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Abstract

In this article, we consider the following systems of Fredholm integral equations:

ui(t) = hi(t) +
T∫
0
gi(t, s)fi(s, u1(s), u2(s), . . . , un(s))ds, t ∈ [0,T], 1 ≤ i ≤ n,

ui(t) = hi(t) +
∞∫
0
gi(t, s)fi(s, u1(s), u2(s), . . . , un(s))ds, t ∈ [0,∞), 1 ≤ i ≤ n.

Using an argument originating from Brezis and Browder [Bull. Am. Math. Soc. 81, 73-
78 (1975)] and a fixed point theorem, we establish the existence of solutions of the
first system in (C[0, T])n, whereas for the second system, the existence criteria are
developed separately in (Cl[0,∞))

n as well as in (BC[0,∞))n. For both systems, we
further seek the existence of constant-sign solutions, which include positive solutions
(the usual consideration) as a special case. Several examples are also included to
illustrate the results obtained.
2010 Mathematics Subject Classification: 45B05; 45G15; 45M20.
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1 Introduction
In this article, we shall consider the system of Fredholm integral equations:

ui(t) = hi(t) +

T∫
0

gi(t, s)fi(s, u1(s), u2(s), . . . , un(s))ds, t ∈ [0,T], 1 ≤ i ≤ n (1:1)

where 0 < T <∞, and also the following system on the half-line

ui(t) = hi(t) +

∞∫
0

gi(t, s)fi(s, u1(s), u2(s), . . . , un(s))ds, t ∈ [0,∞), 1 ≤ i ≤ n.(1:2)

Throughout, let u = (u1, u2,..., un). We are interested in establishing the existence of

solutions u of the system (1.1) in (C[0, T])n = C[0, T] × C[0, T] × ℙ × C[0, T] (n

times), whereas for the system (1.2), we shall seek a solution in (Cl[0, ∞))
n as well as in

(BC[0, ∞))n. Here, BC[0, ∞) denotes the space of functions that are bounded and con-

tinuous on [0, ∞) and Cl[0, ∞) = {x Î BC[0, ∞) : limt®∞ x(t) exists}.

We shall also tackle the existence of constant-sign solutions of (1.1) and (1.2). A

solution u of (1.1) (or (1.2)) is said to be of constant sign if for each 1 ≤ i ≤ n, we have
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θiui(t) ≥ 0 for all t Î [0, T] (or t Î [0,∞)), where θi Î {-1, 1} is fixed. Note that when θi
= 1 for all 1 ≤ i ≤ n, a constant-sign solution reduces to a positive solution, which is

the usual consideration in the literature.

In the literature, there is a vast amount of research on the existence of positive solu-

tions of the nonlinear Fredholm integral equations:

y(t) = h(t) +

T∫
0

g(t, s)f (y(s))ds, t ∈ [0,T] (1:3)

and

y(t) = h(t) +

∞∫
0

g(t, s)f (y(s))ds, t ∈ [0,∞). (1:4)

Particular cases of (1.3) are also considered in [1-3]. The reader is referred to the

monographs [[4,5], and the references cited therein] for the related literature. Recently,

a generalization of (1.3) and (1.4) to systems similar to (1.1) and (1.2) have been made,

and the existence of single and multiple constant-sign solutions has been established

for these systems in [6-10].

The technique used in these articles has relied heavily on various fixed point results

such as Krasnosel’skii’s fixed point theorem in a cone, Leray-Schauder alternative, Leg-

gett-Williams’ fixed point theorem, five-functional fixed point theorem, Schauder fixed

point theorem, and Schauder-Tychonoff fixed point theorem. In the current study, we

will make use of an argument that originates from Brezis and Browder [11]; therefore,

the technique is different from those of [6-10] and the results subsequently obtained

are also different. The present article also extends, improves, and complements the stu-

dies of [5,12-23]. Indeed, we have generalized the problems to (i) systems; (ii) more

general form of nonlinearities fi, 1 ≤ i ≤ n,; and (iii) existence of constant-sign solutions.

The outline of the article is as follows. In Section 2, we shall state the necessary fixed

point theorem and compactness criterion, which are used later. In Section 3, we tackle

the existence of solutions of system (1.1) in (C[0, T])n, while Sections 4 and 5 deal

with the existence of solutions of system (1.2) in (Cl[0, ∞))n and (BC[0, ∞))n, respec-

tively. In Section 6, we seek the existence of constant-sign solutions of (1.1) and (1.2)

in (C[0, T])n, (Cl[0, ∞))n and (BC[0, ∞))n. Finally, several examples are presented in

Section 7 to illustrate the results obtained.

2 Preliminaries
In this section, we shall state the theorems that are used later to develop the existence

criteria–Theorem 2.1 [24] is Schauder’s nonlinear alternative for continuous and com-

pact maps, whereas Theorem 2.2 is the criterion of compactness on Cl[0, ∞) [[16], p.

62].

Theorem 2.1 [24]Let B be a Banach space with E ⊆ B closed and convex. Assume U

is a relatively open subset of E with 0 Î U and S : U → Eis a continuous and compact

map. Then either

(a) S has a fixed point in U, or

(b) there exist u Î ∂U and l Î (0, 1) such that u = lSu.
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Theorem 2.2 [[16], p. 62] Let P ⊂ Cl[0, ∞). Then P is compact in Cl[0, ∞) if the fol-

lowing hold:

(a) P is bounded in Cl[0, ∞).

(b) Any y Î P is equicontinuous on any compact interval of [0, ∞).

(c) P is equiconvergent, i.e., given ε >0, there exists T(ε) >0 such that |y(t) - y(∞)| <ε

for any t ≥ T(ε) and y Î P.

3 Existence results for (1.1) in (C[0, T])n

Let the Banach space B = (C[0, T])n be equipped with the norm:

||u|| = max
1≤i≤n

sup
t∈[0,T]

|ui(t)| = max
1≤i≤n

|ui|0

where we let |ui|0 = suptÎ[0,T] |ui(t)|, 1 ≤ i ≤ n. Throughout, for u Î B and t Î [0, T],

we shall denote

||u(t)|| = max
1≤i≤n

|ui(t)|.

Moreover, for each 1 ≤ i ≤ n, let 1 ≤ pi ≤ ∞ be an integer and qi be such that
1
pi
+ 1

qi
= 1. For x ∈ Lpi[0,T], we shall define

‖x‖pi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
T∫
0

|x(s)|pids
) 1
pi
, 1 ≤ pi < ∞

ess sup
s∈[0,T]

|x(s)|, pi = ∞.

Our first existence result uses Theorem 2.1.

Theorem 3.1 For each 1 ≤ i ≤ n, assume (C1)- (C4) hold where

(C1) hi Î C[0, T], denote Hi ≡ suptÎ [0, T] |hi(t)|,

(C2) fi : [0, T] × ℝn ® ℝ is a Lqi-Carathéodory function:

(i) the map u a fi(t, u) is continuous for almost all t Î [0, T],;

(ii) the map t a fi(t, u) is measurable for all u Î ℝn;

(iii) for any r > 0, there exists μr,i ∈ Lqi[0,T]such that |u| ≤ r implies |fi(t, u)| ≤ μr,i
(t) for almost all t Î [0, T];

(C3) gti(s) = gi(t, s) ∈ Lpi[0,T]for each t Î [0, T];

(C4) the map t �→ gtiis continuous from [0, T] to Lpi[0,T].

In addition, suppose there is a constant M > 0, independent of l, with ||u|| ≠ M for

any solution u Î (C[0, T])n to

ui(t) = λ

⎛
⎝hi(t) +

T∫
0

gi(t, s)fi(s, u(s))ds

⎞
⎠ , t ∈ [0,T], 1 ≤ i ≤ n (3.1)λ

for each l Î (0, 1). Then, (1.1) has at least one solution in (C[0, T])n.

Proof Let the operator S be defined by

Su(t) = (S1u(t), S2u(t), . . . , Snu(t)), t ∈ [0,T] (3:2)
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where

Siu(t) = hi(t) +

T∫
0

gi(t, s)fi(s, u(s))ds, t ∈ [0,T], 1 ≤ i ≤ n. (3:3)

Clearly, the system (1.1) is equivalent to u = Su, and (3.1)l is the same as u = lSu.
Note that S maps (C[0, T])n into (C[0, T])n, i.e., Si : (C[0, T])

n ® C[0, T], 1 ≤ i ≤ n.

To see this, note that for any u Î (C[0, T])n, there exits r > 0 such that ||u|| <r. Since

fi is a Lqi-Carathéodory function, there exists μr,i ∈ Lqi[0,T] such that |fi(s, u)| ≤ μr,i(s)

for almost all s Î [0, T]. Hence, for any t1, t2 Î [0, T], we find for 1 ≤ i ≤ n,

|Siu(t1) − Siu(t2)| ≤ |hi(t1) − hi(t2)| +
[
T
∫
0
|gt1i (s) − gt2i (s)|pids

] 1
pi ∥∥μr,i

∥∥
qi

→ 0 (3:4)

as t1 ® t2, where we have used (C1) and (C3). This shows that S : (C[0, T])n ® (C[0,

T])n.

Next, we shall prove that S : (C[0, T])n ® (C[0, T])n is continuous. Let

um = (um1 , u
m
2 , . . . , u

m
n ) → u in (C[0, T])n, i.e., umi → ui in C[0, T], 1 ≤ i ≤ n. We need to

show that Sum ® Su in (C[0, T])n, or equivalently Siu
m ® Siu in C[0, T], 1 ≤ i ≤ n.

There exists r > 0 such that ||um||, ||u|| <r. Since fi is a Lqi-Carathéodory function,

there exists μr,i ∈ Lqi[0,T] such that |fi(s, u
m)|, |fi(s, u)| ≤ μr,i(s) for almost all s Î [0,

T]. Using a similar argument as in (3.4), we get for any t1, t2 Î [0, T] and 1 ≤ i ≤ n:

|Sium(t1) − Siu
m(t2)| → 0 and |Siu(t1) − Siu(t2)| → 0 (3:5)

as t1 ® t2. Furthermore, Siu
m(t) ® Siu(t) pointwise on [0, T], since, by the Lebesgue-

dominated convergence theorem,

|Sium(t) − Siu(t)| ≤ sup
t∈[0,T]

||gti ||pi
[
T
∫
0
|fi(s, um(s)) − fi(s, u(s))|qids

] 1
qi → 0 (3:6)

as m ® ∞. Combining (3.5) and (3.6) and using the fact that [0, T] is compact, gives

for all t Î [0, T],

|Sium(t)−Siu(t)| ≤ |Sium(t)−Sium(t1)|+ |Sium(t1)−Siu(t1)|+ |Siu(t1)−Siu(t)| → 0 (3:7)

as m ® ∞. Hence, we have proved that S : (C[0, T])n ® (C[0, T])n is continuous.

Finally, we shall show that S : (C[0, T])n ® (C[0, T])n is completely continuous. Let

Ω be a bounded set in (C[0, T])n with ||u|| ≤ r for all u Î Ω. We need to show that

SiΩ is relatively compact for 1 ≤ i ≤ n. Clearly, SiΩ is uniformly bounded, since there

exists μr,i ∈ Lqi[0,T] such that |fi(s, u)| ≤ μr,i(s) for all u Î Ω and a.e. s Î [0, T], and

hence

|Siu|0 ≤ Hi + sup
t∈[0,T]

∥∥gti∥∥pi · ∥∥μr,i
∥∥
qi

≡ Ki, u ∈ �. (3:8)

Further, using a similar argument as in (3.4), we see that SiΩ is equicontinuous. It

follows from the Arzéla-Ascoli theorem [[5], Theorem 1.2.4] that SiΩ is relatively

compact.

We now apply Theorem 2.1 with U = {u Î (C[0, T])n : ||u|| <M} and B = E = (C[0,

T])n to obtain the conclusion of the theorem. □
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Our subsequent results will apply Theorem 3.1. To do so, we shall show that any

solution u of (3.1)l is bounded above. This is achieved by bounding the integral of |fi(t,

u(t))| (or |fi(t, u(t))|ρi) on two complementary subsets of [0, T], namely {t Î [0, T] : ||u

(t)|| ≤ r} and {t Î [0, T] : ||u(t)|| >r}, where ri and r are some constants–this techni-

que originates from the study of Brezis and Browder [11]. In the next four theorems

(Theorems 3.2-3.5), we shall apply Theorem 3.1 to the case pi = ∞ and qi = 1, 1 ≤ i ≤

n.

Theorem 3.2. Let the following conditions be satisfied for each 1 ≤ i ≤ n : (C1)-(C4)

with pi = ∞ and qi = 1, (C5) and (C6) where

(C5) there exist Bi > 0 such that for any u Î (C[0, T])n,

T
∫
0

[
fi(t, u(t))

T
∫
0
gi(t, s)fi(s, u(s))ds

]
dt ≤ Bi,

(C6) there exist r > 0 and ai > 0 with rai >Hi such that for any u Î (C[0, T])n,

ui(t)fi(t, u(t)) ≥ rαi|fi(t, u(t))| for ||u(t)|| > r and a.e. t ∈ [0,T].

Then, (1.1) has at least one solution in (C[0, T])n.

Proof We shall employ Theorem 3.1, and so let u = (u1, u2, l...., un) Î (C[0, T])n be

any solution of (3.1)l where l Î (0, 1).

Define

I = {t ∈ [0,T] : ||u(t)|| ≤ r} and J = {t ∈ [0,T] : ||u(t)|| > r}. (3:9)

Clearly, [0, T] = I ∪ J, and hence
∫ T
0 =

∫
I +

∫
J.

Let 1 ≤ i ≤ n. If t Î I, then by (C2), there exists μr,i Î L1[0, T] such that |fi(t, u(t))| ≤

μr,i(t). Thus, we get

∫
I

|fi(t, u(t))|dt ≤
∫
I

μr,i(t)dt ≤
T∫

0

μr,i(t)dt = ||μr,i||1. (3:10)

On the other hand, if t Î J, then it is clear from (C6) that ui(t)fi(t, u(t)) ≥ 0 for a.e. t

Î [0, T]. It follows that∫
J

ui(t)fi(t, u(t))dt ≥ rαi

∫
J

|fi(t, u(t))|dt. (3:11)

We now multiply (3.1)l by fi(t, u(t)), then integrate from 0 to T to get

T∫
0

ui(t)fi(t, u(t))dt = λ

T∫
0

hi(t)fi(t, u(t))dt + λ

T∫
0

⎡
⎣fi(t, u(t))

T∫
0

gi(t, s)fi(s, u(s))ds

⎤
⎦dt. (3:12)

Using (C5) in (3.12) yields

T∫
0

ui(t)fi(t, u(t))dt ≤ Hi

T∫
0

|fi(t, u(t))|dt + Bi. (3:13)
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Splitting the integrals in (3.13) and applying (3.11), we get∫
I

ui(t)fi(t, u(t))dt + rαi

∫
J

|fi(t, u(t))|dt ≤ Hi

∫
I

|fi(t, u(t))|dt +Hi

∫
J

|fi(t, u(t))|dt +Bi

or

(rαi − Hi)
∫
J

|fi(t, u(t))|dt ≤ Hi

∫
I

|fi(t, u(t))|dt +
∫
I

|ui(t)fi(t, u(t))|dt + Bi

≤ (Hi + r)||μr,i||1 + Bi

where we have used (3.10) in the last inequality. It follows that∫
J

|fi(t, u(t))|dt ≤ (Hi + r)||μr,i||1 + Bi

rαi − Hi
≡ ki. (3:14)

Finally, it is clear from (3.1)l that for t Î [0, T] and 1 ≤ i ≤ n,

∣∣ui(t)∣∣ ≤ Hi +

T∫
0

|gi(t, s)fi(s, u(s))|ds

= Hi +
(

∫
I
+∫

J

)
|gi(t, s)fi(s, u(s))|ds

≤ Hi +

(
sup
t∈[0,T]

||gti ||∞
)
(||μr,i||1 + ki) ≡ li

(3:15)

where we have applied (3.10) and (3.14) in the last inequality. Thus, |ui|0 ≤ li for 1 ≤

i ≤ n and ||u|| ≤ max1≤i≤n li ≡ L. It follows from Theorem 3.1 (with M = L + 1) that

(1.1) has a solution u* Î (C[0, T])n. □
Theorem 3.3 Let the following conditions be satisfied for each 1 ≤ i ≤ n : (C1)-(C4)

with pi = ∞ and qi = 1, (C7) and (C8) where

(C7) there exist constants ai ≥ 0 and bi such that for any u Î (C[0, T])n,

T∫
0

⎡
⎣fi(t, u(t))

T∫
0

gi(t, s)fi(s, u(s))ds

⎤
⎦ dt ≤ ai

T∫
0

|fi(t, u(t))|dt + bi,

(C8) there exist r >0 and ai >0 with rai > Hi + ai such that for any u Î (C[0, T])n,

ui(t)fi(t, u(t)) ≥ rαi|fi(t, u(t))| for ||u(t)|| > r and a.e. t ∈ [0,T].

Then, (1.1) has at least one solution in (C[0, T])n.

Proof The proof follows that of Theorem 3.2 until (3.12). Let 1 ≤ i ≤ n. We use (C7)

in (3.12) to get

T∫
0

ui(t)fi(t, u(t))dt ≤
T∫

0

|hi(t)fi(t, u(t))|dt + λ

T∫
0

⎡
⎣fi(t, u(t))

T∫
0

gi(t, s)fi(s, u(s))ds

⎤
⎦ dt

≤ (Hi + ai)

T∫
0

|fi(t, u(t))|dt + |bi|.
(3:16)
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Splitting the integrals in (3.16) and applying (3.11) gives

(rαi − Hi − ai)
∫
J

|fi(t, u(t))|dt ≤ (Hi + ai)
∫
I

|fi(t, u(t))|dt +
∫
I

|ui(t)fi(t, u(t))|dt + |bi|

≤ (Hi + ai + r)||μr,i||1 + |bi|

where we have also used (3.10) in the last inequality. It follows that
∫
J

|fi(t, u(t))|dt ≤ (Hi + ai + r)||μr,i||1 + |bi|
rαi − Hi − ai

≡ ki. (3:17)

The rest of the proof follows that of Theorem 3.2. □
Theorem 3.4 Let the following conditions be satisfied for each 1 ≤ i ≤ n : (C1)-(C4)

with pi = ∞ and qi = 1, (C9) and (C10) where

(C9) there exist constants ai ≥ 0, 0 < τi ≤ 1 and bi such that for any u Î (C[0, T])n,

T∫
0

⎡
⎣fi(t, u(t))

T∫
0

gi(t, s)fi(s, u(s))ds

⎤
⎦ dt ≤ ai

⎡
⎣ T∫

0

|fi(t, u(t))|dt
⎤
⎦

τi

+ bi,

(C10) there exist r > 0 and bi > 0 such that for any u Î (C[0, T])n,

ui(t)fi(t, u(t)) ≥ βi||u(t)|| · |fi(t, u(t))| for ||u(t)|| > r and a.e. t ∈ [0,T].

Then, (1.1) has at least one solution in (C[0, T])n.

Proof Let u = (u1, u2,..., un) Î (C[0, T])n be any solution of (3.1)l where l Î (0, 1).

Define

r0 = max
{
r, max

1≤i≤n

Hi + ai2τi + 1
βi

}
,

I0 = {t ∈ [0,T] : ||u(t)|| ≤ r0} and J0 = {t ∈ [0,T] : ||u(t)|| > r0}.
(3:18)

Clearly, [0, T] = I0 ∪ J0 and hence
T∫
0
=

∫
I0

+
∫
J0

.

Let 1 ≤ i ≤ n. If t Î I0, then by (C2) there exists μr0,i ∈ L1[0,T] such that

|fi(t, u(t))| ≤ μr0,i(t) and

∫
I0

|fi(t, u(t))|dt ≤
∫
I0

μr0,i(t)dt ≤
T∫

0

μr0,i(t)dt = ||μr0,i||1. (3:19)

Further, if t Î J0, then by (C10) we have
∫
J0

ui(t)fi(t, u(t))dt ≥ βi

∫
J0

||u(t)|| · |fi(t, u(t))|dt ≥ βir0

∫
J0

|fi(t, u(t))|dt. (3:20)

Now, using (3.20) and (C9) in (3.12) gives

βir0

∫
J0

|fi(t, u(t))|dt ≤
∫
I0

|ui(t)fi(t, u(t))|dt +
T∫

0

|hi(t)fi(t, u(t))|dt

+ ai

⎡
⎣ T∫

0

|fi(t, u(t))|dt
⎤
⎦

τi

+ |bi|

≤
∫
I0

ui(t)fi(t, u(t))dt +

T∫
0

|hi(t)fi(t, u(t))|dt

+ ai2τi

⎧⎨
⎩

⎡
⎣∫
I0

|fi(t, u(t))|dt
⎤
⎦

τi

+

⎡
⎣∫
J0

|fi(t, u(t))|dt
⎤
⎦

τi
⎫⎬
⎭ + |bi|

(3:21)
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where in the last inequality, we have made use of the inequality:

(x + y)α ≤ 2α(xα + yα), x, y ≥ 0, α ≥ 0.

Now, noting (3.19) we find that

∫
I0

|ui(t)fi(t, u(t))|dt +
∫
I0

|hi(t)fi(t, u(t))|dt + ai2τi

⎡
⎣∫
I0

|fi(t, u(t))|dt
⎤
⎦

τi

+ |bi|

≤ (r0 +Hi)||μr0,i||1 + ai2τi(||μr0,i||1)τi + |bi| ≡ k′
i

(3:22)

Substituting (3.22) in (3.21) then yields

βir0

∫
J0

|fi(t, u(t))|dt ≤
∫
J0

|hi(t)fi(t, u(t))|dt + ai2τi

⎡
⎣∫
J0

|fi(t, u(t))|dt
⎤
⎦

τi

+ k′
i

≤ Hi

∫
J0

|fi(t, u(t))|dt + ai2τi

⎡
⎣∫
J0

|fi(t, u(t))|dt
⎤
⎦

τi

+ k′
i.

Since τi ≤ 1, there exists a constant k′′
i such that

(βir0 − Hi − ai2τi)
∫
J0

|fi(t, u(t))|dt ≤ k′′
i

which leads to
∫
J0

|fi(t, u(t))|dt ≤ k′′
i

βir0 − Hi − ai2τi
≡ ki. (3:23)

Finally, it is clear from (3.1)l that for t Î [0, T] and 1 ≤ i ≤ n,

|ui(t)| ≤ Hi +

T∫
0

|gi(t, s)fi(s, u(s))|ds

= Hi +
(

∫
I0
+ ∫
J0

)
|gi(t, s)fi(s, u(s))|ds

≤ Hi +

(
sup
t∈[0,T]

||gti ||∞
)
(||μr0,i||1 + ki) ≡ li

(3:24)

where we have applied (3.19) and (3.23) in the last inequality. The conclusion now

follows from Theorem 3.1. □
Theorem 3.5 Let the following conditions be satisfied for each 1 ≤ i ≤ n : (C1), (C2)-

(C4) with pi = ∞ and qi = 1, (C10), (C11) and (C12) where

(C11) there exist r > 0, hi > 0, gi > 0 and φi ∈ L
γi+1
γi [0,T]such that for any u Î (C[0,

T])n,

||u(t)|| ≥ ηi|fi(t, u(t)|γi + φi(t) for ||u(t)|| > r and a.e. t ∈ [0,T],

(C12) there exist ai ≥ 0, 0 <τi <gi + 1, bi, and ψi ∈ L
γi+1
γi [0,T]with ψi ≥ 0 almost every-

where on [0, T], such that for any u Î (C[0, T])n,

T∫
0

⎡
⎣fi(t, u(t))

T∫
0

gi(t, s)fi(s, u(s))ds

⎤
⎦dt ≤ ai

⎡
⎣ T∫

0

ψi(t)|fi(t, u(t))|dt
⎤
⎦

τi

+ bi.
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Also, ji Î C[0, T], hi ∈ L
γi+1
γi [0,T], ψi Î C[0, T] and

T∫
0

|gi(t, s)|
γi+1
γi ds ∈ C[0,T].

Then, (1.1) has at least one solution in (C[0, T])n.

Proof Let u = (u1, u2,..., un) Î (C[0, T])n be any solution of (3.1)l where l Î (0, 1).

Define the sets I and J as in (3.9). Let 1 ≤ i ≤ n. Applying (C10) and (C11), we get∫
J

ui(t)fi(t, u(t))dt ≥ βi

∫
J

||u(t)|| · |fi(t, u(t))|dt

≥ βiηi

∫
J

|fi(t, u(t))|γi+1dt + βi

∫
J

φi(t)|fi(t, u(t))|dt.
(3:25)

Using (3.25) and (C12) in (3.12), we obtain

βiηi

∫
J

|fi(t, u(t))|γi+1dt

≤
∫
I

|ui(t)fi(t, u(t))|dt + βi

∫
J

|φi(t)fi(t, u(t))|dt +
T∫

0

|hi(t)fi(t, u(t))|dt

+ai

⎡
⎣ T∫

0

ψi(t)|fi(t, u(t))|dt
⎤
⎦

τi

+ |bi|

≤
∫
I

|ui(t)fi(t, u(t))|dt + βi

∫
J

|φi(t)fi(t, u(t))|dt +
T∫

0

|hi(t)fi(t, u(t))|dt

+ai2τi

⎧⎨
⎩

⎡
⎣∫

I

ψi(t)|fi(t, u(t))|dt
⎤
⎦

τi

+

⎡
⎣∫

J

ψi(t)|fi(t, u(t))|dt
⎤
⎦

τi
⎫⎬
⎭ + |bi|.

(3:26)

Now, in view of (3.10) and (C12), we have

∫
I

|ui(t)fi(t, u(t))|dt +
∫
I

|hi(t)fi(t, u(t))|dt + ai2τi

⎡
⎣∫

I

ψi(t)|fi(t, u(t))|dt
⎤
⎦

τi

+ |bi|

≤ (r +Hi)||μr,i||1 + ai2τi

⎡
⎣∫

I

ψi(t)μr,i(t)dt

⎤
⎦

τi

+ |bi| ≡ ki.

(3:27)

Substituting (3.27) into (3.26) and using Hölder’s inequality, we find

βiηi

∫
J

|fi(t, u(t))|γi+1dt

≤ βi

∫
J

|φi(t)fi(t, u(t))|dt +
∫
J

|hi(t)fi(t, u(t))|dt + ai2τi

⎡
⎣∫

J

ψi(t)|fi(t, u(t))|dt
⎤
⎦

τi

+ ki

≤ βi

⎡
⎣ T∫

0

|φi(t)|
γi+1
γi dt

⎤
⎦

γi+1
γi

⎡
⎣∫

J

|fi(t, u(t))|γi+1dt
⎤
⎦

1
γi+1

+

⎡
⎣ T∫

0

|hi(t)|
γi+1
γi dt

⎤
⎦

γi
γi+1

⎡
⎣∫

J

|fi(t, u(t))|γi+1dt
⎤
⎦

1
γi+1

+ai2τi

⎡
⎣ T∫

0

|ψi(t)|
γi+1
γi dt

⎤
⎦

τiγi
γi+1

⎡
⎣∫

J

|fi(t, u(t))|γi+1dt
⎤
⎦

τi
γi+1

+ ki.
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Since 1
γi+1

< 1 and τi
γi+1

< 1, there exists a constant ki such that∫
J

|fi(t, u(t))|γi+1dt ≤ ki. (3:28)

Finally, it is clear from (3.1)l that for t Î [0, T] and 1 ≤ i ≤ n,

|ui(t)| ≤ Hi +

⎛
⎝∫

I

+∫
J

⎞
⎠∣∣gi(t, s)fi (s, u(s))|ds

≤ Hi +

(
sup
t∈[0,T]

||gti ||∞
)

||μr,i||1

+

⎧⎪⎪⎨
⎪⎪⎩ sup

t∈[0,T]

⎡
⎣ T∫

0

|gi(t, s)|
γi+1
γi ds

⎤
⎦

γi
γi+1

⎫⎪⎪⎬
⎪⎪⎭

⎡
⎣∫

J

|fi(t, u(t))|γi+1dt
⎤
⎦

1
γi+1

≤ li

(3:29)

where we have used (3.28) and (C12) in the last inequality, and li is some constant.

The conclusion is now immediate by Theorem 3.1. □
In the next six results (Theorem 3.6-3.11), we shall apply Theorem 3.1 for general pi

and qi.

Theorem 3.6 Let the following conditions be satisfied for each 1 ≤ i ≤ n : (C1)-(C4),

(C5), (C10) and (C13) where

(C13) there exist r > 0, hi > 0, gi > 0 and φi ∈ Lpi[0,T]such that for any u Î (C[0, T])
n,

||u(t)|| ≥ ηi|fi(t, u(t)|γi + φi(t) for ||u(t)|| > r and a.e. t ∈ [0,T].

Then, (1.1) has at least one solution in (C[0, T])n.

Proof Let u = (u1, u2,..., un) Î (C[0, T])n be any solution of (3.1)l where l Î (0, 1).

Define the sets I and J as in (3.9). Let 1 ≤ i ≤ n. If t Î I, then by (C2), there exists

μr,i ∈ Lqi[0,T] such that |fi(t, u(t))| ≤ μr,i(t). Consequently, we have

∫
I

|fi(t, u(t))|dt ≤
∫
I

μr,i(t)dt ≤
T∫

0

μr,i(t)dt ≤ T
1
pi ||μr,i||qi . (3:30)

On the other hand, using (C10) and (C13), we derive at (3.25).

Next, applying (C5) in (3.12) leads to (3.13). Splitting the integrals in (3.13) and using

(3.25), we find that

βiηi

∫
J

|fi(t, u(t))|γi+1dt

≤ βi

∫
J

∣∣φi(t)fi(t, u(t)) |dt +Hi

∫
J

|fi(t, u(t))|dt + Bi+
∫
I

(|ui(t)| +Hi)|fi(t, u(t))|dt

≤ βi

∫
J

∣∣φi(t)fi(t, u(t)) |dt +Hi

∫
J

|fi(t, u(t))|dt + Bi + (r +Hi)T
1
pi ||μr,i||qi

= βi

∫
J

∣∣φi(t)fi(t, u(t)) |dt +Hi

∫
J

|fi(t, u(t))|dt + B′
i

(3:31)

where (3.30) has been used in the last inequality and B′
i ≡ Bi + (r +Hi)T

1
pi ||μr,i||qi.
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Now, an application of Hölder’s inequality gives

∫
J

|φi(t)fi(t, u(t))|dt ≤
⎡
⎣ T∫

0

|φi(t)|
γi+1
γi dt

⎤
⎦

γi
γi+1

·
⎡
⎣∫

J

|fi(t, u(t))|γi+1dt
⎤
⎦

1
γi+1

. (3:32)

Another application of Hölder’s inequality yields

T∫
0

|φi(t)|
γi+1
γi dt ≤ T

γipi−γi−1
piγi

⎡
⎣ T∫

0

|φi(t)|pidt
⎤
⎦

γi+1
γipi

. (3:33)

Substituting (3.33) into (3.32) then leads to

∫
J

|φi(t)fi(t, u(t))|dt ≤ T
γipi−γi−1
pi(γi+1) ||φi||pi

⎡
⎣∫

J

|fi(t, u(t))|γi+1dt
⎤
⎦

1
γi+1

. (3:34)

Further, using Hölder’s inequality again, we get

∫
J

|fi(t, u(t))|dt ≤ T
γi

γi+1

⎡
⎣∫

J

|fi(t, u(t))|γi+1dt
⎤
⎦

1
γi+1

. (3:35)

Substituting (3.34) and (3.35) into (3.31), we obtain

βiηi

∫
J

|fi(t, u(t))|γi+1dt ≤ Ai

⎡
⎣∫

J

|fi(t, u(t))|γi+1dt
⎤
⎦

1
γi+1

+ B′
i

(3:36)

where Ai ≡ T
γipi−γi−1
pi(γi+1) βi||φi||pi +HiT

γi
γi+1. Since

1
γi+1

< 1, from (3.36), there exists a

constant ki such that∫
J

|fi(t, u(t))|γi+1dt ≤ ki. (3:37)

Finally, it is clear from (3.1)l that for t Î [0, T] and 1 ≤ i ≤ n,

|ui(t)| ≤ Hi +

⎛
⎝∫

I

+
∫
J

⎞
⎠ ∣∣gi(t, s)fi(s , u(s))∣∣ds

≤ Hi +

(
sup
t∈[0,T]

||gti ||pi
)

||μr,i||qi + T
γipi−γi−1
pi(γi+1)

(
sup
t∈[0,T]

||gti ||pi
) [∫

J
|fi(s, u(s))|γi+1ds

] 1
γi+1

≤ li(a constant),

(3:38)

where in the second last inequality a similar argument as in (3.34) is used, and in the

last inequality we have used (3.37). An application of Theorem 3.1 completes the

proof. □
Theorem 3.7 Let the following conditions be satisfied for each 1 ≤ i ≤ n : (C1)-(C4),

(C7), (C10) and (C13). Then, (1.1) has at least one solution in (C[0, T])n.
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Proof Let u = (u1, u2,..., un) Î (C[0, T])n be any solution of (3.1)l where l Î (0, 1).

Define the sets I and J as in (3.9). Let 1 ≤ i ≤ n. As in the proof of Theorems 3.3 and

3.6, respectively, (C7) leads to (3.16), whereas (C10) and (C13) yield (3.25).

Splitting the integrals in (3.16) and applying (3.25), we find that

βiηi

∫
J

|fi(t, u(t))|γi+1dt

≤ βi

∫
J

|φi(t)fi(t, u(t))|dt + (Hi + ai)
∫
J

|fi(t, u(t))|dt + |bi| +
∫
I

(|ui(t)| +Hi + ai)|fi(t, u(t))|dt

≤ βi

∫
J

|φi(t)fi(t, u(t))|dt + (Hi + ai)
∫
J

|fi(t, u(t))|dt + |bi| + (r +Hi + ai)T
1
pi ||μr,i||qi

= βi

J∫
J

|φi(t)fi(t, u(t))|dt + (Hi + ai)
∫
J

|fi(t, u(t))|dt + B′′
i

(3:39)

where B′′
i ≡ |bi| + (r +Hi + ai)T

1
pi ||μr,i||qi. Substituting (3.34) and (3.35) into (3.39)

then leads to

βiηi

∫
J

|fi(t, u(t))|γi+1dt ≤ A′
i

⎡
⎣∫

J

|fi(t, u(t))|γi+1dt
⎤
⎦

1
γi+1

+ B′′
i

(3:40)

where A′
i ≡ T

γipi−γi−1
pi(γi+1) βi||φi||pi + (Hi + ai)T

γi
γi+1. Since

1
γi+1

< 1, from (3.40), we can

obtain (3.37) where ki is some constant. The rest of the proof proceeds as that of The-

orem 3.6. □
Theorem 3.8 Let the following conditions be satisfied for each 1 ≤ i ≤ n : (C1)-(C4),

(C10), (C13), and (C14) where

(C14) there exist constants ai ≥ 0, 0 <τi <gi + 1 and bi such that for any u Î (C[0, T])n,

T∫
0

⎡
⎣fi(t, u(t))

T∫
0

gi(t, s)fi(s, u(s))ds

⎤
⎦ dt ≤ ai

⎡
⎣ T∫

0

|fi(t, u(t))|dt
⎤
⎦

τi

+ bi.

Then, (1.1) has at least one solution in (C[0, T])n.

Proof Let u = (u1, u2,..., un) Î (C[0, T])n be any solution of (3.1)l where l Î (0, 1).

Define the sets I and J as in (3.9). Let 1 ≤ i ≤ n. From the proof of Theorem 3.6, we

see that (C10) and (C13) lead to (3.25).

Using (3.25) and (C14) in (3.12), we obtain

βiηi

∫
J

|fi(t, u(t))|γi+1dt

≤
∫
I

|ui(t)fi(t, u(t))|dt + βi

∫
J

|φi(t)fi(t, u(t))|dt +
T∫

0

|hi(t)fi(t, u(t))|dt

+ai

⎡
⎣ T∫

0

|fi(t, u(t))|dt
⎤
⎦

τi

+ |bi|

≤
∫
I

|ui(t)fi(t, u(t))|dt + βi

∫
J

|φi(t)fi(t, u(t))|dt +
T∫

0

|hi(t)fi(t, u(t))|dt

+ai2τi

⎧⎨
⎩

⎡
⎣∫

I

|fi(t, u(t))|dt
⎤
⎦

τi

+

⎡
⎣∫

J

|fi(t, u(t))|dt
⎤
⎦

τi
⎫⎬
⎭ + |bi|.

(3:41)
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Note that

∫
I

|ui(t)fi(t, u(t))|dt +
∫
I

|hi(t)fi(t, u(t))|dt + ai2τi

⎡
⎣∫

I

|fi(t, u(t))|dt
⎤
⎦

τi

+ |bi|

≤ (r +Hi)
∫
I

|fi(t, u(t))|dt + ai2τi

⎡
⎣∫

I

|fi(t, u(t))|dt
⎤
⎦

τi

+ |bi|

≤ (r +Hi)T
1
pi ||μr,i||qi + ai2τiT

τi
pi (||μr,i||qi)τi + |bi| ≡ k′

i

(3:42)

where we have used (3.30) in the last inequality. Substituting (3.42) into (3.41) and

using (3.34) and (3.35) then provides

βiηi

∫
J

|fi(t, u(t))|γi+1dt

≤ βi

∫
J

|φi(t)fi(t, u(t))|dt +
∫
J

|hi(t)fi(t, u(t))|dt + ai2τi

⎡
⎣∫

J

|fi(t, u(t))|dt
⎤
⎦

τi

+ k′
i

≤ βiT
γipi−γi−1
pi(γi+1) ||φi||pi

⎡
⎣∫

J

|fi(t, u(t))|γi+1dt
⎤
⎦

1
γi+1

+HiT
γi

γi+1

⎡
⎣∫

J

|fi(t, u(t))|γi+1dt
⎤
⎦

1
γi+1

+ai2τiT
τiγi
γi+1

⎡
⎣∫

J

|fi(t, u(t))|γi+1dt
⎤
⎦

τi
γi+1

+ k′
i.

(3:43)

Since 1
γi+1

< 1 and τi
γi+1

< 1, there exists a constant ki such that (3.37) holds. The rest

of the proof is similar to that of Theorem 3.6. □
Theorem 3.9 Let the following conditions be satisfied for each 1 ≤ i ≤ n : (C1)-(C4),

(C10), (C13), and (C15) where

(C15) there exist constants di ≥ 0, 0 < τi < gi + 1 and ei such that for any u Î (C[0, T])n,

T∫
0

⎡
⎣fi(t, u(t))

T∫
0

gi(t, s)fi(s, u(s))ds

⎤
⎦dt ≤ di

⎡
⎣ T∫

0

|fi(t, u(t))|qidt
⎤
⎦

τi
qi

+ ei.

Then, (1.1) has at least one solution in (C[0, T])n.

Proof Let u = (u1, u2,..., un) Î (C[0, T])n be any solution of (3.1)l where l Î (0, 1).

Define the sets I and J as in (3.9). Let 1 ≤ i ≤ n. As before, we see that (C10) and

(C13) lead to (3.25).

Using (3.25) and (C15) in (3.12), we obtain

βiηi

∫
J

|fi(t, u(t))|γi+1dt

≤ βi

∫
J

|φi(t)fi(t, u(t))|dt +
∫
I

|ui(t)fi(t, u(t))|dt +
T∫

0

|hi(t)fi(t, u(t))|dt

+di

⎡
⎣ T∫

0

|fi(t, u(t))|qidt
⎤
⎦

τi
qi

+ |ei|

≤ βi

∫
J

|φi(t)fi(t, u(t))|dt +
∫
I

|ui(t)fi(t, u(t))|dt +Hi

T∫
0

|fi(t, u(t))|dt

+di2
τi
qi

⎧⎪⎨
⎪⎩

⎡
⎣∫

I

|fi(t, u(t))|qidt
⎤
⎦

τi
qi

+

⎡
⎣∫

I

|fi(t, u(t))|qidt
⎤
⎦

τi
qi

⎫⎪⎬
⎪⎭ + |ei|.

(3:44)
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Now, it is clear that

∫
I

|ui(t)fi(t, u(t))|dt +Hi

∫
I

|fi(t, u(t))|dt + di2
τi
qi

⎡
⎣∫

I

|fi(t, u(t))|qidt
⎤
⎦

τi
qi

+ |ei|

≤ (r +Hi)
∫
I

μr,i(t)dt + di2
τi
qi

⎡
⎣∫

I

(μr,i(t))
qidt

⎤
⎦

τi
qi

+ |ei|

≤ (r +Hi)

T∫
0

μr,i(t)dt + di2
τi
qi

⎡
⎣ T∫

0

(μr,i(t))
qidt

⎤
⎦

τi
qi

+ |ei| ≡ k̂i.

(3:45)

Moreover, an application of Hölder’s inequality gives

∫
J

|fi(t, u(t))|qidt ≤ T
γi+1−qi

γi+1

⎡
⎣∫

J

|fi(t, u(t))|γi+1dt
⎤
⎦

qi
γi+1

. (3:46)

Substituting (3.45) into (3.44) and using (3.34), (3.35) and (3.46) then leads to

βiηi

∫
J

|fi(t, u(t))|γi+1dt

≤ βi

∫
J

|φi(t)fi(t, u(t))|dt +Hi

∫
J

|fi(t, u(t))|dt + di2
τi
qi

⎡
⎣∫

J

|fi(t, u(t))|qidt
⎤
⎦

τi
qi

+ k̂i

≤ βiT
γipi−γi−1
pi(γi+1) ||φi||pi

⎡
⎣∫

J

|fi(t, u(t))|γi+1dt
⎤
⎦

1
γi+1

+HiT
γi

γi+1

⎡
⎣∫

J

|fi(t, u(t))|γi+1dt
⎤
⎦

1
γi+1

+di2
τi
qi T

τi(γi+1−qi)
qi(γi+1)

⎡
⎣∫

J

|fi(t, u(t))|γi+1dt
⎤
⎦

τi
γi+1

+ k̂i.

(3:47)

Noting 1
γi+1

< 1 and τi
γi+1

< 1, there exists a constant ki such that (3.37) holds. The

rest of the proof follows that of Theorem 3.6. □
Theorem 3.10 Let the following conditions be satisfied for each 1 ≤ i ≤ n : (C1)-(C4),

(C10), (C13) and (C16) where

(C16) there exist constants ci ≥ 0, di ≥ 0, 0 <τi <gi + 1 and ei with

βiηi > 2ci(2T)
γi+1−qi

qi such that for any u Î (C[0, T])n,

T∫
0

⎡
⎣fi(t, u(t))

T∫
0

gi(t, s)fi(s, u(s))ds

⎤
⎦dt

≤ ci

⎡
⎣ T∫

0

|fi(t, u(t))|qidt
⎤
⎦

γi+1
qi

+ di

⎡
⎣ T∫

0

|fi(t, u(t))|qidt
⎤
⎦

τi
qi

+ ei.

Then, (1.1) has at least one solution in (C[0, T])n.
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Proof Let u = (u1, u2,..., un) Î (C[0, T])n be any solution of (3.1)l where l Î (0, 1).

Define the sets I and J as in (3.9). Let 1 ≤ i ≤ n. As before, we see that (C10) and

(C13) lead to (3.25).

Using (3.25) and (C16) in (3.12) gives

βiηi

∫
J

|fi(t, u(t))|γi+1dt

≤ βi

∫
J

|φi(t)fi(t, u(t))|dt +
∫
I

|ui(t)fi(t, u(t))|dt +
T∫

0

|hi(t)fi(t, u(t))|dt

+ci

⎡
⎣ T∫

0

|fi(t, u(t))|qidt
⎤
⎦

γi+1
qi

+ di

⎡
⎣ T∫

0

|fi(t, u(t))|qidt
⎤
⎦

τi
qi

+ |ei|

≤ βi

∫
J

|φi(t)fi(t, u(t))|dt +
∫
I

|ui(t)fi(t, u(t))|dt +Hi

T∫
0

|fi(t, u(t))|dt

+ci2
γi+1
qi

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎣∫

I

|fi(t, u(t))|qidt
⎤
⎦

γi+1
qi

+

⎡
⎣∫

J

|fi(t, u(t))|qidt
⎤
⎦

γi+1
qi

⎫⎪⎪⎬
⎪⎪⎭

+di2
τi
qi

⎧⎪⎨
⎪⎩

⎡
⎣∫

I

|fi(t, u(t))|qidt
⎤
⎦

τi
qi

+

⎡
⎣∫

J

|fi(t, u(t))|qidt
⎤
⎦

τi
qi

⎫⎪⎬
⎪⎭ + |ei|.

(3:48)

Now, it is clear that

∫
I

|ui(t)fi(t, u(t))|dt +Hi

∫
I

|fi(t, u(t))|dt + ci2
γi+1
qi

⎡
⎣∫

I

|fi(t, u(t))|qidt
⎤
⎦

γi+1
qi

+di2
τi
qi

⎡
⎣∫

I

|fi(t, u(t))|qidt
⎤
⎦

τi
qi

+ |ei|

≤ (r +Hi)
∫
I

μr,i(t)dt + ci2
γi+1
qi

⎡
⎣∫

I

(μr,i(t))
qidt

⎤
⎦

γi+1
qi

+di2
τi
qi

⎡
⎣∫

I

(μr,i(t))
qidt

⎤
⎦

τi
qi

+ |ei|

≤ (r +Hi)

T∫
0

μr,i(t)dt + ci2
γi+1
qi

⎡
⎣ T∫

0

(μr,i(t))
qidt

⎤
⎦

γi+1
qi

+di2
τi
qi

⎡
⎣ T∫

0

(μr,i(t))
qidt

⎤
⎦

τi
qi

+ |ei| ≡ k′
i.

(3:49)
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Substituting (3.49) into (3.48) and then using (3.34), (3.35) and (3.46) leads to

βiηi

∫
J

|fi(t, u(t))|γi+1dt

≤ βiT
γipi−γi−1
pi(γi+1) ||φi||pi

⎡
⎣∫

J

|fi(t, u(t))|γi+1dt
⎤
⎦

1
γi+1

+HiT
γi

γi+1

⎡
⎣∫

J

|fi(t, u(t))|γi+1dt
⎤
⎦

1
γi+1

+ci2
γi+1
qi T

γi+1−qi
qi

∫
J

|fi(t, u(t))|γi+1dt

+di2
τi
qi T

τi(γi+1−qi)
qi(γi+1)

⎡
⎣∫

J

|fi(t, u(t))|γi+1dt
⎤
⎦

τi

γi + 1
+ k′

i.

(3:50)

Noting 1
γi+1

< 1, τi
γi+1

< 1 as well as βiηi > 2ci(2T)
γi+1−qi

qi , from (3.50) there exists a con-

stant ki such that (3.37) holds. The rest of the proof proceeds as that of Theorem 3.6. □
Theorem 3.11 Let the following conditions be satisfied for each 1 ≤ i ≤ n : (C1)-(C4),

(C10), (C13) and (C17) where

(C17) there exist ai ≥ 0, 0 <τi < gi + 1, bi, and ψi ∈ Lpi[0,T]with ψi ≥ 0 almost every-

where on [0, T], such that for any u Î (C[0, T])n,

T∫
0

⎡
⎣fi(t, u(t))

T∫
0

gi(t, s)fi(s, u(s))ds

⎤
⎦dt ≤ ai

⎡
⎣ T∫

0

ψi(t)
∣∣fi(t, u(t))∣∣dt

⎤
⎦

τi

+ bi.

Then, (1.1) has at least one solution in (C[0, T])n.

Proof Let u = (u1, u2,..., un) Î (C[0, T])n be any solution of (3.1)l where l Î (0, 1).

Define the sets I and J as in (3.9). Let 1 ≤ i ≤ n. Once again, conditions (C10) and

(C13) give rise to (3.25).

Similar to the proof of Theorem 3.5, we apply (3.25) and (C17) in (3.12) to get (3.26).

Next, using (3.30) and Hölder’s inequality, we find that

∫
I

|ui(t)fi(t, u(t))|dt +
∫
I

|hi(t)fi(t, u(t))|dt + ai2τi

⎡
⎣∫

I

ψi(t)|fi(t, u(t))|dt
⎤
⎦

τi

+ |bi|

≤ (r +Hi)T
1
pi ||μr,i||qi + ai2τi

⎡
⎣∫

I

ψi(t)μr,i(t)dt

⎤
⎦

τi

+ |bi|

≤ (r +Hi)T
1
pi ||μr,i||qi + ai2τi(||ψi||pi ||μr,i||qi )τi + |bi| ≡ k′

i.

(3:51)

Substituting (3.51) into (3.26) and applying (3.34) and (3.35), we find that

βiηi

∫
J

|fi(t, u(t))|γi+1dt

≤ βi

∫
J

|φi(t)fi(t, u(t))|dt +
∫
J

|hi(t)fi(t, u(t))|dt + ai2τi

⎡
⎣∫

J

ψi(t)|fi(t, u(t))|dt
⎤
⎦

τi

+ k′
i

≤ βiT
γipi−γi−1
pi(γi+1) ||φi||pi

⎡
⎣∫

J

|fi(t, u(t))|γi+1dt
⎤
⎦

1
γi+1

+HiT
γi

γi+1

⎡
⎣∫

J

|fi(t, u(t))|γi+1dt
⎤
⎦

1
γi+1

+ai2τiT
τi(γipi−γi−1)

pi(γi+1) (||ψi||pi)τi
⎡
⎣∫

J

|fi(t, u(t))|γi+1dt
⎤
⎦

τi
γi+1

+ k′
i.

(3:52)
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Since 1
γi+1

< 1 and τi
γi+1

< 1, from (3.52), there exists a constant ki such that (3.37)

holds. The rest of the proof proceeds as that of Theorem 3.6. □
Remark 3.1 In Theorem 3.5, the conditions (C10) and (C11) can be replaced by the

following, which is evident from the proof.

(C10)’ There exist r >0 and bi >0 such that for any u Î (C[0, T])n,

ui(t)fi(t, u(t)) ≥ βi|ui|0 · |fi(t, u(t))| for ||u(t)|| > r and a.e. t ∈ [0,T],

where we denote |ui|0 = sup
t∈[0,T]

|ui(t)|.

(C11)’ There exist r >0, hi >0, gi >0 and φi ∈ L
γi+1
γi [0,T] such that for any u Î (C[0,

T])n,

|ui|0 ≥ ηi|fi(t, u(t)|γi + φi(t) for ||u(t)|| > r and a.e. t ∈ [0,T].

Remark 3.2 In Theorems 3.6-3.11, the conditions (C10) and (C13) can be replaced by

(C10)’ and (C13)’ below, and the proof will be similar.

(C13)’ There exist r >0, hi >0, gi >0, and φi ∈ Lpi[0,T] such that for any u Î (C[0, T])
n,

|ui|0 ≥ ηi|fi(t, u(t))|γi + φi(t) for ||u(t)|| > r and a.e. t ∈ [0,T].

4 Existence results for (1.2) in (Cl[0, ∞))n

Let the Banach space B = (Cl[0, ∞))
n be equipped with the norm:

||u|| = max
1≤i≤n

sup
t∈[0,∞)

|ui(t)| = max
1≤i≤n

|ui|0

where we let |ui|0 = suptÎ[0,∞) |ui(t)|, 1 ≤ i ≤ n. Throughout, for u Î B and t Î [0,

∞), we shall denote that

||u(t)|| = max
1≤i≤n

|ui(t)|.

Moreover, for each 1 ≤ i ≤ n, let 1 ≤ pi ≤ ∞ be an integer and qi be such that
1
pi
+ 1

qi
= 1. For x ∈ Lpi[0,∞), we shall define that

||x||pi =

⎧⎪⎪⎨
⎪⎪⎩

(∞∫
0

|x(s)|pids
) 1

pi
, 1 ≤ pi < ∞

ess sup
s∈[0,∞)

|x(s)|, pi = ∞.

We shall apply Theorem 2.1 to obtain the first existence result for (1.2) in (Cl[0, ∞))
n.

Theorem 4.1 For each 1 ≤ i ≤ n, assume (D1)-(D5) hold where

(D1) hi Î Cl[0, ∞), denote Hi ≡ suptÎ[0,∞) |hi(t)|,

(D2) fi : [0, ∞) × ℝn ® ℝ is a L1-Carathéodory function, i.e.,

(i) the map u a fi(t, u) is continuous for almost all t Î [0, ∞),

(ii) the map t a fi(t, u) is measurable for all u Î ℝn,

(iii) for any r >0, there exists μr,i Î L1[0, ∞) such that |u| ≤ r implies |fi(t, u)| ≤ μr,i
(t) for almost all t Î [0, ∞).
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(D3) gti(s) = gi(t, s) ∈ L∞[0,∞)for each t Î [0, ∞),

(D4) the map t �→ gtiis continuous from [0, ∞) to L∞ [0, ∞),

(D5) there exists g̃i ∈ L∞[0,∞)such that gti → g̃iin L∞[0, ∞) as t ® ∞, i.e.,

lim
t→∞ ||gti − g̃i||∞ = lim

t→∞ ess sup
s∈[0,∞)

|gi(t, s) − g̃i(s)| = 0.

In addition, suppose there is a constant M >0, independent of l, with ||u|| ≠ M for

any solution u Î (Cl[0, ∞))
n to

ui(t) = λ

⎛
⎝hi(t) +

∞∫
0

gi(t, s)fi(s, u(s))ds

⎞
⎠ , t ∈ [0,∞), 1 ≤ i ≤ n (4.1)λ

for each l Î (0, 1). Then, (1.2) has at least one solution in (Cl[0, ∞))
n.

Proof To begin, let the operator S be defined by

Su(t) = (S1u(t), S2u(t), . . . , Snu(t)), t ∈ [0,∞) (4:2)

where

Siu(t) = hi(t) +

∞∫
0

gi(t, s)fi(s, u(s))ds, t ∈ [0,∞), 1 ≤ i ≤ n. (4:3)

Clearly, the system (1.2) is equivalent to u = Su, and (4.1)l is the same as u = lSu.
First, we shall show that S : (Cl[0, ∞))

n ® (Cl[0, ∞))
n, or equivalently Si : (Cl[0, ∞))

n

® Cl[0, ∞), 1 ≤ i ≤ n. Let u Î (Cl[0, ∞))
n. Then, there exists r >0 such that ||u|| ≤ r,

and from (D2) there exists μr,i Î L1[0, ∞) such that |fi(s, u)| ≤ μr,i (s) for almost all s Î
[0, ∞). Let t1, t2 Î [0, ∞). Together with (D1) and (D4), we find that

|Siu(t1) − Siu(t2)| ≤ |hi(t1) − hi(t2)| +
∞∫
0

|gt1i (s) − gt2i (s)|μr,i(s)ds

≤ |hi(t1) − hi(t2)| + ||gt1i − gt2i ||∞||μr,i||1 → 0

(4:4)

as t1 ® t2. Hence, Siu Î C[0, ∞).

To see that Siu is bounded, we have for t Î [0, ∞),

|Siu(t)| ≤ Hi +

∞∫
0

|gi(t, s)|μr,i(s)ds ≤ Hi + ||gti ||∞||μr,i||1. (4:5)

By (D5), there exists T1 >0 such that for t > T1,

||gti ||∞ ≤ ||g̃i||∞ + 1.

On the other hand, for t Î [0, T1], we have

||gti ||∞ ≤ sup
t∈[0,T1]

||gti ||∞.

Hence,

sup
t∈[0,∞)

||gti ||∞ ≤ max

{
sup

t∈[0,T1]
||gti ||∞, ||g̃i||∞ + 1

}
≡ Ki. (4:6)
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It follows from (4.5) that for t Î [0, ∞),

|Siu(t)| ≤ Hi + Ki||μr,i||1 ≡ Mi. (4:7)

Hence, Siu is bounded.

It remains to check the existence of the limit limt®∞ Siu(t). We claim that

lim
t→∞ Siu(t) = hi(∞) +

∞∫
0

g̃i(s)fi(s, u(s))ds (4:8)

where hi(∞) ≡ limt®∞ hi(t). In fact, it follows from (D5) that

∞∫
0

∣∣[gti(s) − g̃i(s)]fi(s, u(s))
∣∣ds ≤ ||gti − g̃i||∞||μr,i||1 → 0

as t ® ∞. This implies

lim
t→∞

∞∫
0

gti(s)fi(s, u(s))ds =

∞∫
0

g̃i(s)fi(s, u(s))ds

and so (4.8) is proved. We have hence shown that S : (Cl[0, ∞))
n ® (Cl[0, ∞))

n.

Next, we shall prove that S : (Cl[0, ∞))n ® (Cl[0, ∞))n is continuous. Let {um} be a

sequence in (Cl[0, ∞))n and um = (um1 , u
m
2 , . . . , u

m
n ) → u. In (Cl[0, ∞))n, i.e., umi → ui, in

Cl[0, ∞), 1 ≤ i ≤ n. We need to show that Sum ® Su in (Cl[0, ∞))n, or equivalently

Siu
m ® Siu in Cl[0, ∞), 1 ≤ i ≤ n. There exists r >0 such that ||um||, ||u|| <r, Noting

(D2), there exists μr,i Î L1[0, ∞) such that |fi(s, u
m)|, |fi(s, u)| ≤ μr,i(s) for almost all s Î

[0, ∞). Denote Siu(∞) ≡ limt®∞ Siu(t) and Siu
m(∞) ≡ limt®∞ Siu

m(t). In view of (4.8),

we get that

|Sium(∞) − Siu(∞)| ≤
∞∫
0

|g̃i(s)[fi(s, um(s)) − fi(s, u(s))]|ds. (4:9)

Since

|g̃i(s)[fi(s, um(s)) − fi(s, u(s))]| → 0 as m → ∞ for almost every s ∈ [0,∞)

and

|g̃i(s)[fi(s, um(s)) − fi(s, u(s))]| ≤ 2μr,i(s) |g̃i(s)| ∈ L1[0,∞),

by the Lebesgue-dominated convergence theorem, it is clear from (4.9) that

|Sium(∞) − Siu(∞)| → 0 as m → ∞. (4:10)

Further, using (4.8) again we find that

|Siu(t) − Siu(∞)| ≤ |hi(t) − hi(∞)| +
∞∫
0

∣∣gti(s) − g̃i(s)
∣∣ μr,i(s)ds

≤ |hi(t) − hi(∞)| + ||gti − g̃i||∞||μr,i||1 → 0

(4:11)
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as t ® ∞. Similarly, we also have that

|Sium(t) − Siu
m(∞)| → 0 as t → ∞. (4:12)

Combining (4.10)-(4.12), we have

|Sium(t) − Siu(t)| → 0 as t → ∞ and m → ∞

or equivalently, there exist T̂ > 0 such that

|Sium(t) − Siu(t)| → 0 as m → ∞, for all t > T̂. (4:13)

It remains to check the convergence in [0, T̂]. As in (4.4), we find for any

|Sium(t1) − Siu
m(t2)| → 0 and |Siu(t1) − Siu(t2)| → 0,

|Sium(t1) − Siu
m(t2)| → 0 and |Siu(t1) − Siu(t2)| → 0 (4:14)

as t1 ® t2. Furthermore, Siu
m(t) ® Siu(t) pointwise on [0, T̂], since, by the Lebesgue-

dominated convergence theorem,

|Sium(t) − Siu(t)| ≤ sup
t∈[0,T̂]

||gti ||∞
∞∫
0

|fi(s, um(s)) − fi(s, u(s))|ds → 0 (4:15)

as m ® ∞. Combining (4.14) and (4.15) and the fact that [0, T̂] is compact yields

|Sium(t) − Siu(t)| → 0 as m → ∞, for all t ∈ [0, T̂] (4:16)

Coupling (4.13) and (4.16), we see that Siu
m ® Siu in Cl[0, ∞).

Finally, we shall show that S : (Cl[0, ∞))
n ® (Cl[0, ∞))

n is completely continuous. Let

Ω be a bounded set in (Cl[0, ∞))
n with ||u|| ≤ r for all u Î Ω We need to show that

SiΩ is relatively compact for 1 ≤ i ≤ n. First, we see that SiΩ is bounded; in fact, this

follows from an earlier argument in (4.7). Next, using a similar argument as in (4.4),

we see that SiΩ is equicontinuous. Moreover, SiΩ is equiconvergent follows as in

(4.11). By Theorem 2.2, we conclude that SiΩ is relatively compact. Hence, S : (Cl[0,

∞))n ® (Cl[0, ∞))
n is completely continuous.

We now apply Theorem 2.1 with U = {u Î (Cl[0, ∞))
n : ||u|| <M} and B = E = (Cl[0,

∞))n to obtain the conclusion of the theorem. □
Remark 4.1 In Theorem 4.1, the conditions (D2)-(D5) can be stated in terms of gen-

eral pi and qi as follows, and the proof will be similar:

(D2)’ fi : [0, ∞) × ℝn ® ℝ is a Lqi-Carathéodory function, i.e.,

(i) the map u a fi(t, u) is continuous for almost all t Î [0, ∞),

(ii) the map t a fi(t, u) is measurable for all u Î ℝn,

(iii) for any r >0, there exists μr,i ∈ Lqi[0,∞) such that |u| ≤ r implies |fi(t, u)| ≤ μr,i
(t) for almost all t Î [0, ∞),

(D3)’ gti(s) = gi(t, s) ∈ Lpi[0,∞), for each t Î [0, ∞),

(D4)’ the map t �→ gti is continuous from [0, ∞) to Lpi[0,∞),

(D5)’ there exists g̃i ∈ Lpi[0,∞) such that gti → g̃i, in Lpi[0,∞) as t ® ∞, i.e.,

lim
t→∞ ||gti − g̃i||pi = lim

t→∞

⎛
⎝ ∞∫

0

|gi(t, s) − g̃i(s)|pids
⎞
⎠

1
pi

= 0.
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Our subsequent Theorems 4.2-4.5 use an argument originating from Brezis and

Browder [11]. These results are parallel to Theorems 3.2-3.5 for system (1.1).

Theorem 4.2 Let the following conditions be satisfied for each 1 ≤ i ≤ n : (D1)-(D5),

(C5)∞, and (C6)∞ where

(C5)∞ there exist Bi >0 such that for any u Î (Cl[0, ∞))
n,

∞∫
0

⎡
⎣fi(t, u(t))

∞∫
0

gi(t, s)fi(s, u(s))ds

⎤
⎦ dt ≤ Bi,

(C6)∞ there exist r >0 and ai >0 with rai > Hi such that for any u Î (Cl[0, ∞))
n,

ui(t)fi(t, u(t)) ≥ rαi|fi(t, u(t))| for ||u(t)|| > r and a.e. t ∈ [0,∞).

Then, (1.2) has at least one solution in (Cl[0, ∞))
n.

Proof We shall employ Theorem 4.1, so let u = (u1, u2,..., un) Î (Cl[0, ∞))n be any

solution of (4.1)l where l Î (0, 1). The rest of the proof is similar to that of Theorem

3.2 with the obvious modification that [0, T] be replaced by [0, ∞). Also, noting (4.6)

we see that the analog of (3.15) holds. □
In view of the proof of Theorem 4.2, we see that the proof of subsequent Theorems

4.3-4.5 will also be similar to that of Theorems 3.3-3.5 with the appropriate modifica-

tion. As such, we shall present the results and omit the proof.

Theorem 4.3 Let the following conditions be satisfied for each 1 ≤ i ≤ n : (D1)-(D5),

(C7)∞ and (C8)∞ where

(C7)∞ there exist constants ai ≥ 0 and bi such that for any u Î (Cl[0, ∞))
n,

∞∫
0

⎡
⎣fi(t, u(t))

∞∫
0

gi(t, s)fi(s, u(s))ds

⎤
⎦ dt ≤ ai

∞∫
0

|fi(t, u(t))|dt + bi,

(C8)∞ there exist r >0 and ai >0 with rai > Hi + ai such that for any u Î (Cl[0, ∞))
n,

ui(t)fi(t, u(t)) ≥ rαi|fi(t, u(t))| for ||u(t)|| > r and a.e. t ∈ [0,∞).

Then, (1.2) has at least one solution in (Cl[0, ∞))
n.

Theorem 4.4 Let the following conditions be satisfied for each 1 ≤ i ≤ n : (D1)-(D5),

(C9)∞ and (C10)∞ where

(C9)∞ there exist constants ai ≥ 0, 0 < τi ≤ 1 and bi such that for any u Î (Cl[0, ∞))
n,

∞∫
0

⎡
⎣fi(t, u(t))

∞∫
0

gi(t, s)fi(s, u(s))ds

⎤
⎦ dt ≤ ai

⎡
⎣ ∞∫

0

|fi(t, u(t))|dt
⎤
⎦

τi

+ bi,

(C10)∞ there exist r >0 and bi >0 such that for any u Î (Cl[0, ∞))
n,

ui(t)fi(t, u(t)) ≥ βi||u(t)|| · |fi(t, u(t))| for ||u(t)|| > r and a.e. t ∈ [0,∞).

Then, (1.2) has at least one solution in (Cl[0, ∞))
n.

Theorem 4.5 Let the following conditions be satisfied for each 1 ≤ i ≤ n : (D1)-(D5),

(C10)∞, (C11)∞ and (C12)∞ where

(C11)∞ there exist r >0, hi >0, gi >0 and φi ∈ L
γi+1
γi [0,∞)such that for any u Î (Cl[0,

∞))n,
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||u(t)|| ≥ ηi|fi(t, u(t)|γi + φi(t) for ||u(t)|| > r and a.e. t ∈ [0,∞),

(C12)∞ there exist ai ≥ 0, 0 <τi < gi + 1, bi, and ψi ∈ L
γi+1
γi [0,∞)with ψi ≥ 0 almost

everywhere on [0, ∞), such that for any u Î (Cl[0, ∞))
n,

∞∫
0

⎡
⎣fi(t, u(t))

∞∫
0

gi(t, s)fi(s, u(s))ds

⎤
⎦dt ≤ ai

⎡
⎣ ∞∫

0

ψi(t)|fi(t, u(t))|dt
⎤
⎦

τi

+ bi.

Also, ji Î BC[0, ∞), hi ∈ L
γi+1
γi [0,∞), ψi Î BC[0, ∞) and

∞∫
0

|gi(t, s)|
γi+1
γi ds ∈ BC[0,∞).

Then, (1.2) has at least one solution in (Cl[0, ∞))
n.

We also have a remark similar to Remark 3.1.

Remark 4.2 In Theorem 4.5 the conditions (C10)∞ and (C11)∞ can be replaced by the

following; this is evident from the proof.

(C10)′∞ There exist r >0 and bi >0 such that for any u Î (Cl[0, ∞))
n,

ui(t)fi(t, u(t)) ≥ βi|ui|0 · |fi(t, u(t))| for ||u(t)|| > r and a.e. t ∈ [0,∞),

where we denote |ui|0 = sup
t∈[0,∞)

|ui(t)|.

(C11)′∞ There exist r > 0, hi > 0, gi > 0 and φi ∈ L
γi+1
γi [0,∞) such that for any u Î

(Cl[0, ∞))
n,

|ui|0 ≥ ηi|fi(t, u(t))|γi + φi(t) for ||u(t)|| > r and a.e. t ∈ [0,∞).

5 Existence results for (1.2) in (BC[0, ∞))n

Let the Banach space B = (BC[0, ∞))n be equipped with the norm:

||u|| = max
1≤i≤n

sup
t∈[0,∞)

|ui(t)| = max
1≤i≤n

|ui|0

where we let |ui|0 = suptÎ[0,∞) |ui(t)|, 1 < i < n. Throughout, for u Î B and t Î [0, ∞)

we shall denote

||u(t)|| = max
1≤i≤n

|ui(t)|.

Moreover, for each 1 ≤ i ≤ n, let 1 ≤ pi ≤ ∞ be an integer and qi be such that
1
pi
+ 1

qi
= 1. For x ∈ Lpi[0,∞), we shall define ||x||pi as in Section 4.

Our first result is a variation of an existence principle of Lee and O’Regan [25].

Theorem 5.1 For each 1 ≤ i ≤ n, assume (D2)’-(D4)’ and (D6) hold where

(D6) hi Î BC[0, ∞), denote Hi ≡ suptÎ[0, ∞) |hi(t)|.

For each k = 1, 2,..., suppose there exists uk = (uk1, u
k
2, . . . , u

k
n) ∈ (C[0, k])n that satis-

fies

uki (t) = hi(t) +

k∫
0

gi(t, s)fi(s, uk1(s), u
k
2(s), . . . , u

k
n(s))ds, t ∈ [0, k], 1 ≤ i ≤ n. (5:1)
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Further, for 1 ≤ i ≤ n and k = 1, 2,..., there is a bounded set B ⊆ ℝ such that

uki (t) ∈ B for each t Î [0, k]. Then, (1.2) has a solution u* Î (BC[0, ∞))n such that for

1 ≤ i ≤ n, u∗
i (t) ∈ B̄ for all t Î [0, ∞).

Proof First we shall show that{
for each 1 ≤ i ≤ n and � = 1, 2, . . . , the sequence {uki }k≥�

is uniformly bounded and equicontinuous on [0, �].
(5:2)

The uniform boundedness of {uki }k≥� follows immediately from the hypotheses; there-

fore, we only need to prove that {uki }k≥� is equicontinuous. Let 1 ≤ i ≤ n. Since

uki (t) ∈ B for each t Î [0, k], there exists μB ∈ Lqi[0,∞) such that |fi(s,u
k(s))| ≤ μB(s)

for almost every s Î [0, k].Fix t, t’ Î [0, l]. Then, from (5.1) we find that

∣∣∣uki (t) − uki (t
′)
∣∣∣ ≤ |hi(t) − hi(t′)| +

k∫
0

∣∣∣gti(s) − gt
′
i (s)

∣∣∣ · |fi(s, uk(s))|ds

= |hi(t) − hi(t′)| +
∞∫
0

1[0,k]
∣∣∣gti(s) − gt

′
i (s)

∣∣∣ · |fi(s, uk(s))|ds

≤ |hi(t) − hi(t′)| + ||gti − gt
′
i ||pi · ||μB||qi → 0

as t ® t’. Therefore, {uki }k≥� is equicontinuous on [0, l].
Let 1 ≤ i ≤ n. Now, (5.2) and the Arzéla-Ascoli theorem yield a subsequence N1 of N

= {1, 2,...} and a function z1i ∈ C[0, 1] such that uki → z1i uniformly on [0,1] as k ® ∞

in N1. LetN
∗
2 = N1\ {1}. Then, (5.2) and the Arzéla-Ascoli theorem yield a subsequence

N2 of N
∗
2 and a function z2i ∈ C[0, 2] such that uki → z2i uniformly on [0,2] as k ® ∞ in

N2. Note that z2i = z1i on [0,1] since N2 ⊆ N1. Continuing this process, we obtain subse-

quences of integers N1, N2,... with

N1 ⊇ N2 ⊇ · · · ⊇ N� ⊇ · · · , whereN� ⊆ {�, � + 1, . . .}, (5:3)

and functions z�i ∈ C[0, �] such that

uki → z�i uniformly on [0, �] as k → ∞ inN�,

and z�+1i = z�i on [0, �], � = 1, 2, . . . .
(5:4)

Let 1 ≤ i ≤ n. Define a function u∗
i : [0,∞] → R by

u∗
i (t) = z�i (t), t ∈ [0, �]. (5:5)

Clearly, u∗
i ∈ C[0,∞) and u∗

i (t) ∈ B̄ for each t Î [0, l]. It remains to prove that

u∗ = (u∗
1, u

∗
2, . . . , u

∗
n) solves (1.2). Fix t Î [0, ∞). Then, choose and fix l such that t Î

[0, l]. Take k ≥ l. Now, from (5.1) we have

uki (t) = hi(t) +

k∫
0

gi(t, s)fi(s, uk1(s), u
k
2(s), . . . , u

k
n(s))ds, t ∈ [0, �]
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or equivalently

uki (t) − hi(t) −
�∫

0

gi(t, s)fi(s, uk1(s), u
k
2(s), . . . , u

k
n(s))ds

=

k∫
l

gi(t, s)fi(s, uk1(s), u
k
2(s), . . . , u

k
n(s))ds, t ∈ [0, �].

(5:6)

Since fi is a Lqi-Carathéodory function and uki (t) ∈ B for each t Î [0, k], there exists

μB ∈ Lqi[0,∞) such that

|gi(t, s)fi(s, uk1(s), uk2(s), . . . , ukn(s))| ≤ |gti(s)|μB(s), a.e. s ∈ [0, k]

and |gti |μB ∈ L1[0,∞). Let k ® ∞ (k Î Nℓ) in (5.6). Since uki → z�i uniformly on [0, ℓ],

an application of Lebesgue-dominated convergence theorem gives∣∣∣∣∣∣z�i (t) − hi(t) −
�∫

0

gi(t, s)fi(s, z�1(s), z
�
2(s), . . . , z

�
n(s))ds

∣∣∣∣∣∣ ≤
∞∫
l

|gti(s)|μB(s)ds, t ∈ [0, �]

or equivalently (noting (5.5))∣∣∣∣∣∣u∗
i (t) − hi(t) −

�∫
0

gi(t, s)fi(s, u∗
1(s), u

∗
2(s), . . . , u

∗
n(s))ds

∣∣∣∣∣∣ ≤
∞∫
l

|gti(s)|μB(s)ds, t ∈ [0, �]. (5:7)

Finally, letting ℓ ® ∞ in (5.7) and use the fact |gti |μB ∈ L1[0,∞) to get

u∗
i (t) − hi(t) −

∞∫
0

gi(t, s)fi(s, u∗
1(s), u

∗
2(s), . . . , u

∗
n(s))ds = 0, t ∈ [0,∞).

Hence, u∗ = (u∗
1, u

∗
2, . . . , u

∗
n) is a solution of (1.2). □

It is noted that one of the conditions in Theorem 5.1, namely, (5.1) has a solution in

(C[0, k])n, which has already been discussed in Section 3. As such, our subsequent

Theorems 5.2-5.5 will make use of Theorem 5.1 and the technique used in Section 3.

These results are parallel to Theorems 3.2-3.5 and 4.2-4.5.

Theorem 5.2 Let (D2)-(D4) and (D6) be satisfied for each 1 ≤ i ≤ n. Moreover, sup-

pose the following conditions hold for each 1 ≤ i ≤ n and each w Î {1, 2,...}:

(C5)w there exist Bi > 0 such that for any u Î (C[0, w])n,

w∫
0

[
fi(t, u(t))

w∫
0
gi(t, s)fi(s, u(s))ds

]
dt ≤ Bi,

(C6)w there exist r >0 and ai >0 with rai > Hi (Hi as in (D6)) such that for any u Î
(C[0, w])n,

ui(t)fi(t, u(t)) ≥ rαi|fi(t, u(t))| for ||u(t)|| r and a.e. t ∈ [0,w].

Then, (1.2) has at least one solution in (BC[0, ∞))n.

Proof We shall apply Theorem 5.1. To do so, for w = 1, 2,..., we shall show that the

system

Agarwal et al. Advances in Difference Equations 2011, 2011:43
http://www.advancesindifferenceequations.com/content/2011/1/43

Page 24 of 35



ui(t) = hi(t) +

w∫
0

gi(t, s)fi(s, u(s))ds, t ∈ [0,w], 1 ≤ i ≤ n (5:8)

has a solution in (C[0, w])n. Obviously, (5.8) is just (1.1) with T = w. Let w Î {1, 2,...}

be fixed.

Let u = (u1, u2,..., un) Î (C[0,w])n be any solution of (3.1)l (with T = w) where l Î
(0, 1). We shall model after the proof of Theorem 3.2 with T = w and Hi given in

(D6). As in (3.9), define

I = {t ∈ [0,w] : ||u(t)|| ≤ r} and J = {t ∈ [0,w] : ||u(t)|| > r}.

Let 1 ≤ i ≤ n. If t Î I, then by (D2) there exists μr,i Î L1[0, ∞) such that

∫
I

|fi(t, u(t))|dt ≤
∫
I

μr,i(t)dt ≤
∞∫
0

μr,i(t)dt = ||μr,i||1

[which is the analog of (3.10)]. Proceeding as in the proof of Theorem 3.2, we then

obtain the analog of (3.14) as∫
J

|fi(t, u(t))|dt ≤ (Hi + r)||μr,i||1 + Bi

rαi − Hi
≡ ki (independent ofw).

Further, the analog of (3.15) appears as

|ui(t)| ≤ sup
t∈[0,w]

|hi(t)| +
(

sup
t∈[0,w]

ess sup
s∈[0,w]

|gi(t, s)|
)
(||μr,i||1 + ki)

≤ Hi +

(
sup

t∈[0,∞)
ess sup

s∈[0,∞)
|gi(t, s)|

)
(||μr,i||1 + ki) ≡ li (independent ofw), t ∈ [0,w].

(5:9)

Hence, ||u|| ≤ max1≤i≤n li = L and we conclude from Theorem 3.1 that (5.8) has a

solution u* in (C[0, w])n. Using similar arguments as in getting (5.9), we find

|u∗
i (t)| ≤ lifor each t Î [0, w]. All the conditions of Theorem 5.1 are now satisfied, it

follows that (1.2) has at least one solution in (BC[0, ∞))n. □
The proof of subsequent Theorems 5.3-5.5 will model after the proof of Theorem

5.2, and will employ similar arguments as in the proof of Theorems 3.3-3.5. As such,

we shall present the results and omit the proof.

Theorem 5.3 Let (D2)-(D4) and (D6) be satisfied for each 1 ≤ i ≤ n. Moreover, sup-

pose the following conditions hold for each 1 ≤ i ≤ n and each w Î {1, 2,...} :

(C7)w there exist constants ai ≥ 0 and bi such that for any u Î (C[0, w])n,

w∫
0

⎡
⎣fi(t, u(t))

w∫
0

gi(t, s)fi(s, u(s))ds

⎤
⎦ dt ≤ ai

w∫
0

∣∣fi(t, u(t))∣∣dt + bi,

(C8)w there exist r >0 and ai > 0 with rai > Hi + ai (Hi as in (D6)) such that for any

u Î (C[0, w])n,

ui(t)fi(t, u(t)) ≥ rαi|fi(t, u(t))| for ||u(t)|| > r and a.e. t ∈ [0,w].

Then, (1.2) has at least one solution in (BC[0, ∞))n.

Theorem 5.4 Let (D2)-(D4) and (D6) be satisfied for each 1 ≤ i ≤ n. Moreover, sup-

pose the following conditions hold for each 1 ≤ i ≤ n and each w Î {1, 2,...} :
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(C9)w there exist constants ai ≥ 0, 0 <τi ≤ 1 and bi such that for any u Î (C[0, w])n,

w∫
0

[
fi(t, u(t))

w∫
0
gi(t, s)fi(s, u(s))ds

]
dt ≤ ai

[ w∫
0

∣∣fi(t, u(t))∣∣dt
]τi

+ bi,

(C10)w there exist r >0 and bi >0 such that for any u Î (C[0, w])n,

ui(t)fi(t, u(t)) ≥ βi||u(t)|| · ||fi(t, u(t))| for ||u(t)|| > r and a.e. t ∈ [0,w].

Then, (1.2) has at least one solution in (BC[0, ∞))n.

Theorem 5.5 Let (D2)-(D4) and (D6) be satisfied for each 1 ≤ i ≤ n. Moreover, sup-

pose the following conditions hold for each 1 ≤ i ≤ n and each w Î {1, 2,...} : (C10)w,

(C11)w there exist r >0, hi >0, gi >0 and
φi ∈ L

γi + 1
γi [0,w]

such that for any u Î (C[0,

w])n,

||u(t)|| ≥ ηi|fi(t, u(t)|γi + φi(t) for ||u(t)|| > r and a.e. t ∈ [0,w],

(C12)w there exist ai ≥ 0, 0 < τi < gi + 1, bi, and
ψi ∈ L

γi + 1
γi [0,w]

with ψi ≥ 0 almost

everywhere on [0, w], such that for any u Î (C[0, w])n,

w∫
0

⎡
⎣fi(t, u(t))

w∫
0

gi(t, s)fi(s, u(s))ds

⎤
⎦ dt ≤ ai

⎡
⎣ w∫

0

ψi(t)|fi(t, u(t))|dt
⎤
⎦

τi

+ bi.

Also, ji Î C[0, w],
hi ∈ L

γi + 1
γi [0,w]

, ψi Î C[0, w] and w∫
0

∣∣gi(t, s)∣∣
γi + 1

γi ds Î C[0, w].

Then, (1.2) has at least one solution in (BC[0, ∞))n.

We also have a remark similar to Remark 3.1.

Remark 5.1 In Theorem 5.5 the conditions (C10)w and (C11)w can be replaced by the

following, this is evident from the proof.

(C10)′w There exist r >0 and bi >0 such that for any u Î (C[0, w])n,

ui(t)fi(t, u(t)) ≥ βi|ui|0 · |fi(t, u(t))| for ||u(t)|| > r and a.e. t ∈ [0,w],

where we denote |ui|0 = sup
t∈[0,w]

|ui(t)|.

(C11)′wThere exist r >0, hi >0, gi >0 and
φi ∈ L

γi + 1
γi [0,w]

such that for any u Î (C

[0, w])n,

|ui|0 ≥ ηi|fi(t, u(t)|γi + φi(t) for ||u(t)|| > r and a.e. t ∈ [0,w].

6 Existence of constant-sign solutions
In this section, we shall establish the existence of constant-sign solutions of the systems

(1.1) and (1.2), in (C[0, T])n, (Cl[0, ∞))
n and (BC[0, ∞))n. Once again, we shall employ

an argument originated from Brezis and Browder [11].

Throughout, let θi Î {-1, 1}, 1 ≤ i ≤ n be fixed. For each 1 ≤ j ≤ n, we define

[0,∞)j =
{
[0,∞), θj = 1
(−∞, 0], θj = −1.
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6.1 System (1.1)

Our first result is “parallel” to Theorem 3.2.

Theorem 6.1 Let the following conditions be satisfied for each 1 ≤ i ≤ n : (C1), (C2)-

(C4) with pi = ∞ and qi = 1, (C5), (C6) and (E1)-(E3) where

(E1) θihi(t) ≥ 0 for t Î [0, T],

(E2) gi(t, s) ≥ 0 for s, t Î [0, T],

(E3) θi fi(t, u) ≥ 0 for (t, u) ∈ [0,T] × ∏n
j=1 [0,∞)j.

Then, (1.1) has at least one constant-sign solution in (C[0, T])n.

Proof First, we shall show that the system

ui(t) = hi(t) +

T∫
0

gi(t, s)f ∗
i (s, u(s))ds, t ∈ [0,T], 1 ≤ i ≤ n (6:1)

has a solution in (C[0, T])n, where,

f ∗
i (t, u1, . . . , un) = fi(t, v1, . . . , vn), t ∈ [0,T], 1 ≤ i ≤ n (6:2)

where for 1 ≤ j ≤ n,

vj =
{
uj, θjuj ≥ 0
0, θjuj ≤ 0.

Clearly, f ∗
i (t, u) : [0,T] × Rn → R and f ∗

i satisfies (C2).

We shall employ Theorem 3.1, so let u = (u1, u2,..., un) Î (C[0, T])n be any solution

of

ui(t) = λ

⎛
⎝hi(t) +

T∫
0

gi(t, s)f ∗
i (s, u(s))ds

⎞
⎠ , t ∈ [0,T], 1 ≤ i ≤ n (6.3)λ

where l Î (0, 1). Using (E1)-(E3), we have for t Î [0, T] and 1 ≤ i ≤ n,

θiui(t) = λ

⎛
⎝θihi(t) +

T∫
0

gi(t, s)θif ∗
i (s, u(s))ds

⎞
⎠ ≥ 0.

Hence, u is a constant-sign solution of (6.3)l, and it follows that

f ∗
i (t, u(t)) = fi(t, u(t)), t ∈ [0,T], 1 ≤ i ≤ n. (6:4)

Noting (6.4), we see that (6.3)l is the same as (3.1)l. Therefore, using a similar tech-

nique as in the proof of Theorem 3.2, we obtain (3.15) and subsequently ||u|| ≤

max1≤i≤n li ≡ L. It now follows from Theorem 3.1 (with M = L + 1) that (6.1) has a

solution u* Î (C[0, T])n.

Noting (E1)-(E3), we have for t Î [0, T] and 1 ≤ i ≤ n,

θiu∗
i (t) = θihi(t) +

T∫
0
gi(t, s)θif ∗

i (s, u
∗(s))ds ≥ 0.

Thus, u* is of constant sign. From (6.2), it is then clear that

f ∗
i (t, u

∗(t)) = fi(t, u∗(t)), t ∈ [0,T], 1 ≤ i ≤ n.

Hence, u* is actually a solution of (1.1). This completes the proof of the theorem. □
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Based on the proof of Theorem 6.1, we can develop parallel results to Theorems 3.3-

3.11 as follows.

Theorem 6.2 Let the following conditions be satisfied for each 1 ≤ i ≤ n : (C1), (C2)-

(C4) with pi = ∞ and qi = 1, (C7), (C8) and (E1)-(E3). Then, (1.1) has at least one con-

stant-sign solution in (C[0, T])n.

Theorem 6.3 Let the following conditions be satisfied for each 1 ≤ i ≤ n : (C1), (C2)-

(C4) with pi = ∞ and qi = 1, (C9), (C10) and (E1)-(E3). Then, (1.1) has at least one con-

stant-sign solution in (C[0, T])n.

Theorem 6.4 Let the following conditions be satisfied for each 1 ≤ i ≤ n : (C1), (C2)-

(C4) with pi = ∞ and qi = 1, (C10)-(C12) and (E1)-(E3). Then, (1.1) has at least one

constant-sign solution in (C[0, T])n.

Theorem 6.5 Let the following conditions be satisfied for each 1 ≤ i ≤ n : (C1)-(C4),

(C5), (C10), (C13) and (E1)-(E3). Then, (1.1) has at least one constant-sign solution in

(C[0, T])n.

Theorem 6.6 Let the following conditions be satisfied for each 1 ≤ i ≤ n : (C1)-(C4),

(C7), (C10), (C13) and (E1)-(E3). Then, (1.1) has at least one constant-sign solution in

(C[0, T])n.

Theorem 6.7 Let the following conditions be satisfied for each 1 ≤ i ≤ n : (C1)-(C4),

(C10), (C13), (C14) and (E1)-(E3). Then, (1.1) has at least one constant-sign solution in

(C[0, T])n.

Theorem 6.8 Let the following conditions be satisfied for each 1 ≤ i ≤ n : (C1)-(C4),

(C10), (C13), (C15) and (E1)-(E3). Then, (1.1) has at least one constant-sign solution in

(C[0, T])n.

Theorem 6.9 Let the following conditions be satisfied for each 1 ≤ i ≤ n : (C1)-(C4),

(C10), (C13), (C16) and (E1)-(E3). Then, (1.1) has at least one constant-sign solution in

(C[0, T])n.

Theorem 6.10 Let the following conditions be satisfied for each 1 ≤ i ≤ n : (C1)-(C4),

(C10), (C13), (C17) and (E1)-(E3). Then, (1.1) has at least one constant-sign solution in

(C[0, T])n.

Remark 6.1 Similar to Remarks 3.1 and 3.2, in Theorem 6.4 the conditions (C10) and

(C11) can be replaced by (C10)’ and (C11)’; whereas in Theorems 6.5-6.10, (C10) and

(C13) can be replaced by (C10)’ and (C13)’.

6.2 System (1.2)

We shall first obtain the existence of constant-sign solutions of (1.2) in (Cl[0, ∞))
n. The

first result is “parallel” to Theorem 4.2.

Theorem 6.11 Let the following conditions be satisfied for each 1 ≤ i ≤ n : (D1)-(D5),

(C5)∞, (C6)∞ and (E1)∞-(E3)∞ where

(E1)∞ θihi(t) ≥ 0 for t Î [0, ∞),

(E2)∞ gi(t, s) ≥ 0 for s, t Î [0, ∞),

(E3)θifi(t,u) ≥ 0 for (t, u) ∈ [0,∞) × ∏n
j=1 [0,∞)j.

Then, (1.2) has at least one constant-sign solution in (Cl[0, ∞))
n.

Agarwal et al. Advances in Difference Equations 2011, 2011:43
http://www.advancesindifferenceequations.com/content/2011/1/43

Page 28 of 35



Proof First, we shall show that the system

ui(t) = hi(t) +

∞∫
0

gi(t, s)f ∗
i (s, u(s))ds, t ∈ [0,∞), 1 ≤ i ≤ n (6:5)

has a solution in (Cl[0, ∞))
n. Here,

f ∗
i (t, u1, . . . , un) = fi(t, v1, . . . , vn), t ∈ [0,∞), 1 ≤ i ≤ n (6:6)

where

vj =
{
uj, θjuj ≥ 0
0, θjuj ≤ 0.

Clearly, f ∗
i (t, u) : [0,∞] × Rn → R and f ∗

i satisfies (D2).

We shall employ Theorem 4.1, so let u = (u1, u2,..., un) Î (Cl[0, ∞))
n be any solution

of

ui(t) = λ

⎛
⎝hi(t) +

∞∫
0

gi(t, s)f ∗
i (s, u(s))ds

⎞
⎠ , t ∈ [0,∞), 1 ≤ i ≤ n (6.7)λ

where l Î (0, 1). Then, using a similar technique as in the proof of Theorem 6.1

(and also Theorem 4.2), we can show that (1.2) has a constant-sign solution u* Î (Cl

[0, ∞))n. □
Remark 6.2 Similar to Remark 4.1, in Theorem 6.11 the conditions (D2)-(D5) can be

replaced by (D2)’-(D5)’.

Based on the proof of Theorem 6.11, we can develop parallel results to Theorems

4.3-4.5 as follows.

Theorem 6.12 Let the following conditions be satisfied for each 1 ≤ i ≤ n : (D1)-(D5),

(C7)∞, (C8)∞ and (E1)∞-(E3)∞. Then, (1.2) has at least one constant-sign solution in (Cl

[0, ∞))n.

Theorem 6.13 Let the following conditions be satisfied for each 1 ≤ i ≤ n : (D1)-(D5),

(C9)∞, (C10)∞ and (E1)∞-(E3)∞. Then, (1.2) has at least one constant-sign solution in

(Cl[0, ∞))
n.

Theorem 6.14 Let the following conditions be satisfied for each 1 ≤ i ≤ n : (D1)-(D5),

(C10)∞-(C12)∞ and (E1)∞-(E3)∞. Then, (1.2) has at least one constant-sign solution in

(Cl[0, ∞))
n.

Remark 6.3 Similar to Remark 4.2, in Theorem 6.14 the conditions (C10)∞ and

(C11)∞ can be replaced by (C10)′∞ and (C11)′∞.

We shall now obtain the existence of constant-sign solutions of (1.2) in (BC[0, ∞))n.

The first result is ‘parallel’ to Theorem 5.1.

Theorem 6.15 For each 1 ≤ i ≤ n, assume (D2)’-(D4)’ and (D6). For each k = 1, 2,...,

suppose there exists a constant-sign uk = (uk1, u
k
2, . . . , u

k
n) ∈ (C[0, k])nthat satisfies

uki (t) = hi(t) +

k∫
0

gi(t, s)fi(s, uk1(s), u
k
2(s), . . . , u

k
n(s))ds, t ∈ [0, k], 1 ≤ i ≤ n. (6:8)
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Further, for 1 ≤ i ≤ n and k = 1, 2,..., there is a bounded set B ⊆ ℝ such that

uki (t) ∈ Bfor each t Î [0, k]. Then, (1.2) has a constant-sign solution u*Î (BC[0, ∞))n

such that for 1 ≤ i ≤ n, u∗
i (t) ∈ B̄for all t Î [0, ∞).

Proof Using a similar technique as in the proof of Theorem 5.1, we can show that

(5.2) holds. Let 1 ≤ i ≤ n. Together with the Arzéla-Ascoli theorem, we obtain subse-

quences of integers N1, N2,... satisfying (5.3), and functions z�i ∈ C[0, �] such that (5.4)

holds. Define a function u∗
i : [0,∞) → R by (5.5), i.e.,

u∗
i (t) = z�i (t), t ∈ [0, �].

Since θiuki ≥ 0, we have θiz�i ≥ 0 and so θiu∗
i ≥ 0. Hence, u∗

i is of constant sign. The

rest of the proof is the same as that of Theorem 5.1. □
The next result is “parallel” to Theorem 5.2.

Theorem 6.16 Let (D2)-(D4) and (D6) be satisfied for each 1 ≤ i ≤ n. Moreover, sup-

pose the following conditions hold for each 1 ≤ i ≤ n and each w Î {1, 2,...,} : (C5)w,

(C6)w and (E1)w - (E3)w where

(E1)w θihi(t) ≥ 0 for t Î [0, w],

(E2)w gi(t, s) ≥ 0 for s, t Î [0, w],

(E3)w θifi(t,u) ≥ 0 for (t, u) ∈ [0,w] × ∏n
j=1 [0,∞)j.

Then, (1.2) has at least one constant-sign solution in (BC[0, ∞))n.

Proof We shall apply Theorem 6.15. To do so, for w = 1, 2,..., we shall show that the

system (5.8) has a constant-sign solution u* in (C[0, w])n. The proof of this is similar

to that of Theorem 6.1 (with T = w) and Theorem 5.2. As in (5.9) we have |u∗
i (t)| ≤ li

for each t Î [0, w] and 1 ≤ i ≤ n. All the conditions of Theorem 6.15 are now satisfied

and the conclusion is immediate. □
Based on the proof of Theorem 6.16, we can develop parallel results to Theorems

5.3-5.5 as follows:

Theorem 6.17 Let (D2)-(D4) and (D6) be satisfied for each 1 ≤ i ≤ n. Moreover, sup-

pose the following conditions hold for each 1 ≤ i ≤ n and each w Î {1, 2,...} : (C7)w,

(C8)w and (E1)w-(E3)w. Then, (1.2) has at least one constant-sign solution in (BC[0, ∞))
n.

Theorem 6.18 Let (D2)-(D4) and (D6) be satisfied for each 1 ≤ i ≤ n. Moreover, sup-

pose the following conditions hold for each 1 ≤ i ≤ n and each w Î {1, 2,...} : (C9)w,

(C10)w and (E1)w-(E3)w. Then, (1.2) has at least one constant-sign solution in (BC[0,

∞))n.

Theorem 6.19 Let (D2)-(D4) and (D6) be satisfied for each 1 ≤ i ≤ n. Moreover, sup-

pose the following conditions hold for each 1 ≤ i ≤ n and each w Î {1, 2,...} : (C11)w,

(C12)w and (E1)w-(E3)w. Then, (1.2) has at least one constant-sign solution in (BC[0,

∞))n.

Remark 6.4 Similar to Remark 5.1, in Theorem 6.19 the conditions (C10)w and (C11)

w can be replaced by (C10)′w and (C11)′w.

7 Examples
We shall now illustrate the results obtained through some examples.
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Example 7.1 In system (1.1), consider the following fi, 1 ≤ i ≤ n :

fi(t, u) =
{

κi(t, u), u ∈ P
0, otherwise.

(7:1)

Here,

P = {u ∈ (C[0,T])n : u1(t), u2(t), . . . , un(t) > c for all t ∈ [0,T]}

where c >0 is a given constant, and �i is such that

(a) the map u a fi(t, u) is continuous for almost all t Î [0, T];

(b) the map t a fi(t, u) is measurable for all u Î ℝn;

(c) for any r >0, there exists μr,i Î L1[0, T] such that |u| ≤ r implies |�i (t, u)| ≤ μr,i
(t) for almost all t Î [0, T];

(d) for any u Î P, ui(t)�i(t, u(t)) ≥ 0 for all t Î [0, T].

Next, suppose for each 1 ≤ i ≤ n,

hi ∈ C[0,T]with Hi ≡ sup
t∈[0,T]

|hi(t)| < c. (7:2)

Clearly, conditions (C1) and (C2) with qi = 1 are fulfilled. We shall check that condi-

tion (C6) is satisfied. Pick r > c and αi = c
r, 1 ≤ i ≤ n. Then, from (7.2) we have rai = c

> Hi.

Let u Î P. Then, from (7.1) we have fi(t, u) = �i(t, u). Consider ||u(t)|| > r where t Î
[0, T]. If ||u(t)|| = |ui(t)|, then noting (d) we have

ui(t)fi(t, u(t)) = |ui(t)| · |fi(t, u(t))| = ||u(t)|| · |fi(t, u(t))|
> r|fi(t, u(t))|
> r · c

r
· |fi(t, u(t))|

= rαi|fi(t, u(t))|.

(7:3)

If ||u(t)|| = |uk(t)| for some k ≠ i, then

ui(t)fi(t, u(t)) = |ui(t)| · |fi(t, u(t))| = r · |ui(t)|
r

· |fi(t, u(t))|

> r · c
r

· |fi(t, u(t))|
= rαi|fi(t, u(t))|.

(7:4)

Therefore, from (7.3) and (7.4) we see that condition (C6) holds for u Î P.

For u Î (C[0, T])n\P, we have fi(t, u) = 0 and (C6) is trivially true. Hence, we have

shown that condition (C6) is satisfied.

The next example considers a convolution kernel gi(t, s) which arises in nonlinear

diffusion and percolation problems; the particular case when n = 1 has been investi-

gated by Bushell and Okrasiński [26].
Example 7.2 Consider system (1.1) with (7.1), (7.2), and for 1 ≤ i ≤ n,

gi(t, s) = (t − s)γi−1 (7:5)

where gi > 1.
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Clearly, gi satisfies (C3) and (C4) with pi = ∞. Next, we shall check condition (C5).

For u Î P (P is given in Example 7.1), we have

T∫
0

⎡
⎣fi(t, u(t))

T∫
0

gi(t, s)fi(s, u(s))ds

⎤
⎦ dt =

T∫
0

⎡
⎣κi(t, u(t))

T∫
0

(t − s)γi−1κi(s, u(s))ds

⎤
⎦ dt

≤ Tγi−1

T∫
0

⎡
⎣κi(t, u(t))

T∫
0

κi(s, u(s))ds

⎤
⎦ dt

≤ Bi

(7:6)

since �i(t, u) satisfies (c) (note (c) is stated in Example 7.1). This shows that condi-

tion (C5) holds for u Î P. For u Î (C[0, T])n\P, we have fi(t, u) = 0 and (C5) is trivially

true. Therefore, condition (C5) is satisfied.

It now follows from Theorem 3.2 that the system (1.1) with (7.1), (7.2) and (7.5) has

at least one solution in (C[0, T])n.

The next example considers an gi(t, s) of which the particular case when n = 1 origi-

nates from the well known Emden differential equation.

Example 7.3 Consider system (1.1) with (7.1), (7.2), and for 1 ≤ i ≤ n,

gi(t, s) = (t − s)sγi (7:7)

where gi ≥ 0.

Clearly, gi satisfies (C3) and (C4) with pi = ∞. Next, we see that condition (C5) is

satisfied. In fact, for u Î P, corresponding to (7.6) we have

T∫
0

⎡
⎣fi(t, u(t))

T∫
0

gi(t, s)fi(s, u(s))ds

⎤
⎦ dt =

T∫
0

⎡
⎣κi(t, u(t))

T∫
0

(t − s)sγiκi(s, u(s))ds

⎤
⎦ dt

≤ Tγi+1

T∫
0

⎡
⎣κi(t, u(t))

T∫
0

κi(s, u(s))ds

⎤
⎦ dt

≤ Bi.

(7:8)

Hence, by Theorem 3.2 the system (1.1) with (7.1), (7.2) and (7.7) has at least one

solution in (C[0, T])n.

Our next example illustrates the existence of a positive solution in (C[0, T])n, this is

the particular case of constant-sign solution usually considered in the literature.

Example 7.4 Let θi = 1, 1 ≤ i ≤ n. Consider system (1.1) with (7.1), (7.2), and for 1 ≤

i ≤ n,

hi(t) ≥ 0, t ∈ [0,T]. (7:9)

Clearly, condition (E1) is met, and noting (d) in Example 7.1 condition (E3) is also

fulfilled. Moreover, both gi(t, s) in (7.5) and (7.7) satisfy condition (E2). From Examples

7.1-7.3, we see that all the conditions of Theorem 6.1 are met. Hence, we conclude

that

the system (1.1) with (7.1), (7.2), (7.9) and (7.5).

and
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the system (1.1) with (7.1), (7.2), (7.9) and (7.7).

each of which has at least one positive solution in (C[0, T])n.

Example 7.5 In system (1.2), consider the following fi, 1 ≤ i ≤ n :

fi(t, u) =
{

κi(t, u), u ∈ P∞
0, otherwise.

(7:10)

Here,

P∞ = {u ∈ (Cl[0,∞))n : u1(t), u2(t), . . . , un(t) > c for all t ∈ [0,∞)}

where c >0 is a given constant, and �i is such that

(a)∞ the map u a fi(t, u) is continuous for almost all t Î [0, ∞);

(b)∞ the map t a fi(t, u) is measurable for all u Î ℝn;

(c)∞ for any r > 0, there exists μr,i Î L1[0, ∞) such that |u| ≤ r implies |�i(t, u)| ≤

μr,i(t) for almost all t Î [0, ∞);

(d)∞ for any u Î P∞, ui(t) �i(t, u(t)) ≥ 0 for all t Î [0, ∞).

Next, suppose for each 1 ≤ i ≤ n,

hi ∈ Cl[0,∞)withHi ≡ sup
t∈[0,∞)

|hi(t)| < c. (7:11)

Clearly, conditions (D1) and (D2) are satisfied. Moreover, using a similar technique

as in Example 7.1, we see that condition (C6)∞ is satisfied.

Example 7.6 Consider system (1.2) with (7.10), (7.11), and for 1 ≤ i ≤ n,

gi(t, s) =
1

s + 1
+

1
(1 + t)γi

(7:12)

where gi ≥ 1.

Clearly, gi satisfies (D3), (D4) and (D5) (take g̃i(s) = 1
s+1). Next, we shall check condi-

tion (C5)∞. For u Î P∞ (P∞ is given in Example 7.5), we have

∞∫
0

⎡
⎣fi(t, u(t))

∞∫
0

gi(t, s)fi(s, u(s))ds

⎤
⎦ dt

=

∞∫
0

⎡
⎣κi(t, u(t))

∞∫
0

(
1

s + 1
+

1

(1 + t)γ i

)
κi(s, u(s))ds

⎤
⎦ dt

≤ 2

∞∫
0

⎡
⎣κi(t, u(t))

∞∫
0

κi(s, u(s))ds

⎤
⎦ dt ≤ Bi

(7:13)

since �i(t, u) satisfies (c)∞ (note (c)∞ is stated in Example 7.5). This shows that con-

dition (C5)∞ holds for u Î P∞. For u Î (Cl[0, ∞))
n\P∞, we have fi(t, u) = 0 and (C5)∞

is trivially true. Hence, condition (C5)∞ is satisfied.

We can now conclude from Theorem 4.2 that the system (1.2) with (7.10), (7.11) and

(7.12) has at least one solution in (Cl[0, ∞))
n.

Agarwal et al. Advances in Difference Equations 2011, 2011:43
http://www.advancesindifferenceequations.com/content/2011/1/43

Page 33 of 35



The next example shows the existence of a positive solution in (Cl[0, ∞))
n, this is the

special case of constant-sign solution usually considered in the literature.

Example 7.7 Let θi = 1, 1 ≤ i ≤ n. Consider system (1.2) with (7.10)-(7.12), and for 1

≤ i ≤ n,

hi(t) ≥ 0, t ∈ [0,∞). (7:14)

Clearly, conditions (E1)∞-(E3)∞ are satisfied. Noting Examples 7.5 and 7.6, we see

that all the conditions of Theorem 6.11 are met. Hence, the system (1.2) with (7.11)-

(7.12) has at least one positive solution in (Cl[0, ∞))
n.
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