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We prove existence and uniqueness results in the presence of coupled lower and upper
solutions for the general nth problem in time scales with linear dependence on the ith ∆-
derivatives for i= 1,2, . . . ,n, together with antiperiodic boundary value conditions. Here
the nonlinear right-hand side of the equation is defined by a function f (t,x) which is
rd-continuous in t and continuous in x uniformly in t. To do that, we obtain the expres-
sion of the Green’s function of a related linear operator in the space of the antiperiodic
functions.

1. Introduction

The theory of dynamic equations has been introduced by Stefan Hilger in his Ph.D. thesis
[12]. This new theory unifies difference and differential equations and has experienced
an important growth in the last years. Recently, many papers devoted to the study of
this kind of problems have been presented. In the monographs of Bohner and Peterson
[5, 6] there are the fundamental tools to work with this type of equations. Surveys on this
theory given by Agarwal et al. [2] and Agarwal et al. [1] give us an idea of the importance
of this new field.

In this paper, we study the existence and uniqueness of solutions of the following nth-
order dynamic equation with antiperiodic boundary value conditions:

(Ln)

u∆
n
(t) +

n−1∑
j=1

Mju
∆ j
(t)= f

(
t,u(t)

)
, ∀t ∈ I = [a,b],

u∆
i
(a)=−u∆i(

σ(b)
)
, 0≤ i≤ n− 1.

(1.1)

Here, n≥ 1,Mj ∈R are given constants for j ∈ {1, . . . ,n− 1}, [a,b]= Tκn , with T⊂R an
arbitrary bounded time scale and f : I ×R→R satisfies the following condition:
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(H f ) for all x ∈ R, f (·,x) ∈ Crd(I) and f (t,·) ∈ C(R) uniformly at t ∈ I , that is, for
all ε > 0, there exists δ > 0 such that

|x− y| < δ =⇒ ∣∣ f (t,x)− f (t, y)
∣∣ < ε, ∀t ∈ I. (1.2)

A solution of problem (Ln) will be a function u : T→R such that u∈ Cn
rd(I) and sat-

isfies both equalities. Here, we denote by Cn
rd(I) the set of all functions u : T→ R such

that the ith derivative is continuous in Tκi , i = 0, . . . ,n− 1, and the nth derivative is rd-
continuous in I .

It is clear that for any given constantM ∈R, problem (Ln) can be rewritten as

u∆
n
(t) +

n−1∑
j=1

Mju
∆ j
(t) +Mu(t)= f

(
t,u(t)

)
+Mu(t), ∀t ∈ I ,

u∆
i
(a)=−u∆i(

σ(b)
)
, 0≤ i≤ n− 1.

(1.3)

Defining the linear operator Tn[M] : Cn
rd(I)→ Crd(I) for every u∈ Cn

rd(I) as

Tn[M]u(t) := u∆
n
(t) +

n−1∑
j=1

Mju
∆ j
(t) +Mu(t), for every t ∈ I , (1.4)

and the set

Wn :=
{
u∈ Cn

rd(I) : u
∆i
(a)=−u∆i(

σ(b)
)
, 0≤ i≤ n− 1

}
, (1.5)

we can rewrite the dynamic equation (Ln) as

Tn[M]u(t)= f
(
t,u(t)

)
+Mu(t), t ∈ I , u∈Wn. (1.6)

From this fact, we deduce that to ensure the existence and uniqueness of solutions of
the dynamic equation (Ln), we must determine the real valuesM,M1, . . . ,Mn−1 for which
the operator Tn[M] is invertible on the setWn, that is, the values for which Green’s func-
tion associated with the operator T−1n [M] inWn can be defined. In Section 2, we present
the expression of Green’s function associated to the operator T−1 in Wn, where T is a
general nth-order linear operator that is invertible on that set. This formula is analogous
to the one given in [9] for nth-order dynamic equations with periodic boundary value
conditions.

In Section 3, we prove a sufficient condition for the existence and uniqueness of solu-
tions of the dynamic equation (Ln). For this, we take as reference the results obtained in
[3, 4], where the existence and uniqueness of solutions of problem (Ln) is studied in the
particular case T= {0,1, . . . ,P +n} and so (Ln) is a difference equation with antiperiodic
boundary conditions. In this case, the classical iterative methods based on the existence
of a lower and an upper solution and on comparison principles of some adequate linear
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operators, cannot be applied and, as a consequence, extremal solutions do not exist in a
given function’s set. Hence, to study the existence and uniqueness of solutions of prob-
lem (Ln) in an arbitrary bounded time scale T ⊂ R, we use the technique developed in
[3, 4], based on the concept of coupled lower and upper solutions, similar to the defi-
nition given in [10] for operators defined in abstract spaces and in [11] for antiperiodic
boundary first-order differential equations. A survey of those results for difference equa-
tions can be founded in [8].

Using the results proved in Sections 2 and 3, we will obtain in Sections 4 and 5 the
expression of Green’s function and a sufficient condition for the existence and uniqueness
of solutions of the dynamic equations of first- and second-order, respectively; likewise,
we will give details about the continuous case where a dynamic equation is a differential
equation and the discrete case, in which either a difference equation or a q-difference
equation are treated.

2. Expression of Green’s function

In this section, we obtain the expression of Green’s function associated with the operator
T−1 in Wn, where T is a general linear operator of nth-order that is invertible on the
mentioned set.

First, we introduce the concept of nth-order regressive operator, see [5, Definition 5.89
and Theorem 5.91].

Definition 2.1. Let Mi ∈ R, 0 ≤ i ≤ n− 1 be given constants, the operator T : Cn
rd(I)→

Crd(I), defined for every u∈ Cn
rd(I) as

Tu(t) := u∆
n
(t) +

n−1∑
i=0

Miu
∆i
(t), for every t ∈ I , (2.1)

is regressive on I if and only if 1+
∑n

i=1(−µ(t))iMn−i �= 0 for all t ∈ I .

Theorem 2.2. LetMi ∈R, 0≤ i≤ n− 1 be given constants such that the operator T defined
in (2.1) is regressive on I (see Definition 2.1). If the operator T is invertible on Wn, then
Green’s function associated to the operator T−1 inWn,G : T× I →R is given by the following
expression:

G(t,s)=

u(t,s) + v(t,s), if a≤ σ(s)≤ t ≤ σn(b),

u(t,s), if a≤ t < σ(s)≤ σ(b),
(2.2)

where, for every s∈ [a,b] fixed, v(·,s) is the unique solution of the problem

(Qs)

Txs(t)= 0, t ∈ [σ(s),b],
x∆

i

s

(
σ(s)

)= 0, i= 0,1, . . . ,n− 2,

x∆
n−1

s

(
σ(s)

)= 1,

(2.3)

and for every s∈ [a,b] fixed, u(·,s) is given as the unique solution of the problem



294 Higher-order antiperiodic dynamic equations

(Rs)

Tys(t)= 0, t ∈ [a,b],

y∆
i

s (a) + y∆
i

s

(
σ(b)

)=−v∆i(
σ(b),s

)
, i= 0,1, . . . ,n− 1.

(2.4)

Proof. First, we see that the function G is well defined, that is, for every s ∈ [a,b] fixed,
problems (Qs) and (Rs) have a unique solution.

Since the operator T is regressive on I , we have, see [5, Corollary 5.90 and Theorem
5.91], that for every s∈ [a,b] fixed, the initial value problem (Qs) has a unique solution.

To verify that the periodic boundary problem (Rs) is uniquely solvable, we consider
the following boundary value problem:

(Pλ)

w∆n
(t) +

n−1∑
i=0

Miw
∆i
(t)= h(t), t ∈ I ,

w∆i
(a) +w∆i(

σ(b)
)= λi, i= 0,1, . . . ,n− 1,

(2.5)

with h∈ Crd(I) and λi ∈R, 0≤ i≤ n− 1 fixed.
We know that w ∈ Cn

rd(I) is a solution of problem (Pλ) if and only if W(t) =
(w(t),w∆(t), . . . ,w∆n−1

(t))T is a solution of the matrix equation

W∆(t)=AW(t) +H(t), t ∈ I , W(a) +W
(
σ(b)

)= λ, (2.6)

where H(t)= (0, . . . ,0,h(t))T , λ= (λ0, . . . ,λn−1)
T , and

A=




0 1 0 ··· 0

0 0 1 ··· 0
...

...
...

. . .
...

0 0 0 ··· 1

−M0 −M1 −M2 ··· −Mn−1



. (2.7)

Since the operator T is regressive on I , we have, by [5, Definitions 5.5 and 5.89], that
the matrix A is regressive on I too and so, it follows from [5, Theorem 5.24] that the
initial value problem

W∆(t)=AW(t) +H(t), t ∈ I , W(a)=Wa, (2.8)

has a unique solution that is given by the following expression:

W(t)= eA(t,a)Wa +
∫ t

a
eA
(
t,σ(s)

)
H(s)∆s. (2.9)
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If we denote the n×n identity matrix by In, then we obtain, from the boundary con-
ditions, that problem (2.6) has a unique solution if and only if there exists a unique
Wa =W(a)∈Rn such that

(
In + eA

(
σ(b),a

))
Wa = λ−

∫ σ(b)

a
eA
(
σ(b),σ(s)

)
H(s)∆s, (2.10)

or equivalently, if and only if the matrix In + eA(σ(b),a) is invertible.
Now, since the operator T is invertible onWn, we have that problem (P0) has a unique

solution and then there exists the inverse of such matrix. As a consequence, problem (Rs)
has a unique solution.

Now, let z : T→R be defined for every t ∈ T as

z(t)=
∫ σ(b)

a
G(t,s)h(s)∆s. (2.11)

It is not difficult to prove, by using [5, Theorem 1.117], that z is the unique solution
of the problem (P0). �

Now, we prove the following properties of Green’s function associated to the operator
T−1 inWn.

Proposition 2.3. LetMi ∈R, 0≤ i≤ n− 1 be given constants such that the operator T de-
fined in (2.1) is regressive on I . If G : T× I →R is Green’s function associated to the operator
T−1 inWn, defined in (2.2), then the following conditions are satisfied.

(1) There exists k > 0 such that |G(t,s)| ≤ k for all (t,s)∈ T× I .
(2) If n = 1, then for every s ∈ I , the function G(·,s) is continuous at t ∈ T except at

t = s= σ(s).
(3) If n > 1, then for every s∈ I , the function G(·,s) is continuous in T.
(4) If n = 1, then for every t ∈ T, the function G(t,·) is rd-continuous at s ∈ I except

when s= t = σ(t).
(5) If n > 1, then for every t ∈ T, the function G(t,·) is rd-continuous in I .

Proof. As we have seen in the proof of Theorem 2.2, we know that Green’s function asso-
ciated to the operator T−1 inWn is given as the 1×n term of the matrix function

F(t,s)=


eA
(
t,σ(s)

)− eA(t,a)
(
In + eA

(
σ(b),a

))−1
eA
(
σ(b),σ(s)

)
, σ(s)≤ t,

−eA(t,a)
(
In + eA

(
σ(b),a

))−1
eA
(
σ(b),σ(s)

)
, t < σ(s),

(2.12)

where A is the matrix given in (2.7).
From [5, Definition 5.18 and Theorem 5.23], we know that the matrix exponential

function is continuous in both variables and so the functionG is bounded in the compact
set T× I .

Now, since eA(t, t)= In, if t = σ(s)= s, then the diagonal terms of F(·,s) are not con-
tinuous at t.

It is clear that in any other situation, the function F(·,s) is continuous at t.
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On the other hand, given t0 ∈ T, for every s0 ∈ I such that s0 �= t0, it follows, from
the continuity of the exponential function, that if s→ s0 and σ(s)→ σ(s0), then F(t0,s)→
F(t0,s0).

Hence, since G(t,s)(≡ F1,n(t,s)) belongs to the diagonal of F(t,s) only when n= 1, the
properties (2), (3), (4), and (5) of the statement hold. �

3. Existence and uniqueness results

In this section, we prove existence and uniqueness results for the nth-order nonlinear
dynamic equation with antiperiodic boundary conditions (Ln).

Suppose that the function f : I ×R→R satisfies condition (H f ), the operator Tn[M]
is regressive on I and invertible onWn andG is Green’s function associated to the operator
Tn

−1[M] inWn, defined in (2.2).
We define the functions G+,G− : T× I →R as

G+ :=max{G,0} ≥ 0, G− :=−min{G,0} ≥ 0, (3.1)

and so,

G=G+−G− on T× I. (3.2)

Considering the operators A+
n[M],A−n [M] : C(T)→ C(T) defined for every η ∈ C(T)

as

A+
n[M]η(t) :=

∫ σ(b)

a
G+(t,s)

(
f
(
s,η(s)

)
+Mη(s)

)
∆s, t ∈ T,

A−n [M]η(t) :=
∫ σ(b)

a
G−(t,s)

(
f
(
s,η(s)

)
+Mη(s)

)
∆s, t ∈ T,

(3.3)

the solutions of the dynamic equation (Ln) are the fixed points of the operator

An[M] := A+
n[M]−A−n [M]. (3.4)

Note that if condition (H f ) holds, then the operators A+
n[M] and A−n [M] are well

defined.
To deduce the existence and uniqueness of solutions of the dynamic equation (Ln), we

introduce the concept of coupled lower and upper solutions for such problem.

Definition 3.1. GivenM ∈R such that the operatorTn[M] is regressive on I and invertible
on Wn, a pair of functions α,β ∈ Cn

rd(I) such that α ≤ β in T is a pair of coupled lower
and upper solutions of the dynamic equation (Ln) if the inequalities

α(t)≤A+
n[M]α(t)−A−n [M]β(t), ∀t ∈ T,

β(t)≥A+
n[M]β(t)−A−n [M]α(t), ∀t ∈ T,

(3.5)

hold.



A. Cabada and D. R. Vivero 297

Under the conditions of the previous definition, if α and β are a pair of coupled lower
and upper solutions for the dynamic equation (Ln), then defining the operator

B[M] : [α,β]× [α,β]−→ C(T) (3.6)

as

B[M](η,ξ) := A+
n[M]η−A−n [M]ξ, (3.7)

and considering the hypothesis

(H) for every t ∈ I and α(t)≤ u≤ v ≤ β(t), it is satisfied that

f (t,u) +Mu≤ f (t,v) +Mv, (3.8)

we prove the following monotonicity property.

Lemma 3.2. Suppose that M ∈ R is a given constant such that the operator Tn[M] is re-
gressive on I and invertible on Wn, α and β are a pair of coupled lower and upper solu-
tions of the dynamic equation (Ln) and the function f : I ×R→R satisfies hypotheses (H f )
and (H). Then, B[M](η,ξ) ∈ [α,β] for all η,ξ ∈ [α,β]. Moreover, if α ≤ η1 ≤ η2 ≤ β and
α≤ ξ2 ≤ ξ1 ≤ β, then

B[M]
(
η1,ξ1

)≤ B[M]
(
η2,ξ2

)
in T. (3.9)

Proof. Let α≤ η1 ≤ η2 ≤ β and α≤ ξ2 ≤ ξ1 ≤ β. It follows, from the definitions of A+
n[M]

and A−n [M], that

A+
n[M]α≤ A+

n[M]η1 ≤ A+
n[M]η2 ≤ A+

n[M]β in T,

A−n [M]α≤ A−n [M]ξ2 ≤ A−n [M]ξ1 ≤ A−n [M]β in T.
(3.10)

From the definitions of α and β, we obtain that

α≤A+
n[M]α−A−n [M]β≤ A+

n[M]η1−A−n [M]ξ1

≤A+
n[M]η2−A−n [M]ξ2 ≤A+

n[M]β−A−n [M]α≤ β in T.
(3.11)

This completes the proof. �

Now, we obtain a result which gives us a region where all the solutions in [α,β] of the
dynamic equation (Ln) lie.

Proposition 3.3. Suppose thatM ∈R is a given constant such that the operator Tn[M] is
regressive on I and invertible onWn, α and β are a pair of coupled lower and upper solutions
of the dynamic equation (Ln) and the function f : I ×R→R satisfies hypotheses (H f ) and
(H).

Then, there exist two monotone sequences in C(T), {ϕm}m∈N, and {ψm}m∈N, with α =
ϕ0 ≤ ϕm ≤ ψl ≤ ψ0 = β in T, m, l ∈ N which converge uniformly to the functions ϕ and ψ
that satisfy

ϕ=A+
n[M]ϕ−A−n [M]ψ, ψ = A+

n[M]ψ−A−n [M]ϕ in T. (3.12)
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Moreover, any solution u ∈ [α,β] of (Ln) belongs to the sector [ϕ,ψ]. If, in addition,
ϕ= ψ, then ϕ is the unique solution of (Ln) in [α,β].

Proof. The sequences {ϕm}m∈N and {ψm}m∈N are obtained recursively as ϕ0 := α, ψ0 := β
and for everym≥ 1,

ϕm := B[M]
(
ϕm−1,ψm−1

)
, ψm := B[M]

(
ψm−1,ϕm−1

)
. (3.13)

From Lemma 3.2, we know that α=: ϕ0 ≤ ϕ1 ≤ ψ1 ≤ ψ0 := β in T.
By induction, we conclude that the sequence {ϕm}m∈N is monotone increasing, the

sequence {ψm}m∈N is monotone decreasing, and ϕm ≤ ψl in T for everym, l ∈N.
As a consequence, for every t ∈ T, there exist ϕ(t) := limm→∞ϕm(t) and ψ(t) :=

limm→∞ψm(t).
From hypothesis (H f ) and Proposition 2.3, we know that both sequences are uni-

formly equicontinuous on I and so, Ascoli-Arzelà’s theorem, (see [7, page 72], [14, page
735]), implies that such convergence is uniform in T. Now, [13, Theorem 1.4.3] shows
that

ϕ=A+
n[M]ϕ−A−n [M]ψ, ψ =A+

n[M]ψ−A−n [M]ϕ in T. (3.14)

Let u be a solution of the dynamic equation (Ln) such that u ∈ [α,β]. From Lemma
3.2, we know that

ϕ1 := B[M](α,β)≤ B[M](u,u)= u≤ B[M](β,α)=: ψ1 in T. (3.15)

By recurrence, we arrive at ϕm ≤ u≤ ψl in T for allm, l ∈N. Thus, passing to the limit,
we obtain that ϕ≤ u≤ ψ in T.

Finally, if ϕ= ψ, then we have that ϕ= A+
n[M]ϕ−A−n [M]ϕ=: An[M]ϕ, that is, ϕ= ψ

is a solution of the dynamic equation (Ln) in [α,β]. Since all solutions of (Ln) that belong
to [α,β] lie in the sector [ϕ,ψ], we conclude that ϕ is the unique solution of (Ln) in
[α,β]. �

Now, let ‖ · ‖ be the supremum norm in C(T).
We prove the following existence result, that gives us a sufficient condition to assure

that the dynamic equation (Ln) has a unique solution lying between a pair of coupled
lower and upper solutions of (Ln).

Theorem 3.4. Assume that M ∈ R is a given constant such that the operator Tn[M] is
regressive on I and invertible onWn, α and β are a pair of coupled lower and upper solutions
of the dynamic equation (Ln) and the function f : I ×R→R satisfies hypothesis (H f ).

If for every t ∈ I and α(t)≤ u≤ v ≤ β(t) the inequalities

−M(v−u)≤ f (t,v)− f (t,u)≤ (K −M)(v−u) (3.16)
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are satisfied for some K ≥ 0 such that

K ·
∥∥∥∥∥
∫ σ(b)

a

∣∣G(t,s)∣∣∆s
∥∥∥∥∥ < 1, (3.17)

then the dynamic equation (Ln) has a unique solution in [α,β].

Proof. Since the first part of the inequality (3.16) is hypothesis (H), we know, by
Proposition 3.3, that there exists a pair of functions ϕ,ψ ∈ C(T) such that for every t ∈ T

we have

0≤ (ψ −ϕ)(t)

=A+
n[M]ψ(t)−A−n [M]ϕ(t)−A+

n[M]ϕ(t) +A−n [M]ψ(t)

=
∫ σ(b)

a
G+(t,s)

[
f
(
s,ψ(s)

)− f
(
s,ϕ(s)

)
+M

(
ψ(s)−ϕ(s)

)]
∆s

+
∫ σ(b)

a
G−(t,s)

[
f
(
s,ψ(s)

)− f
(
s,ϕ(s)

)
+M

(
ψ(s)−ϕ(s)

)]
∆s

=
∫ σ(b)

a

∣∣G(t,s)∣∣[ f (s,ψ(s))− f
(
s,ϕ(s)

)
+M

(
ψ(s)−ϕ(s)

)]
∆s

≤
∫ σ(b)

a

∣∣G(t,s)∣∣ ·K · (ψ(s)−ϕ(s)
)
∆s

≤ ∥∥ψ −ϕ
∥∥ ·K ·

∥∥∥∥∥
∫ σ(b)

a

∣∣G(t,s)∣∣∆s
∥∥∥∥∥.

(3.18)

Thus, it follows from the inequality (3.17) that ϕ= ψ in T and Proposition 3.3 allows
us to conclude that the dynamic equation (Ln) has a unique solution in [α,β]. �

Remark 3.5. One can check, following the proofs given in these sections, that we can
develop an analogous theory for problem

(L̄n)

−u∆n
(t) +

n−1∑
j=1

Mju
∆ j
(t)= f

(
t,u(t)

)
, ∀t ∈ I = [a,b],

u∆
i
(a)=−u∆i(

σ(b)
)
, 0≤ i≤ n− 1.

(3.19)

In this case, we must study the operator

T̄n[M]u≡−u∆n
+

n−1∑
j=1

Mju
∆ j
+Mu (3.20)

in the spaceWn.
The functions α and β are given as in Definition 3.1, with G Green’s function related

with operator T̄n[M] inWn.
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4. First-order equations

In this section, using the previously obtained results, we give a sufficient condition to
ensure the existence and uniqueness of solutions of the first-order nonlinear dynamic
equation with antiperiodic boundary conditions

(L1)

u∆(t)= f
(
t,u(t)

)
, ∀t ∈ I = [a,b],

u(a)=−u(σ(b)), (4.1)

where f : I ×R→ R is a function that satisfies hypothesis (H f ) and [a,b] = Tκ, with
T⊂R an arbitrary bounded time scale.

As we have noted in the previous section, to deduce the existence and uniqueness of
solutions of (L1), we must study Green’s function related with the dynamic equation

u∆(t) +Mu(t)= h(t), ∀t ∈ I , u(a)=−u(σ(b)), (4.2)

with h∈ Crd(I).
As we have seen in the proof of Theorem 2.2, we know that if 1−Mµ(t) �= 0 for all

t ∈ I and 1+ e−M(σ(b),a) �= 0, then the operator

T1[M]u(t) := u∆(t) +Mu(t), ∀t ∈ I , (4.3)

is regressive on I and invertible on W1 and the dynamic equation (4.2) has a unique
solution z : T→R, defined for every t ∈ T as

z(t)=
∫ σ(b)

a
G(t,s)h(s)∆s. (4.4)

It is not difficult to verify that the function G is given by the expression

G(t,s)=




e−M
(
t,σ(s)

)
1+ e−M

(
σ(b),a

) , if a≤ σ(s)≤ t ≤ σ(b),

−e−M(t,a)e−M
(
σ(b),σ(s)

)
1+ e−M

(
σ(b),a

) , if a≤ t < σ(s)≤ σ(b).

(4.5)

From [5, Theorem 2.44], we know that if 1−Mµ(t) > 0 for all t ∈ I , then e−M(t,s) > 0
for all (t,s)∈ T× I , so that we only consider such situation.

From the expression of G, we obtain the following equalities.

(i) IfM = 0, then we have that∥∥∥∥∥
∫ σ(b)

a

∣∣G(t,s)∣∣∆s
∥∥∥∥∥= σ(b)− a

2
. (4.6)

(ii) IfM �= 0, then we have that∥∥∥∥∥
∫ σ(b)

a

∣∣G(t,s)∣∣∆s
∥∥∥∥∥= 1− e−M

(
σ(b),a

)
M
(
1+ e−M

(
σ(b),a

)) . (4.7)
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Therefore, from Theorem 3.4 we obtain the following result that assures the existence
and uniqueness of solutions of the dynamic equation (L1) in the sector [α,β], with α and
β a pair of coupled lower and upper solutions of (L1).

Corollary 4.1. Assume that M ∈ R is such that M < 1/µ(t) for all t ∈ I , α and β are a
pair of coupled lower and upper solutions of (L1), and the function f : I ×R→ R satisfies
hypothesis (H f ). If property (3.16) holds for some K ≥ 0 such that

K <
2

σ(b)− a
, ifM = 0, (4.8)

or

K <
M
(
1+ e−M

(
σ(b),a

))
1− e−M

(
σ(b),a

) , ifM �= 0, (4.9)

then the dynamic equation (L1) has a unique solution in [α,β].

4.1. Particular cases. Here, we consider differential, difference, and q-difference equa-
tions as particular situations.

Differential equations. Let T > 0 and T= [0,T]⊂ R. In this case, given u : [0,T]→ R, it
follows from [5, Theorem 1.16] that u is ∆-differentiable at t ∈ [0,T] if and only if u is
differentiable (in the classical sense) at t and, moreover, u∆(t)= u′(t).

Since for everyM ∈R fixed we have that

eM
(
t, t0
)= eM(t−t0), ∀t, t0 ∈ T, (4.10)

we know that

G(t,s)=



e−M(t−s)

1 + e−MT
, if 0≤ s < t ≤ T ,

−e−M(T+t−s)

1 + e−MT
, if 0≤ t ≤ s≤ T.

(4.11)

Thus, taking into account that in this case condition (H f ) is equivalent to the conti-
nuity of the function f in I ×R, from Corollary 4.1 we arrive at the following result.

Corollary 4.2. Assume that M ∈ R is a given constant, α and β are a pair of coupled
lower and upper solutions of the differential equation (L1), and the function f : I ×R→ R

is continuous. If condition (3.16) is satisfied for some K ≥ 0 such that

K <
2
T
, ifM = 0, (4.12)

or

K <
M
(
1+ e−MT

)
1− e−MT

, ifM �= 0, (4.13)

then the differential equation (L1) has a unique solution in [α,β].

Difference equations. Let h > 0, P ∈ {1,2, . . .} and T= {0,h, . . . ,hP} ⊂R.
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Given u : T → R, it follows from [5, Theorem 1.16] that for every t ∈ Tκ, u is ∆-
differentiable at t, moreover, it is satisfied that

u∆(t)= u(t+h)−u(t)
h

, (4.14)

and for everyM ∈R,M �= −1/h fixed, we have that

eM
(
t, t0
)= (1+Mh)(t−t0)/h, ∀t, t0 ∈ T. (4.15)

As a consequence, we have that for allM ∈R such thatM �= 1/h and 1+ (1−Mh)P �= 0,
the operator

T1[M]u(t) := u(t+h) + (Mh− 1)u(t)
h

, t ∈ I , (4.16)

is regressive on I and invertible onW1.
So, Green’s function is given by the expression

G(t,s)=




(1−Mh)(t−s−h)/h

1+ (1−Mh)P
, if 0≤ s+h≤ t ≤ hP,

− (1−Mh)(Ph+t−s−h)/h

1+ (1−Mh)P
, if 0≤ t ≤ s≤ h(P− 1),

(4.17)

and we deduce the following result.

Corollary 4.3. Let M ∈ R be such that M < 1/h, α and β a pair of coupled lower and
upper solutions of the dynamic equation (L1), and the function f : I ×R→ R is such that
for every t ∈ I , f (t,·)∈ C(R). If condition (3.16) is fulfilled for some K ≥ 0 such that

K <
2
hP

, ifM = 0, (4.18)

or

K <
M
(
1+ (1−Mh)P

)
1− (1−Mh)P

, ifM �= 0, (4.19)

then the dynamic equation (L1) has a unique solution in [α,β].

q-difference equations. Given q ∈R, q > 1, and N ∈N, N ≥ 1; let T= {1,q, . . . ,qN} ⊂R.
If u : T→R, then we know by [5, Theorem 1.16] that for every t ∈ Tκ, u is∆-differenti-

able at t and

u∆(t)= u(qt)−u(t)
(q− 1)t

. (4.20)
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FixM ∈R such thatM �= −1/((q− 1)qk) for every k ∈ JN−1 = {0,1, . . . ,N − 1}. If t = qi

and s= q j , then we obtain that the exponential function is given by

eM(t,s)=




i−1∏
k= j

(
1+M(q− 1)qk

)
, if 0≤ j < i≤N ,

1, if 0≤ j = i≤N ,
j−1∏
k=i

1(
1+M(q− 1)qk

) , if 0≤ i < j ≤N.

(4.21)

Thus, for all M ∈ R such that M �= 1/((q− 1)qk) for every k ∈ JN−1 and 1 +
∏N−1

k=0 (1−
M(q− 1)qk) �= 0, we arrive at the following expression for Green’s function

G(t,s)=




∏i−1
k= j+1

(
1−M(q− 1)qk

)
1+
∏N−1

k=0
(
1−M(q− 1)qk

) , if 0≤ j +1≤ i≤N ,

−
∏

k∈Ii, j
(
1−M(q− 1)qk

)
1+
∏N−1

k=0
(
1−M(q− 1)qk

) , if 0≤ i≤ j ≤N − 1,

(4.22)

where we denote

Ii, j = {0, . . . , i− 1}∪{ j +1, . . . ,N − 1}. (4.23)

We obtain, from Corollary 4.1, the following result.

Corollary 4.4. Suppose thatM ∈R is such thatM < 1/((q− 1)qN−1), α and β are a pair
of coupled lower and upper solutions of (L1), and f : I ×R→R satisfies f (t,·)∈ C(R), for
every t ∈ I . If condition (3.16) is true for some K ≥ 0 such that

K <
2

qN − 1
, ifM = 0, (4.24)

or

K <
M
(
1+
∏N−1

k=0
(
1−M(q− 1)qk

))
1−∏N−1

k=0
(
1−M(q− 1)qk

) , ifM �= 0, (4.25)

then the dynamic equation (L1) has a unique solution in [α,β].

5. Second-order equations

In this section, by using Remark 3.5 we give a sufficient condition for the existence and
uniqueness of solutions of the second-order nonlinear dynamic equation with antiperi-
odic boundary conditions
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(L̄2)

−u∆2
(t)= f

(
t,u(t)

)
, ∀t ∈ I = [a,b],

u(a)=−u(σ(b)),
u∆(a)=−u∆(σ(b)),

(5.1)

where f : I ×R→ R satisfies hypothesis (H f ) and [a,b] = Tκ2 , with T ⊂ R an arbitrary
bounded time scale.

In this case, we study the existence and uniqueness of solutions of the second-order
linear dynamic equation

(P̄)

−u∆2
(t) +M2u(t)= h(t), ∀t ∈ I ,

u(a)=−u(σ(b)),
u∆(a)=−u∆(σ(b)),

(5.2)

with h∈ Crd(I).
We know, by Theorem 2.2 and Remark 3.5, that if 1−M2µ2(t) �= 0 for every t ∈ I and

the operator

T̄2[M]u(t) :=−u∆2
(t) +M2u(t), t ∈ I , (5.3)

is invertible on W2, then the dynamic equation (P̄) has a unique solution given by ex-
pression (2.11).

It is not difficult to verify that if M = 0, then the expression of Green’s function is
given by

G(t,s)=




1
2

[
1
2

(
σ(b)− a

)− t+ σ(s)
]
, if a≤ σ(s)≤ t ≤ σ2(b),

1
2

[
1
2

(
σ(b)− a

)− σ(s) + t
]
, if a≤ t < σ(s)≤ σ(b).

(5.4)

Using this expression, for every t ∈ [a,σ(b)], we obtain the following upper bound:

∫ σ(b)

a

∣∣G(t,s)∣∣∆s≤ 5
(
σ(b)− a

)2
4

=: K0,1, (5.5)

and, if t = σ2(b) > σ(b), then we have that

∫ σ(b)

a

∣∣G(σ2(b),s)∣∣∆s≤ 1
2

[(
σ2(b)− a

)(
σ(b)− a

)
+
1
2

(
σ(b)− a

)2]=: K0,2. (5.6)

As a consequence,

∥∥∥∥∥
∫ σ(b)

a

∣∣G(t,s)∣∣∆s
∥∥∥∥∥≤max

{
K0,1,K0,2

}=: K0 > 0. (5.7)
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IfM �= 0, 1−M2µ2(t) �= 0 for all t ∈ I , 1 + eM(σ(b),a) �= 0, and 1+ e−M(σ(b),a) �= 0, then

G(t,s)=




1
2M

[
e−M

(
t,σ(s)

)
1+ e−M

(
σ(b),a

) − eM
(
t,σ(s)

)
1+ eM

(
σ(b),a

)], if a≤ σ(s)≤ t ≤ σ2(b),

1
2M

[
eM
(
t,σ(s)

)
eM
(
σ(b),a

)
1+ eM

(
σ(b),a

)
−e−M

(
t,σ(s)

)
e−M

(
σ(b),a

)
1+ e−M

(
σ(b),a

) ]
, if a≤ t < σ(s)≤ σ(b).

(5.8)

We know, by [5, Theorem 2.44], that if 1 +Mµ(t) > 0 and 1−Mµ(t) > 0 for all t ∈ I ,
then eM(t,s) > 0 and e−M(t,s) > 0 for all (t,s)∈ T× I , so that, we only study these values
ofM ∈R.

From the expression of Green’s function and [5, Theorem 2.39], for all t ∈ [a,σ(b)] we
obtain

∫ σ(b)

a

∣∣G(t,s)∣∣∆s≤ 1
2|M|M

[
eM
(
σ(b),a

)− 1
1+ eM

(
σ(b),a

) + 1− e−M
(
σ(b),a

)
1+ e−M

(
σ(b),a

) ]=: KM,1, (5.9)

and, if t = σ2(b) > σ(b), then we have that

∫ σ(b)

a

∣∣G(σ2(b),s)∣∣∆s≤ 1
2|M|M

[
eM
(
σ2(b),σ(b)

)(
eM
(
σ(b),a

)− 1
)

1+ eM
(
σ(b),a

)
+
e−M

(
σ2(b),σ(b)

)(
1− e−M

(
σ(b),a

))
1+ e−M

(
σ(b),a

) ]

=: KM,2.

(5.10)

As a consequence,
∥∥∥∥∥
∫ σ(b)

a

∣∣G(t,s)∣∣∆s
∥∥∥∥∥≤max

{
KM,1,KM,2

}=: KM > 0. (5.11)

Thus, from Theorem 3.4 and Remark 3.5, we deduce the following result that assures
the existence and uniqueness of solutions of the dynamic equation (L̄2) in the sector
[α,β], where α and β are a pair of coupled lower and upper solutions of (L̄2).

Corollary 5.1. Assume thatM ∈R is a given constant such that |M| < 1/µ(t) for all t ∈ I ,
α and β are a pair of coupled lower and upper solutions of the dynamic equation (L̄2) and
the function f : I ×R→R satisfies hypothesis (H f ). If condition (3.16) (withM2 instead of
M) holds for some K ≥ 0 such that K < 1/KM , with K0 and KM defined in (5.7) and (5.11),
respectively, then the dynamic equation (L̄2) has a unique solution in [α,β].

5.1. Particular cases. Now, we introduce some examples in differential, difference, and
q-difference equations, to apply the previous theory.

Differential equations. LetT > 0 andT= [0,T]⊂R. We know, by [5, Theorem 1.16], that
u : [0,T]→ R is twice ∆-differentiable at t ∈ [0,T] if and only if u is twice differentiable
(in the classical sense) at t, and u∆

2
(t)= u′′(t).
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One can verify that the operator

T2[M]u(t) :=−u′′(t) +M2u(t), t ∈ I , (5.12)

is regressive on I and invertible on W2 for all M �= 0. Moreover, Green’s function associ-
ated to the operator T−12 [M] inW2 is given by the following expression.

IfM = 0, then

G(t,s)=




1
2

[
T

2
− t+ s

]
, if 0≤ s < t ≤ T ,

1
2

[
T

2
− s+ t

]
, if 0≤ t ≤ s≤ T.

(5.13)

IfM �= 0, then

G(t,s)=




1
2M

[
e−M(t−s)

1 + e−MT
− eM(t−s)

1 + eMT

]
, if 0≤ s < t ≤ T ,

1
2M

[
eM(T+t−s)

1 + eMT
− e−M(T+t−s)

1 + e−MT

]
, if 0≤ t ≤ s≤ T.

(5.14)

From the previous expressions we obtain that ifM = 0, then

∥∥∥∥∥
∫ T

0

∣∣G(t,s)∣∣ds
∥∥∥∥∥≤ 5T2

4
=: K0 > 0, (5.15)

and ifM �= 0, then

∥∥∥∥∥
∫ T

0

∣∣G(t,s)∣∣ds
∥∥∥∥∥≤ 1

2|M|M
[
eMT − 1
1+ eMT

+
1− e−MT

1+ e−MT

]
=: KM > 0. (5.16)

Therefore, from Corollary 5.1 we obtain the following result.

Corollary 5.2. Assume that M ∈ R is a given constant, α and β are a pair of coupled
lower and upper solutions of the differential equation (L̄2), and f : I ×R→R is a continu-
ous function. Assuming condition (3.16) (with M2 instead of M) for some K ≥ 0 such that
K < 1/KM , with K0 and KM defined in (5.15) and (5.16), respectively, then the differential
equation (L̄2) has a unique solution in [α,β].

Difference equations. Let h > 0, P ∈N; P ≥ 2, and T= {0,h, . . . ,hP} ⊂R.
Given u : T→ R, it follows from [5, Theorem 1.16] that for every t ∈ Tκ2 , u is twice

∆-differentiable at t, moreover, we have that

u∆
2
(t)= u(t+2h)− 2u(t+h) +u(h)

h2
. (5.17)



A. Cabada and D. R. Vivero 307

In this case, one can verify that for allM ∈R such that |M| �= 1/h, 1 + (1+Mh)P−1 �= 0,
and 1+ (1−Mh)P−1 �= 0, the operator

T̄2[M]u(t) := −u(t+2h) + 2u(t+h)− (1−M2h2
)
u(h)

h2
, t ∈ I , (5.18)

is regressive on I and invertible on W2. Now, the function G is given by the following
expression.

IfM = 0, then

G(t,s)=




1
2

[
h(P− 1)

2
− t+ s+h

]
, if 0≤ s+h≤ t ≤ hP,

1
2

[
h(P− 1)

2
− s−h+ t

]
, if 0≤ t ≤ s≤ h(P− 2).

(5.19)

IfM �= 0, |M| �= 1/h, 1 + (1+Mh)P−1 �= 0, and 1+ (1−Mh)P−1 �= 0, then

G(t,s)=




1
2M

[
(1−Mh)(t−s−h)/h

1+ (1−Mh)P−1
− (1+Mh)(t−s−h)/h

1+ (1+Mh)P−1

]
, if 0≤ s+h≤ t ≤ hP,

1
2M

[
(1+Mh)(Ph+t−s−2h)/h

1+ (1+Mh)P−1
− (1−Mh)(Ph+t−s−2h)/h

1+ (1−Mh)P−1

]
, if 0≤ t ≤ s≤ h(P− 2).

(5.20)

From these expressions, we deduce the following estimates.
IfM = 0, then we have that

∥∥∥∥∥h ·
h(P−2)∑
s=0

∣∣G(t,s)∣∣
∥∥∥∥∥≤ 5

[
h(P− 1)

]2
4

=: K0 > 0. (5.21)

If |M| < 1/h,M �= 0, then we arrive at

∥∥∥∥∥h ·
h(P−2)∑
s=0

∣∣G(t,s)∣∣
∥∥∥∥∥≤ 1

2|M|M
[
(1+Mh)P−1− 1
1+ (1+Mh)P−1

+
1− (1−Mh)P−1

1+ (1−Mh)P−1

]

=: KM > 0.

(5.22)

As a consequence, we arrive at the following result.

Corollary 5.3. Assume that M ∈ R is a given constant such that |M| < 1/h, α and β are
a pair of coupled lower and upper solutions of the dynamic equation (L̄2), and the function
f : I ×R→R verifies that for every t ∈ I , f (t,·)∈ C(R). If (3.16) (with M2 instead of M)
holds for some K ≥ 0 such that K < 1/KM , with K0 and KM defined in (5.21) and (5.22),
respectively, then the dynamic equation (L̄2) has a unique solution in [α,β].

q-difference equations. Given q ∈R, q > 1, and N ∈N, N ≥ 2, let T= {1,q, . . . ,qN} ⊂R.
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If u : T→ R, then we know, by [5, Theorem 1.16], that for every t ∈ Tκ2 , u is twice
∆-differentiable at t and

u∆
2
(t)= u

(
q2t
)− (q+1)u(qt) + qu(t)

(q− 1)2qt2
. (5.23)

If t = qi and s= q j , then one can verify that Green’s function is given by the following
expression.

IfM = 0, then

G(t,s)=




1
2

[
qN − 1

2
− qi + q j+1

]
, if 0≤ j +1≤ i≤N ,

1
2

[
qN − 1

2
− q j+1 + qi

]
, if 0≤ i≤ j ≤N − 2.

(5.24)

If M �= 0, |M| �= 1/(q− 1)qk for each k ∈ JN−2 = {0,1, . . . ,N − 2}, 1 +∏N−2
k=0 (1 +M(q−

1)qk) �= 0 and 1+
∏N−2

k=0 (1−M(q− 1)qk) �= 0, then

G(t,s)=




1
2M

[ ∏i−1
k= j+1

(
1−M(q− 1)qk

)
1+
∏N−2

k=0
(
1−M(q− 1)qk

) −
∏i−1

k= j+1

(
1+M(q− 1)qk

)
1+
∏N−2

k=0
(
1+M(q− 1)qk

)
]
,

if 0≤ j +1≤ i≤N ,

1
2M

[ ∏
k∈Ii, j

(
1−M(q− 1)qk

)
1+
∏N−2

k=0
(
1−M(q− 1)qk

) −
∏

k∈Ii, j
(
1+M(q− 1)qk

)
1+
∏N−2

k=0
(
1+M(q− 1)qk

)
]
,

if 0≤ i≤ j ≤N − 2,

(5.25)

with Ii, j defined in (4.23).
From the expression of Green’s function, we obtain the following upper bounds.
IfM = 0, then

(q− 1) ·
(
max
0≤i≤N

{N−2∑
j=0

q j
∣∣G(qi,q j

)∣∣})≤max
{
K0,1,K0,2

}=: K0 > 0, (5.26)

with

K0,1 := 5
(
qN−1− 1

)2
4

,

K0,2 := 1
2

[(
qN − 1

)(
qN−1− 1

)
+
1
2

(
qN−1− 1

)2]
.

(5.27)

If |M| < 1/(q− 1)qN−2,M �= 0, then

(q− 1) ·
(
max
0≤i≤N

{N−2∑
j=0

q j
∣∣G(qi,q j

)∣∣})≤max
{
KM,1,KM,2

}=: KM > 0, (5.28)
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where

KM,1 := 1
2|M|M

[∏N−2
k=0

(
1+M(q− 1)qk

)− 1

1+
∏N−2

k=0
(
1+M(q− 1)qk

) + 1−∏N−2
k=0

(
1−M(q− 1)qk

)
1+
∏N−2

k=0
(
1−M(q− 1)qk

)
]
,

KM,2 := 1
2|M|M

[∏N−1
k=0

(
1+M(q− 1)qk

)− 1−M(q− 1)qN−1

1+
∏N−2

k=0
(
1+M(q− 1)qk

)
+
1−M(q− 1)qN−1−∏N−1

k=0
(
1−M(q− 1)qk

)
1+
∏N−2

k=0
(
1−M(q− 1)qk

)
]
.

(5.29)

From the previous expressions, we have the following result.

Corollary 5.4. Assume thatM ∈R is such that |M| < 1/(q− 1)qN−2, α and β are a pair of
coupled lower and upper solutions of the dynamic equation (L̄2), and f : I ×R→R verifies
that for every t ∈ I , f (t,·)∈ C(R). If (3.16) (withM2 instead ofM) is true for some K ≥ 0
such that K < 1/KM , with K0 and KM defined in (5.26) and (5.28), respectively, then the
dynamic equation (L̄2) has a unique solution in [α,β].
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de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain

E-mail address: lolirv@usc.es

mailto:cabada@usc.es
mailto:lolirv@usc.es

	1. Introduction
	2. Expression of Green’s function
	3. Existence and uniqueness results
	4. First-order equations
	4.1. Particular cases.

	5. Second-order equations
	5.1. Particular cases.

	Acknowledgments
	References

