (2.3) hold, g(n) = n+ o for n = ny € N, and
assume that there exist two positive integers o, ¢ such that 0 —2 >7 — 1 > 6. If condition
(3.3) holds and equation (3.34) is oscillatory, then (1.1;-1) is oscillatory.

Proof. The proof follows from Theorems 3.1 and 3.8. O

Now, we apply Theorem 3.9 to a special case of (1.1;-1), namely, the equation

A( ! (A ! (Ax(n))“')“z)—q(n)x“[nw]:o, (3.39)

a(m) \" ai(n)

where « is the ratio of positive odd integers and o is a positive integer, and obtain the
following immediate result.

CoRroLLARY 3.10. Let conditions (i)—(iv) hold and assume that there exist two positive in-
tegers @ and ¢ > 1 such that 0 —2 >0 — 1 > &. Then, (3.39) is oscillatory if either one of the
following conditions is satisfied:
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(J1) condition (3.3) holds, and

n+g-1 kt+o-1 * (ko1 @ 5—1\°
liminf 3 q(k)( > a}/“l(j)) ( > ay‘“(j)) >< - ) ifa=wa,

k=n+1 j=k+o

(J2) condition (3.3) holds, and

n+5—1 k+o—1 k-1 a/a
limsup Z q(k)( Z ai/a'(]’)) ( Z aé/“z(j)) >0 ifa>aa. (3.41)

n=0 k=n+l j=k+G j=k+5

Now we will combine Theorems 3.5 and 3.8 to obtain some interesting oscillation
criteria for the mixed type of equations

Lsx(n) — qi(n) fi (x[g1(m)]) = q2(n) fo(x[g2(n)]) = (3.42)

where L3, g;, g&i» and f;, i = 1,2 are as in (2.56).

THEOREM 3.11. Let the sequences {qi(n)}, {gi(n)}, and fi(x), i = 1,2 be as in (2.56), let L3
be defined as in (1.1;6), and {ai(n)}, ai, i = 1,2 are as in (i) and (iv), g1(n) = n— 7 and
o(n) =n+o,n=ny €N, where T and o are positive integers. Moreover, assume that there
exist positive integers T, 0, and & such that T >7 and 0 —2 >0 — 1> 4. If (3.16) with q
and f replaced by q, and f, respectively, and (3.34) with q and f replaced by q and f,,
respectively, are oscillatory, then (3.42) is oscillatory.

Remark 3.12. The results of this paper are presented in a form which is essentially new
evenifa; = ay = 1.
4. Applications

We can apply our results to neutral equations of the form

Ls (x(n) + p(m)x[t(n)]) + 6 f (x[g(n)]) = (4.1;6)

where {p(n)} and {7(n)} are real sequences, 7(n) is increasing, 7~!(n) exists, and
lim,_« 7(n) = oo. Here, we set

y(n) = x(n) + p(n)x[r(n)]. (4.2)

If x(n) >0and p(n) = 0forn = ng = 0, then y(n) >0forn = n; = ny. Welet0 < p(n) <1,
p(n) # 1 for n > ngy, and consider either (Py) 7(n) < n when Ay(n) >0 for n > ny, or (P,)
7(n) > n when Ay(n) <0 for n = n;. In both cases we see that

x(n) = y(n) — p(n)x[t(n)] = y(n) — p(n)[y[z(n)] - p[z(n)]x[7 o 7(n)]] 43)
n ( '

> y(n)— p(n)y[r(n)] = y(n)[1-p(n)] forn=>n,.
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Next, welet p(n) > 1, p(n) # 1 for n > ng and consider either (P3) 7(n) > nif Ay(n) >0
for n = ny, or (P4) 7(n) <nif Ay(n) <0 for n = n,;. In both cases we see that

x(n) = ;(y[f’l(n)] - x[t'(n)])

I G0 B (y[rl crlm)] et or—1<n>]>
pleT] ~ pe ] \plrTew )]~ ple-Tor ()]

(4.4)

1 1 )
plrt(m)] (1 Cplr et (n)] ))’[T '(n)] forn=n.

Using (4.3) or (4.4) in (4.1;0), we see that the resulting inequalities are of type (1.1;0).
Therefore, we can apply our earlier results to obtain oscillation criteria for (4.1;8). The
formulation of such results are left to the reader.

In the case when p(n) < 0 for n = ny, we let p1(n) = —p(n) and so

y(n) =x(n) — pr(n)x[z(n)]. (4.5)

=

Here, we may have y(n) >0, or y(n) <0 for n = n; = ny. If y(n) >0 for n = ny, we see
that

x(n) = y(n) forn=n. (4.6)

On the other hand, if y(n) <0 for n > n;, we have

1 y(n)
x[t(n)] = e [y(n)+x(n)] = ) (4.7)
or
-1
x(n) > % forn > n, > ny. (4.8)

Next, using (4.6) or (4.8) in (4.1;8), we see that the resulting inequalities are of the type
(1.1;8). Therefore, by applying our earlier results, we obtain oscillation results for (4.1;6).
The formulation of such results are left to the reader.

Next, we will present some oscillation results for all bounded solutions of (4.1;1) when
p(n) <0and 7(n) = n — 0, n = ny and o is a positive integer.

THEOREM 4.1. Let 7(n) = n — 0, 0 is a positive integer, py(n) = —p(n) and 0 < p1(n) < p<
1, n = ny, p is a constant, and g(n) < n for n = ny. If

u
MTz)(u) <1 fOT u =,'é 0, (49)

f

n—1

a1 - Va, |V
limsup Z [al(k) Z (az(j) q(i)) ] > 1, (4.10)
j=k i=j

n=e p o)

then all bounded solutions of (4.1;1) are oscillatory.
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Proof. Let {x(n)} be a bounded nonoscillatory solution of (4.1;1), say, x(n) >0 for n >
ng = 0. Set

y(n) =x(n) — p1(n)x[n—o] forn=n; = ny. (4.11)

Then,

Lyy(n) = —q(n) f(x[g(n)]) <0 forn=>n,. (4.12)

It is easy to see that y(n), L, y(n), and L, y(n) are of one sign for n > n, = n;. Now, we
have two cases to consider: (M;) y(n) <0 for n = ny, and (M;) y(n) >0 for n = n,.

(M) Let y(n) < 0for n = ny. Then either Ay(n) < 0,0r Ay(n) >0forn = ny,. f Ay(n) <
0 for n = n,, then

x(n) < px[n—o] < p*x[n—20] < -+ < p"x[n—mo] (4.13)

for n = ny + mo, which implies that lim,_.. x(#) = 0. Consequently, lim,_.., y(n) =0, a
contradiction.
Now, we have y(n) <0 and Ay(n) >0 for n = n,. Set Z(n) = —y(n) for n = n,. Then,

L3Z(n) =q(n)f(x[g(n)]) =0 forn=n, (4.14)

and AZ(n) < 0 for n = n,. It is easy to derive at a contradiction if either L,Z(n) >0 or
L,Z(n) <0 for n = n,. The details are left to the reader.
(M3) Let y(n) >0 for n = ny. Then, x(n) = y(n) for n = n, and from (4.12), we have

Lyy(n) < —q(n)f(y[g(n)]) forn = n,. (4.15)

We claim that Ay(n) < 0 for n = n,. Otherwise, Ay(n) > 0 for n > n, and hence we see that
y(n) — co as n — co, a contradiction. Thus, we have y(n) >0 and Ay(n) <0 for n > n,.
Summing (4.15) from n = n, to u and letting u — o, we have

1/
A(alz )( y(n))* ) Fle(y [g(n)])(az(n)iznq(i)) . (4.16)
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Again summing (4.16) twice from j = k to n — 1, and from k = g(n) to n — 1, we obtain

Ve 1/
y[g(n)] n—1 n—1 ' ) .
1> > Z al(k)z az(])Zq(z) . (4.17)
/(ar102)

free (ylgml) =g, j=k i=j
Taking limsup of both sides of the above inequality as #n — co, we arrive at the desired
contradiction. This completes the proof. O

In the case when p(n) = —1, we have the following result.
THEOREM 4.2. Let 7(n) = n— 0, 0 is a positive integer, p(n) = —1, and g(n) < n for n = n,.

If

1/0(2 1/0(1

>. (m(k)z (az(j)Zq(i)) ) = oo, (4.18)
j=k i=j

then all bounded solutions of (4.1;1) are oscillatory.
Proof. Let {x(n)} be a nonoscillatory solution of (4.1;1), say, x(1n) > 0 for n > ny > 0. Set
y(n) =x(n) —x[n—0] forn=mn = n. (4.19)
Then,
Lyy(n) = —q(n) f(x[g(n)]) <0 forn > ny. (4.20)
It is easy to check that there are two possibilities to consider: (Z,) L, y(n) = 0, Ay(n) <0,
and y(n) < 0 for n = ny, = ny, or (Z,) Lyy(n) = 0, Ay(n) <0, and y(n) >0 for n = n,.

In case (Z;), there exists a finite constant b > 0 such that lim,_ y(n) = —b. Thus,
there exists an n3 > 1, such that

—b<y(n)<—g for n > nj. (4.21)
Hence,
x[n—o] > for n > ns, (4.22)
then there exists an n4 > n3 such that

for n > ny. (4.23)

From (4.20), we have

L3y(n) < —f(—)q(n) for n > ny. (4.24)
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In case (Z,), we have
x(n)=x[n—1] forn=n,. (4.25)
Then there exist a constant b; >0 and an integer 13 > 1, such that
x[g(n)] = by forn > ns. (4.26)
Hence,
Lsy(n) < —f(b1)q(n) forn=ny = ns. (4.27)

In both cases we are lead to the same inequality (4.27). Summing (4.27) from n > n4 to
u = n and letting u — oo, we get

1/ay
A(min) (Ay(n))m> > fle (b)) (az(m;nq(i)) . (4.28)

Once again, summing the above inequality from # > n4 to T = n and letting T — o0, we
have

1/

1/0(2
~Ay(n) = fY@®)(p)| a)(n) Z ( (k) > q( )) ) (4.29)
i=k

Summing the above inequality from n4 to n — 1 = n4, we get

Ve 1/
00 > y(ng) > —y(n)+ y(ng) = fY@%) (b)) Z ai (k) Z (az )Zq(i))
k= Ny ] k j=i
— 00 asn— oo,
(4.30)
which is a contradiction. This completes the proof. O
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