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Abstract

In this paper, by making use of the coincidence degree theory of Mawhin, the
existence of the nontrivial solution for the boundary value problem with Riemann-
Stieltjes Δ-integral conditions on time scales at resonance⎧⎨

⎩
x��(t) = f (t, x(t), x�(t)) + e(t), a.e. t ∈ [0,T]

�
,

x�(0) = 0, x(T) =
T∫
0
xσ (s)�g(s)

is established, where f : [0,T]� × �× � → � satisfies the Carathéodory conditions
and e : [0,T]� → � is a continuous function and g : [0,T]� → � is an increasing
function with

∫ T
0 �g(s) = 1 . An example is given to illustrate the main results.

Keywords: boundary value problem with Riemann-Stieltjes Δ?Δ?-integral conditions,
resonance, time scales

1 Introduction
Hilger [1] introduced the notion of time scales in order to unify the theory of continu-

ous and discrete calculus. The field of dynamical equations on time scales contains,

links and extends the classical theory of differential and difference equations, besides

many others. There are more time scales than just ℝ (corresponding to the continuous

case) and N (corresponding to the discrete case) and hence many more classes of

dynamic equations. An excellent resource with an extensive bibliography on time

scales was produced by Bohner and Peterson [2,3].

Recently, existence theory for positive solutions of boundary value problems (BVPs)

on time scales has attracted the attention of many authors; Readers are referred to, for

example, [4-11] and the references therein for the existence theory of some two-point

BVPs and [12-17] for three-point BVPs on time scales. For the existence of solutions

of m-point BVPs on time scales, we refer the reader to [18-20].

At the same time, we notice that a class of boundary value problems with integral

boundary conditions have various applications in chemical engineering, thermo-elasti-

city, population dynamics, heat conduction, chemical engineering underground water

flow, thermo-elasticity and plasma physics. On the other hand, boundary value
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problems with integral boundary conditions constitute a very interesting and important

class of problems. They include two-point, three-point, multipoint and nonlocal

boundary value problems as special cases [[21-24], and the references therein]. How-

ever, very little work has been done to the existence of solutions for boundary value

problems with integral boundary conditions on time scales.

Motivated by the statements above, in this paper, we are concerned with the follow-

ing boundary value problem with integral boundary conditions⎧⎨
⎩
x��(t) = f (t, x(t), x�(t)) + e(t), a.e. t ∈ [0,T]

�
,

x�(0) = 0, x(T) =
T∫
0
xσ (s)�g(s),

(1:1)

where f : [0,T]� × �× � → � and e : [0,T]� → � are continuous functions,

g : [0,T]� → � is an increasing function with
∫ T

0
�g(s) = 1 , and the integral in (1.1)

is a Riemann-Stieltjes on time scales, which is introduced in Section 2 of this paper.

According to the calculus theory on time scales, we can illustrate that boundary

value problems with integral boundary conditions on time scales also cover two-point,

three-point, ..., n-point boundary problems as the nonlocal boundary value problems

do in the continuous case. For instance, in BVPs (1.1), let

g(s) =
k∑
i=1

aiχ(s − ti),

where k ≥ 1 is an integer, ai Î [0, ∞), i = 1, ..., k, {ti}ki=1 is a finite increasing

sequence of distinct points in [0,T]� , and c(s) is the characteristic function, that is,

χ(s) =
{
1, s > 0,
0, s ≤ 0,

then the nonlocal condition in BVPs (1.1) reduces to the k-point boundary condition

x(T) =
k∑
i=1

aix(ti),

where ti, i = 1, 2, ..., k can be determined (see Lemma 2.5 in Section 2).

The effect of resonance in a mechanical equation is very important to scientists.

Nearly every mechanical equation will exhibit some resonance and can, with the appli-

cation of even a very small external pulsed force, be stimulated to do just that. Scien-

tists usually work hard to eliminate resonance from a mechanical equation, as they

perceive it to be counter-productive. In fact, it is impossible to prevent all resonance.

Mathematicians have provided more theory of resonance from equations. For the case

where ordinary differential equation is at resonance, most studies have tended to the

equation x″(t) = f (t, x(t), x’(t)) + e(t). For example, Feng and Webb [25] studied the

following boundary value problem{
x′′(t) = f (t, x(t), x′(t)) + e(t), t ∈ (0, 1),
x(0) = 0, x(1) = αx(ξ),
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when aξ = 1(ξ Î (0, 1)) is at resonance.

It is easy to see that x1(t) ≡ c(c Î ℝ) and x2(t) = pt(p Î ℝ) are a fundamental set of

solutions of the linear mapping Lx(t) = xΔΔ(t) = 0. Let U1(x) = xΔ(0) and

U2(x) = x(T) − ∫ T
0 xσ (s)�g(s) . Since

∫ T

0
�g(s) = 1 , we have that

Q(x) =
(

U1(x1) U1(x2)
(U2(x1) U2(x2)

)
=

⎛
⎝0 p

0 pT − p
T∫
0

σ (s)�g(s)

⎞
⎠ .

Thus, det Q(x) = 0, which implies that BVPs (1.1) is at resonance. By applying coin-

cidence degree theorem of Mawhin to integral boundary value problems on time scales

at resonance, this paper will establish some sufficient conditions for the existence of at

least one solution to BVPs (1.1).

The rest of this paper is organized as follows. Section 2 introduces the Riemann-

Stieltjes integral on time scales. Some lemmas and criterion for the existence of at

least one solution to BVPs (1.1) are established in Section 3, and examples are given to

illustrate our main results in Section 4.

2 Preliminaries
This section includes two parts. In the first part, we shall recall some basic definitions

and lemmas of the calculus on time scales, which will be used in this paper. For more

details, we refer to books by Bohner and Peterson [2,3]. In the second part, we intro-

duce the Riemann-Stieltjes Δ-integral and ∇-integral on time scales, which was first

established by Mozyrska et al. in [26].

2.1 The basic calculus on time scales

Definition 2.1. [3] A time scale � is an arbitrary nonempty closed subset of the real

set ℝ with the topology and ordering inherited from ℝ.

The forward and backward jump operators σ ,ρ : � → � and the graininess

μ : � → �
+ are defined, respectively, by

σ (t) := inf{s ∈ � : s > t}, ρ(t) := sup{s ∈ � : s < t}, μ(t) := σ (t) − t.

The point t ∈ � is called left-dense, left-scattered, right-dense or right-scattered if r
(t) = t, r(t) <t, s(t) = t or s(t) >t, respectively. Points that are right-dense and left-

dense at the same time are called dense. If � has a left-scattered maximum m1, define

�
k = �− {m1} ; otherwise, set �k = � . If � has a right-scattered minimum m2, define

�k = �− {m2} ; otherwise, set Tk = T.

Definition 2.2. [3] A function f : � → � is rd-continuous (rd-continuous is short

for right-dense continuous) provided it is continuous at each right-dense point in �

and has a left-sided limit at each left-dense point in � . The set of rd-continuous func-

tions f : � → � will be denoted by Crd(�) = Crd(�,�) .

Definition 2.3. [3] If f : � → � is a function and t ∈ �
k , then the delta derivative of

f at the point t is defined to be the number fΔ(t) (provided it exists) with the property

that for each ε > 0 there is a neighborhood U of t such that
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|f (σ (t)) − f (s) − f�(t)[σ (t) − s]| ≤ ε|σ (t) − s|, for all s ∈ U.

Definition 2.4. [3] For a function f : � → � (the range ℝ of f may be actually

replaced by Banach space), the (delta) derivative is defined at point t by

f�(t) =
f (σ (t)) − f (t)

σ (t) − t
,

if f is continuous at t and t is right-scattered. If t is not right-scattered, then the deri-

vative is defined by

f�(t) = lim
s→t

f (σ (t)) − f (s)
σ (t) − s

= lim
s→t

f (t) − f (s)
t − s

provided this limit exists.

Definition 2.5. [3] If FΔ(t) = f(t), then we define the delta integral by

t∫
a

f (s)�s = F(t) − F(a).

Lemma 2.1. [3]Let a ∈ �
k , b ∈ � and assume that f : �× �

k → � is continuous at

(t, t), where t ∈ �
k with t > a. Also assume that fΔ(t, ·) is rd-continuous on [a, s(t)].

Suppose that for each ε > 0 there exists a neighborhood U of t, independent of τ Î [a, s
(t)], such that

|f (σ (t), τ ) − f (s, τ ) − f�(t, τ )(σ (t) − s)| ≤ ε|σ (t) − s|, for all s ∈ U,

where fΔ denotes the derivative of f with respect to the first variable. Then

(1) g(t) :=
t∫
a
f (t, τ )�τ implies g�(t) =

t∫
a
f�(t, τ )�τ + f (σ (t), t);

(2) h(t) :=
b∫
t
f (t, τ )�τ implies h�(t) =

b∫
t
f�(t, τ )�τ − f (σ (t), t).

The construction of the Δ-measure on � and the following concepts can be found in

[3].

(i) For each t0 ∈ �\{max�} , the single-point set t0 is Δ-measurable, and its Δ-mea-

sure is given by

μ�({t0}) = σ (t0) − t0 = μ(t0).

(ii) If a, b ∈ � and a ≤ b, then

μ�([a, b)) = b − a and μ�((a, b)) = b − σ (a).

(iii) If a, b ∈ �\{max�} and a ≤ b, then

μ�((a, b]) = σ (b) − σ (a) and μ�([a, b]) = σ (b) − a.
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The Lebesgue integral associated with the measure μΔ on � is called the Lebesgue

delta integral. For a (measurable) set E ⊂ � and a function f : E ® ℝ, the correspond-

ing integral of f on E is denoted by
∫
E f (t)�t . All theorems of the general Lebesgue

integration theory hold also for the Lebesgue delta integral on � .

2.2 The Riemann-Stieltjes integral on time scales

Let � be a time scale, a, b ∈ � , a < b, and I = [a, b]� . A partition of I is any finite-

ordered

subset

P = {t0, t1, . . . , tn} ⊂ [a, b]�, where a = t0 < t1 < · · · < tn = b.

Let g be a real-valued increasing function on I. Each partition P = {t0, t1, ..., tn} of I

decomposes I into subintervals I�j = [tj−1,ρ(tj)]� := [tj−1, tj]� , j = 1, 2, ..., n, such that

I�j ∩ I�k = ∅ for any k ≠ j. By Δtj = tj - tj-1, we denote the length of the jth subinterval

in the partition P; by P(I) the set of all partitions of I.

Let Pm, Pn ∈ P(I) . If Pm ⊂ Pn, we call Pn a refinement of Pm. If Pm, Pn are indepen-

dently chosen, then the partition Pm
⋃

Pn is a common refinement of Pm and Pn.

Let us now consider an increasing real-valued function g on the interval I. Then, for

the partition P of I, we define

g(P) = {g(a) = g(t0), g(t1, ) . . . , g(tn−1), g(tn)} ⊂ g(I),

where Δgj = g(tj) - g(tj-1). We note that Δgj is positive and
∑n

j=1 �gj = g(b) − g(a) .

Moreover, g(P) is a partition of [g(a), g(b)]ℝ. In what follows, for the particular case g(t)

= t we obtain the Riemann sums for delta integral. We note that for a general g the

image g(I) is not necessarily an interval in the classical sense, even for rd-continuous

function g, because our interval I may contain scattered points. From now on, let g be

always an increasing real function on the considered interval I = [a, b]� .

Lemma 2.2. [26]Let I = [a, b]�be a closed (bounded) interval in �and let g be a con-

tinuous increasing function on I. For every δ > 0, there is a partition

Pδ = {t0, t1, . . . , tn} ∈ P(I)such that for each j Î {1, 2, ..., n}, one has

�gj = g(tj) − g(tj−1) ≤ δ or �gj > δ ∧ ρ(tj) = tj−1.

Let f be a real-valued and bounded function on the interval I. Let us take a partition

P = {t0, t1, ..., tn} of I. Denote I�j = [tj−1, tj]� , j = 1, 2, ..., n, and

m�j = inf
t∈I� j

f (t), M�j = sup
t∈I�j

f (t).

The upper Darboux-Stieltjes Δ-sum of f with respect the partition P, denoted by UΔ

(P, f, g), is defined by

U�(P, f , g) =
n∑
j=1

M�j�gj,

while the lower Darboux-Stieltjes Δ-sum of f with respect the partition P, denoted by

LΔ(P, f, g), is defined by

Li and Shu Advances in Difference Equations 2011, 2011:42
http://www.advancesindifferenceequations.com/content/2011/1/42

Page 5 of 18



L�(P, f , g) =
n∑
j=1

m�j�gj.

Definition 2.6. [26] Let I = [a, b]� , where a, b ∈ � . Let g be continuous on I. The

upper Darboux-Stieltjes Δ-integral from a to b with respect to function g is defined by

b
∫
a
f (t)�g(t) = inf

P∈P(I)
U�(P, f , g);

the lower Darboux-Stieltjes Δ-integral from a to b with respect to function g is

defined by

b
∫
a
f (t)�g(t) = sup

P∈P(I)
U�(P, f , g).

If ∫b
af (t)�g(t) = ∫b

af (t)�g(t) , then we say that f is Δ-integrable with respect to g on

I, and the common value of the integrals, denoted by
∫ b

a
f (t)�g(t) =

∫ b

a
f�g , is called

the Riemann-Stieltjes Δ-integral of f with respect to g on I.

The set of all functions that are Δ-integrable with respect to g in the Riemann-

Stieltjes sense will be denoted by R�(g, I) .

Theorem 2.1. [26]Let f be a bounded function on I = [a, b]� , a, b ∈ � , m ≤ f (t) ≤ M

for all t Î I, and g be a function defined and monotonically increasing on I. Then

m(g(b) − g(a)) ≤
b∫

a

f (t)�g(t) ≤
b∫

a

f (t)�g(t) ≤ M(g(b) − g(a)).

If f ∈ R�(g, I) , then

m(g(b) − g(a)) ≤
b∫

a

f (t)�g(t) ≤ M(g(b) − g(a)).

Theorem 2.2. [26] (Integrability criterion) Let f be a bounded function on I = [a, b]� ,

a, b ∈ � . Then, f ∈ R�(g, I) if and only if for every ε > 0, there exists a partition

P ∈ P(I) such that

U�(P, f , g) − L�(P, f , g) < ε.

Theorem 2.3. [26]Let I = [a, b]� , a, b ∈ � . Then, the condition f ∈ R�(g, I) is equiva-

lent to each one of the following items:

(i) f is a monotonic function on I;

(ii) f is a continuous function on I;

(iii) f is regulated on I;

(iv) f is a bounded and has a finite number of discontinuity points on I.

In the following, we state some algebraic properties of the Riemann-Stieltjes integral
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on time scales as well. The properties are valid for an arbitrary time scale � with at

least two points. We define
∫ a
a f (t)�g(t) = 0 and

∫ b
a f (t)�g(t) = − ∫ a

b f (t)�g(t) for a

>b.

Theorem 2.4. [26]Let I = [a, b]� , a, b ∈ � . Every constant function f : � → �, f(t) ≡

c, is Stieltjes Δ-integrable with respect to g on I and

b∫
a

c�g(t) = c(g(b) − g(a)).

Theorem 2.5. [26]Let t ∈ � and f : � → �. If f is Riemann-Stieltjes Δ-integrable

with respect to g from t to s(t), then

σ (t)∫
t

f (τ )�g(τ ) = f (t)(gσ (t) − g(t)),

where gs = g ° s. Moreover, if g is Δ-differentiable at t, then

σ (t)∫
t

f (τ )�g(τ ) = μ(t)f (t)g�(t).

Theorem 2.6. [26]Let a, b, c ∈ � with a < b < c. If f is bounded on [a, c]�and g is

monotonically increasing on [a, c]� , then

c∫
a

f�g =

b∫
a

f�g +

c∫
b

f�g.

Lemma 2.3. [26]Let I = [a, b]� , a, b ∈ � . Suppose that g is an increasing function

such that gΔ is continuous on (a, b)�and f s is a real-bounded function on I. Then,

f σ ∈ R�(g, I) if and only if f σ g� ∈ R�(g, I) . Moreover,

b∫
a

f σ (t)�g(t) =

b∫
a

f σ (t)g�(t)�t.

Lemma 2.4. (Delta integration by parts) Let I = [a, b]� , a, b ∈ � . Suppose that g is an

increasing function such that gΔ is continuous on (a, b)�and f s is a real-bounded func-

tion on I. Then

b∫
a

f σ�g = [fg]ba −
b∫

a

g�f .

Proof. Lemma 2.3 imply that

b∫
a

f σ (t)�g(t) =

b∫
a

f σ (t)g�(t)�t;
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furthermore,

b∫
a

f σ (t)g�(t)�t = [fg]ba −
b∫

a

f�(t)g(t)�t.

Hence,

b∫
a

f σ�g = [fg]ba −
b∫

a

g�f .

The proof of this lemma is complete.

Lemma 2.5. Let I = [0,T]� , 0,T ∈ � . Assume that f s is a real-bounded function on I

and

g(s) =
k∑
i=1

aiχ(s − ti),

where k ≥ 1 is an integer, ai Î [0, ∞), i = 1, ..., k, {ti}ki=1 is a finite increasing sequence

of distinct points in [0,T]�and c(s) is the characteristic function, that is,

χ(s) =
{
1, s > 0,
0, s ≤ 0.

Then

f (T) =

T∫
0

f σ (s)�g(s) =
k∑
i=1

aif (ti),

where ti, i = 1, 2, ..., k can be determined.

Proof. By Lemma 2.4, it leads to

f (T) =

T∫
0

f σ (s)�g(s)

=

⎛
⎝ t1∫

0

+

t2∫
t1

+ · · · +
T∫

tk

⎞
⎠ f σ (s)�g(s)

=

⎛
⎝[fg]t10 −

t1∫
0

g(s)�f (s)

⎞
⎠ + · · · +

⎛
⎝[fg]Ttk −

T∫
tk

g(s)�f (s)

⎞
⎠

= f (T)g(T) −
⎛
⎝ t1∫

0

0�f (s)+

t2∫
t1

a1�f (s) + · · · +
T∫

tk

(a1 + a2 + · · · + ak)�f (s)

⎞
⎠

= (a1 + a2 + · · · + ak)f (T) −
(

−
k∑
i=1

aif (ti) + (a1 + a2 + · · · + ak)f (T)

)

=
k∑
i=1

aif (ti).

This completes the proof.
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3 Main results
In this section, first we provide some background materials from Banach spaces and

preliminary results, and then we illustrate and prove some important lemmas and

theorems.

Definition 3.1. Let × and Y be Banach spaces. A linear operator L : Dom L ⊂ X ® Y

is called a Fredholm operator if the following two conditions hold

(i) KerL has a finite dimension;

(ii) Im L is closed and has a finite codimension.

L is a Fredholm operator, and its Fredholm index is the integer Ind L = dimKer L -

codimIm L. In this paper, we are interested in a Fredholm operator of index zero, i.e.,

dimKer L = codimIm L.

From Definition 3.1, we know that there exist continuous projector P : X ® X and Q

: Y ® Y such that Im P = Ker L, Ker Q = Im L, X = Ker L ⊕ Ker P, Y = Im L ⊕ ImQ,

and the operator L|Dom L⋂KerP : Dom L ⋂ Ker P ® Im L is invertible; we denote the

inverse of L|Dom L⋂KerP by KP : Im L ® Dom L ⋂ Ker P. The generalized inverse of L

denoted by KP,Q : Y ® Dom L ⋂ Ker P is defined by KP,Q = KP (I - Q).

Now, we state the coincidence degree theorem of Mawhin [27].

Theorem 3.1. Let Ω ⊂ X be open-bounded set, L be a Fredholm operator of index

zero and N be L-compact on �̄ . Assume that the following conditions are satisfied:

(i) Lx �= λNx for every (x,λ) ∈ (Dom L\Ker L) ∩ ∂� × [0,T]� ;

(ii) Nx ∉ Im L for every × Î Ker L ⋂ ∂Ω;

(iii) deg(QN|Ker L⋂∂Ω, Ω ⋂ Ker L, 0) ≠ 0 with Q : Y ® Y a continuous projector such

that Ker Q = Im L.

Then, the equation Lu = Nu admits at least one nontrivial solution in Dom L ∩ �̄ .

Definition 3.2. A mapping f : [0,T]� × �× � → �satisfies the Carathéodory condi-

tions with respect to L�[0,T]� , where L�[0,T]�denotes that all Lebesgue Δ-integrable

functions on [0,T]� , if the following conditions are satisfied:

(i) for each (x1, x2) Î ℝ2, the mapping t ® f(t, x1, x2) is Lebesgue measurable on

[0,T]� ;

(ii) for a.e. t ∈ [0,T]� , the mapping (x1, x2) ® f (t, x1, x2) is continuous on ℝ2;

(iii) for each r > 0, there exists αr ∈ L�([0,T]�,�)such that for a.e. t ∈ [0,T]�and

every x1 such that |x1| ≤ r, |f (t, x1, x2)| ≤ ar.

Let the Banach space X = C�[0,T]� with the norm ||x|| = max{||x||∞, ||x
Δ||∞},

where ||x||∞ = supt∈[0,T]
�

|x(t)| . Let

L�
1oc[0,T]T = {x : x|[s,t]T ∈ L�[0,T]T for each [s, t]T ⊂ [0,T]T},
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set Y = L�
1oc[0,T]� with the norm ||x||L =

T∫
0

|x(t)|�t . We use the space W2,1[0,T]�

defined by

{x : [0,T]T → R|x(t), x�(t) is absolutely continuous on [0,T]Twith x�� ∈ L�
1oc[0,T]T}.

Define the linear operator L and the nonlinear operator N by

L : X ∩ Dom L → Y, Lx(t) = x��(t), for x ∈ X ∩ Dom L,

N : X → Y, Nx(t) = f (t, x(t), x�(t)) + e(t), for x ∈ X,

respectively, where

Dom L =

⎧⎨
⎩x ∈ W2,1[0,T]

�
, x�(0) = 0, x(T) =

T∫
0

xσ (s)�g(s)

⎫⎬
⎭ .

Lemma 3.1. L : Dom L ⊂ X ® Y is a Fredholm mapping of index zero. Furthermore,

the continuous linear project operator Q : Y ® Y can be defined by

Qy =
1
�

T∫
0

T∫
σ (s)

t∫
0

y(τ )�τ�t�g(s), for y ∈ Y,

where � =
∫ T

0

∫ T

σ (s)

∫ t

0
�τ�t�g(s) �= 0 . Linear mapping KP can be written by

KPy(t) =

t∫
0

(t − σ (s))y(s)�s, for y ∈ Im L.

Proof. It is clear that Ker L = {x(t) ≡ c, c ∈ �} = � , i.e., dimKer L = 1. Moreover, we

have

Im L =

⎧⎪⎨
⎪⎩y ∈ Y,

T∫
0

T∫
σ (s)

t∫
0

y(τ )�τ�t�g(s) = 0

⎫⎪⎬
⎪⎭ . (3:1)

If y Î Im L, then there exists x Î Dom L such that xΔΔ(t) = y(t). Integrating it from

0 to t, we have

x�(t) =

t∫
0

y(τ )�τ .

Integrating the above equation from s to T, we get

x(s) = x(T) −
T∫

s

t∫
0

y(τ )�τ�t. (3:2)
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Substituting the boundary condition x(T) =
∫ T

0
xσ (s)�g(s) into (3.2), and by the

condition
∫ T

0
�g(s) = 1 , we have

T∫
0

T∫
σ (s)

t∫
0

y(τ )�τ�t�g(s) = 0. (3:3)

On the other hand, y Î Y satisfies (3.3), we take x Î Dom L ⊂ X as given by (3.2),

then xΔΔ(t) = y(t) and

x�(0) = 0, x(T) =

T∫
0

xσ (s)�g(s).

Therefore, (3.1) holds.

Set � =
∫ T
0

∫ T
σ (s)

∫ t
0 �τ�t�g(s) . It is easy to show that Λ ≠ 0, and then we define the

mapping Q : Y ® Y by

Qy =
1
�

T∫
0

T∫
σ (s)

t∫
0

y(τ )�τ�t�g(s), for y ∈ Y,

and it is easy to see that Q : Y ® Y is a linear continuous projector.

For the mapping L and continuous linear projector Q, it is not difficult to check that

Im L = Ker Q. Set y = (y - Qy) + Qy; thus, y - Qy Î Ker Q = Im L and Qz Î Im Q, so

Y = ImL + Im Q. If y Î Im L ⋂ Q, then y(t) = 0, hence Y = Im L ⊕ Im Q. From Ker L

= ℝ, we obtain that Ind L = dim Ker L - codim Im L = dim Ker L - dim Im Q = 0,

that is, L is a Fredholm mapping of index zero.

Take P : X ® X as follows

Px(t) = x(0), for x ∈ X.

Obviously, Im P = Ker L and X = Ker L ⊕ Ker P. Then, the inverse KP : Im L ®
Dom L ⋂ Ker P is defined by

KPy(t) =

t∫
0

(t − σ (s))y(s)�s.

For y Î Im L, we have

(LKP)y(t) =

⎛
⎝ t∫

0

(t − σ (s))y(s)�s

⎞
⎠

��

,
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from Lemma 2.1, we obtain

⎛
⎝ t∫

0

(t − σ (s))y(s)�s

⎞
⎠

��

= (

t∫
0

y(s)�s)� = y(t),

that is

(LKP)y(t) =

⎛
⎝ t∫

0

(t − σ (s))y(s)�s

⎞
⎠

��

= y(t). (3:4)

On the other hand, for x Î Dom L ⋂ Ker P,

(KPL)x(t) =

t∫
0

(t − σ (s))x��(s)�s,

using Lemma 2.4 and the boundary conditions, we get

t∫
0

(t − σ (s))x��(s)�s = (t − σ (s))x��(s)

∣∣∣∣∣∣
t

0

+

t∫
0

x�(s)�s = x(t),

i.e.,

(KPL)x(t) =

t∫
0

(t − σ (s))x��(s)�s = x(t), t ∈ [0,T]�. (3:5)

(3.4) and (3.5) yield KP = (L|Dom L⋂Ker P)
-1. The proof is completed.

Furthermore,

QNx =
1
�

T∫
0

T∫
σ (s)

t∫
0

(Nx)(τ )�τ�t�g(s),

(KP,QN)x(t) =

t∫
0

(t − σ (s))(Nx)(s)�s

−
t∫

0

(t − σ (s))

⎡
⎢⎣ 1

�

T∫
0

T∫
σ (s′)

t′∫
0

(Nx)(τ )�τ�t′�g(s′)

⎤
⎥⎦ �s.

Lemma 3.2. Let f : [0,T]� × �× � → �satisfy the Carathéodory conditions, then the

mapping N is L-completely continuous.

Proof. Assume that xn, x0 Î E ⊂ X satisfy ||xn - x0|| ® 0, (n ® ∞); thus, there exists

M > 0 such that ||xn|| ≤ M for any n ≥ 1. One has that

||Nxn − Nx0||∞ = sup
t∈[0,T]

�

|Nxn − Nx0| = sup
t∈[0,T]

�

|f (t, xn(t), x�
n (t)) − f (t, x0(t), x�

0 (t))|.

In view of f satisfying the Carathéodory conditions, we can obtain that for a.e.

t ∈ [0,T]� , ||Nxn - Nx0||∞ ® 0, (n ® ∞). This means that the operator N : E ® Y is
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continuous. By the definitions of QN and KP,QN, we can obtain that QN : E ® Y and

KP,Q : E ® X are continuous.

Let r = sup{||x|| : x Î E} < ∞ for a.e. t ∈ [0,T]� , we have

|Nxn| ≤ |f (t, xn(t), x�
n (t))| + |e(t)| ≤ |(αr(t)| + |e(t)| := ψ(t),

|QNxn| ≤ 1
|�|

T∫
0

T∫
σ (s)

t∫
0

|(Nxn)(τ )|�τ�t�g(s)

≤ 1
|�|

T∫
0

T∫
σ (s)

t∫
0

|ψ(τ )|�τ�t�g(s),

|(KP,QN)xn(t)| ≤
t∫

0

(t − σ (s))|(Nxn)(s)|�s −
t∫

0

(t − σ (s))|QNxn|�s.

Since functions αr(t), e(t) ∈ L�
loc[0,T]� , we get that ψ(t) ∈ L�

loc[0,T]� . Further

||Nxn||L ≤
T∫

0

|ψ(t)|�t := χ < ∞.

It follows that (QN)(E) and (KP,QN )(E) are bounded.

It is easy to see that {QNxn}∞n=1 is equicontinuous on a.e. t ∈ [0,T]� . So, we only

show that {(KP,QN)xn}∞n=1 is equicontinuous on a.e. t ∈ [0,T]� . For any t1, t2 ∈ [0,T]�
with t1 <r(t2),

|(KP,QN)xn(t1) − (KP,QN)xn(t2)|

≤
t2∫

t1

|(KP,QNxn)
�(s)|�s

≤
t2∫

t1

s∫
0

|(Nxn)(τ ) − (QNxn(τ ))|�τ�s

≤
t2∫

t1

s∫
0

|Nxn(τ )|�τ�s +

t2∫
t1

s∫
0

|QNxn(τ )|�τ�s.

(3:6)

Since |Nxn| ≤ ψ with ψ ∈ L�
1oc([0, T]�) , (3.6) shows that {(KP,QN)xn}∞n=1 is equi-

continuous on a.e. t ∈ [0,T]� . Hence, by the Arzelà-Ascoli theorem on time scales,

{QNxn}∞n=1 and {KP,QNxn}∞n=1 are compact on an arbitrary bounded E ⊂ X, and the

mapping N : X ® Y is L-completely continuous. The proof is completed.

Now, we are ready to apply the coincidence degree theorem of Mawhin to give the

sufficient conditions for the existence of at least one solution to problem (1.1).

Theorem 3.2. Let f : [0, T]� × �
2 → �satisfy the Carathéodory conditions, and

(H1) There exist continuous functions r : [0, T]� → �
+ , gi : [0, T]� × � → �

+ , i = 1,

2, such that

|f (t, x1, x2)| ≤ g1(t, x1) + g2(t, x2) + r(t)
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and

lim
|x|→+∞

sup
t∈[0,T]

�

gi(t, x)
|x| = ri ∈ [0, +∞), i = 1, 2.

(H2) There is a constant M > 0 such that for any x Î Dom L\Ker L, if |x(t)| >M for

all t ∈ [0,T]� ; then,
1
�

T∫
0

T∫
σ (s)

t∫
0
[f (τ , x(τ ), x�(τ ) + e(τ )]�τ�t�g(s) �= 0.

(H3) There is a constant M* > 0 such that for any c Î ℝ, if |c| >M*; then, we have

either

c
�

T∫
0

T∫
σ (s)

t∫
0

[f (τ , c, 0) + e(τ )] �τ�t�g(s) > 0 (3:7)

or

c
�

T∫
0

T∫
σ (s)

t∫
0

[f (τ , c, 0) + e(τ )] �τ�t�g(s) < 0. (3:8)

Then, problem (1.1) admits at least one solution provided that

T2r1 + Tr2 < 1.

Proof. Let Ω1 = {x Î Dom L\Ker L : Lx = lNx for some l Î (0, 1)}. For x Î Ω1, we

have x ∉ Ker L and Nx Î Im L = Ker Q; thus, QNx = 0, i.e.,

QNx =
1
�

T∫
0

T∫
σ (s)

t∫
0

[f (τ , x(τ ), x�(τ )) + e(τ )] �τ�t�g(s) = 0.

Hence by (H2), we know that there exists t0 ∈ [0, T]� such that |x(t0)| <M. Since

x(t) = x(t0) +

t∫
t0

x�(s)�s.

So we get

||x||∞ ≤ M +

T∫
0

|x�(s)|�s ≤ M + T||x�||∞.

Integrating the equation

x��(t) = λ[f (t, x(t), x�)(t) + e(t)], t ∈ [0, T]�
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from 0 to t, we obtain

|x�(t)| =

∣∣∣∣∣∣
t∫

0

f (s, x(s), x�(s)) + e(s)�s

∣∣∣∣∣∣
≤

T∫
0

|f (s, x(s), x�(s)) + e(s)|�s

≤
T∫

0

|e(s)|�s +

T∫
0

|r(s)|�s +

T∫
0

|g1(s, x(s))|�s +

T∫
0

|g2(s, x�(s))|�s.

Let ε > 0 satisfy

T[T(r1 + ε) + (r2 + ε)] < 1.

For such ε, there is δ > 0 so that for i = 1, 2,

|gi(t, x)| < (ri + ε)|x|, uniformly for t ∈ [0, T]T and |x| > δ.

Let

�1,0 = {t : t ∈ [0, T]�, |x(t)| ≤ δ}, �1,1 = {t : t ∈ [0, T]�, |x�(t)| ≤ δ},
�2,0 = {t : t ∈ [0, T]�, |x(t)| > δ}, �2,1 = {t : t ∈ [0, T]�, |x�(t)| > δ},
ḡi = max

t∈[0,T]
�
,|x|<δ

|gi(t, x)|, i = 1, 2.

We get

|x�(t)| ≤
T∫

0

|e(s)|�s +

T∫
0

|r(s)|�s +

T∫
0

|g1(s, x(s))|�s +

T∫
0

|g2(s, x�(s))|�s

≤
T∫

0

|e(s)|�s +

T∫
0

|r(s)|�s +
∫

�1,0

|g1(s, x(s))|�s +
∫

�2,0

|g1(s, x(s))|�s

+
∫

�1,1

|g2(s, x�(s))|�s +
∫

�2,1

|g2(s, x�(s))|�s

≤
T∫

0

|e(s)|�s +

T∫
0

|r(s)|�s + T[(r1 + ε)||x||∞ + ḡ1 + (r2 + ε)||x�||∞ + ḡ2]

≤
T∫

0

|e(s)|�s +

T∫
0

|r(s)|�s + T[(r1 + ε)M + ḡ1 + ḡ2]

+ T[T(r1 + ε) + (r2 + ε)]||x�||∞.

So we get

{1− T[T(r1 + ε) + (r2 + ε)]}||x�||∞ ≤
T∫

0

|e(s)|�s +

T∫
0

|r(s)|�s + T[(r1 + ε)M + ḡ1 + ḡ2].
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It follows from the definition of ε that there is a constant A > 0 such that

||x�||∞ ≤ A :=

∫ T
0 |e(s)|�s +

∫ T
0 |r(s)|�s + T[(r1 + ε)M + ḡ1 + ḡ2]

1 − T[T(r1 + ε) + (r2 + ε)]
.

Hence, we have

||x|| = max{||x||∞, ||x�||∞} ≤ max{M + TA, A},

which means that Ω1 is bounded.

Let Ω2 = {x Î Ker L : Nx Î Im L}. For x Î Ω2, then x(t) = c for some c Î ℝ. Nx Î
Im L implies QNx = 0, that is

1
�

T∫
0

T∫
σ (s)

t∫
0

[f (τ , c, 0) + e(τ )] �τ�t�g(s) = 0.

From (H3), we know that ||x|| = |c| ≤ M *, thus Ω2 is bounded.

If (3.7) holds, then let

�3 = {x ∈ Ker L : −λJx + (1 − λ)QNx = 0, λ ∈ [0, 1]},

where J : Ker L ® Im Q is a linear isomorphism given by J(k) = k for any k Î ℝ.

Since x(t) = k thus

λk = (1 − λ)QNk =
1 − λ

�

T∫
0

T∫
σ (s)

t∫
0

[f (τ , k, 0) + e(τ )] �τ�t�g(s).

If l = 1, then k = 0, and in the case l Î [0, 1), if |k| >M*, we have

λk2 =
k(1 − λ)

�

T∫
0

T∫
σ (s)

t∫
0

[f (τ , k, 0) + e(τ )] �τ�t�g(s) < 0,

which is a contradiction. Again, if (3.8) holds, then let

�3 = {x ∈ Ker L : −λJx + (1 − λ)QNx = 0, λ ∈ [0, 1]},

where J as in above, similar to the above argument. Thus, in either case, ||x|| = |k| ≤

M* for any x Î Ω3, that is, Ω3 is bounded.

Let Ω be a bounded open subset of X such that ∪3
i=1�i ⊂ � . By Lemma 3.2, we can

check that KP(I − Q)N : �̄ → X is compact; thus, N is L-compact on � .

Finally, we verify that the condition (iii) of Theorem 3.1 is fulfilled. Define a homo-

topy

H(x, λ) = ±λJx + (1 − λ)QNx.

According to the above argument, we have

H(x, λ) �= 0, for x ∈ ∂� ∩ Ker L;
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thus, by the degree property of homotopy invariance, we obtain

deg(QNKer L,� ∩ Ker L, 0) = deg(H(·, 0),� ∩ Ker L, 0)

= deg(H(·, 1),� ∩ Ker L, 0)

= deg(±J,� ∩ Ker L, 0) �= 0.

Thus, the conditions of Theorem 2.4 are satisfied, that is, the operator equation Lx =

Nx admits at least one solution in Dom L ∩ � . Therefore, BVPs (1.1) has at least one

solution in C�[0, T]� .

4 An example
In this section, we present an easy example to illustrate our main results.

Example 4.1. Let � = {0}
⋃

{ 1
2n+1 }

⋃
[ 12 , 1] , n = 1, 2, ..., ∞. Consider the boundary

value

Problem{
x��(t) = 1

2 tx
2(t) + 1

3 t
2x�(t) +

√
t, a.e. t ∈ �,

x�(0) = 0, x(1) = x( 12).
(4:1)

Let

g(t) =
{
0, for 0 ≤ t ≤ 1

2 ,
1, for 1

2 ≤ t ≤ 1,

then x(1) =
∫ 1

0
xσ (s)�g(s) . Let

g1(t, x) =
1
2
x2(t), g2(t, x�) =

1
3
(x�(t))2, r(t) =

t

2
.

We can get that r1 + r2 = 5
6 < 1 . It is easy to check other conditions of Theorem 3.1

are satisfied. Hence, boundary value problem (4.1) has at least one solution.
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