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Abstract

In this article, we study a boundary value problem of a class of generalized linear
discrete-time systems whose coefficients are square constant matrices. By using
matrix pencil theory, we obtain formulas for the solutions and we give necessary and
sufficient conditions for existence and uniqueness of solutions. Moreover, we provide
some numerical examples. These kinds of systems are inherent in many physical and
engineering phenomena.
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1 Introduction
Linear matrix difference equations (LMDEs) are systems in which the variables take

their values at instantaneous time points. Discrete time systems differ from continuous

time ones in that their signals are in the form of sampled data. With the development of

the digital computer, the discrete time system theory plays an important role in control

theory. In real systems, the discrete time system often appears when it is the result of

sampling the continuous-time system or when only discrete data are available for use.

LMDEs are inherent in many physical, engineering, mechanical, and financial/actuarial

models. In this article, our purpose is to study the solutions of generalized linear dis-

crete-time boundary value problems into the mainstream of matrix pencil theory. A

boundary value problem consists of finding solutions which satisfies an ordinary matrix

difference equation and appropriate boundary conditions at two or more points. Thus,

we consider

FYk+1 = GYk (1)

with known boundary values of type

AYk0 + BYkN = D (2)

where F,G,A,B,∈ M(m × m;F),Yk,D ∈ M(m × 1;F) (i.e., the algebra of square

matrices with elements in the field F ). For the sake of simplicity, we set

Mm = M(m × m;F) and Mnm = M(n × m;F) .

Systems of type (1) are more general, including the special case when F = In, where

In is the identity matrix of Mn .
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The matrix pencil theory has extensively been used for the study of linear difference

equations with time invariant coefficients, see for instance [1-5]. A matrix pencil is a

family of matrices sF - G, parametrized by a complex number s. When G is square and

F = In, where In is the identity matrix, the zeros of the function det (sF - G) are the

eigenvalues of G. Consequently, the problem of finding the nontrivial solutions of the

equation

sFX = GX (3)

is called the generalized eigenvalue problem. Although the generalized eigenvalue

problem looks like a simple generalization of the usual eigenvalue problem, it exhibits

some important differences. In the first place, it is possible for det (sF - G) to be iden-

tically zero, independent of s. Second, it is possible for F to be singular, in which case

the problem has infinite eigenvalues. To see this, write the generalized eigenvalue pro-

blem in the reciprocal form

FX = s−1GX (4)

If F is singular with a null vector X, then GX = O , so that X is an eigenvector of the

reciprocal problem corresponding to eigenvalue s-1 = 0; i.e., s = ∞. It might be thought

that infinite eigenvalues are special, unhappy cases to be ignored in our perturbation

problem but that is a misconception (see also [6-9]).

2 Mathematical background and notation
This brief section introduces some preliminary concepts and definitions from matrix

pencil theory, which are being used throughout the article. Linear systems of type (1)

are closely related to matrix pencil theory, since the algebraic, geometric, and dynamic

properties stem from the structure by the associated pencil sF - G.

Definition 2.1. Given F,G Î Mnm and an indeterminate s Î F, the matrix pencil sF -

G is called regular when m = n and det (sF - G) ≠ 0. In any other case, the pencil will

be called singular.

Definition 2.2. The pencil sF - G is said to be strictly equivalent to the pencil

sF̃ − G̃ if and only if there exist nonsingular P ∈ Mm and Q ∈ Mm such as

P(sF − G)Q = sF̃ − G̃ (5)

In this article, we consider the case that pencil is regular.

The class of sF - G is characterized by a uniquely defined element, known as a com-

plex Weierstrass canonical form, sFw - Qw, see [5], specified by the complete set of

invariants of the pencil sF - G.

This is the set of elementary divisors (e.d.) obtained by factorizing the invariant poly-

nomials fi(s, ŝ) into powers of homogeneous polynomials irreducible over field F. In

the case where sF - G is a regular, we have e.d. of the following type:

• e.d. of the type sp are called zero finite elementary divisors (z. f.e.d.)

• e.d. of the type (s - a)π, a ≠ 0 are called nonzero finite elementary divisors (nz. f.e.

d.)

• e.d. of the type ŝq are called infinite elementary divisors (i.e.d.).
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Let B1, B2, ..., Bn be elements of Mn . The direct sum of them denoted by B1 ⊕ B2 ⊕
··· ⊕ Bn is the block diag {B1, B2, ..., Bn}.

Then, the complex Weierstrass form sFw - Qw of the regular pencil sF - G is defined

by sFw - Qw := sIp - Jp ⊕ sHq - Iq, where the first normal Jordan-type element is

uniquely defined by the set of f.e.d.

(s − a1)p1, ..., (s − aν)pν ,
ν∑
j=1

pj = p (6)

of sF - G and has the form

sIp − Jp := sIp1 − Jp1(a1) ⊕ · · · ⊕ sIpν
− Jpν

(aν). (7)

and also the q blocks of the second uniquely defined block sHq - Iq correspond to the

i.e.d.

ŝq1 , . . . , ŝqσ ,
σ∑
j=1

qj = q (8)

of sF - G and has the form

sHq − Iq := sHq1 − Iq1 ⊕ · · · ⊕ sHqσ
− Iqσ

. (9)

Thus, Hq is a nilpotent element of Mn with index q̃ = max{qj : j = 1, 2, . . . , σ } , then

Hq̃
q = O

We denote with O the zero matrix. Ipj , Jpj(aj),Hqj are defined as

Ipj =

⎡
⎢⎢⎢⎣
1 0 . . . 0 0
0 1 . . . 0 0
...
...
. . .

...
...

0 0 . . . 0 1

⎤
⎥⎥⎥⎦ ∈ Mpj , (10)

Jpj(aj) =

⎡
⎢⎢⎢⎢⎢⎣

aj 1 . . . 0 0
0 aj . . . 0 0
...
...
. . .

...
...

0 0 . . . aj 1
0 0 . . . 0 aj

⎤
⎥⎥⎥⎥⎥⎦ ∈ Mpj (11)

Hqj =

⎡
⎢⎢⎢⎢⎢⎣

0 1 . . . 0 0
0 0 . . . 0 0
...
...
. . .

...
...

0 0 . . . 0 1
0 0 . . . 0 0

⎤
⎥⎥⎥⎥⎥⎦ ∈ Mqj . (12)

3 Main results-Solution space form of a consistent boundary value problem
In this section, the main results for a consistent boundary value problem of types (1)

and (2) are analytically presented. Moreover, it should be stressed that these results

offer the necessary mathematical framework for interesting applications.
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Definition 3.1. The boundary value problem (1) and (2) is said to be consistent if it

possesses at least one solution.

Consider the problem (1) with known boundary conditions (2). From the regularity

of sF - G, there exist nonsingular M(m × m, F) matrices P and Q such that (see also

Section 2),

PFQ = Fw = Ip ⊕ Hq (13)

and

PGQ = Gw = Jp ⊕ Iq (14)

where Ipj , Jpj(aj),Hqj are defined by (10), (11), (12) and moreover

Ip = Ip1⊕· · ·⊕Ipν
Jp = Jp1 (a1)⊕· · ·⊕Jpν

(aν) Hq = Hq1⊕· · ·⊕Hqσ
Iq = Iq1⊕· · ·⊕Iqσ (15)

Note that
∑ν

j=1 pj = p and
∑σ

j=1 qj = q , where p + q = n.

Lemma 3.1. System (1) is divided into two subsystems:

Zp
k+1 = JpZ

p
k, (16)

and the subsystem

HqZ
q
k+1 = Zq

k (17)

Proof. Consider the transformation

Yk = QZk (18)

Substituting the previous expression into (1) we obtain

FQZk+1 = GQZk

whereby, multiplying by P, we arrive at

FwZk+1 = GwZk

Moreover, we can write Zk as Zk =
[
Zp
k

Zq
k

]
, where Zp

k ∈ Mp1 and Zq
k ∈ Mq1 . Taking

into account the above expressions, we arrive easily at (16) and (17).

Proposition 3.2. The subsystem (16) has general solution

Zp
k = Jk−k0

p C (19)

where
∑ν

j=1 pj = p and C ∈ Mm1 constant.

Proof. See [2,3].

Proposition 3.3. The subsystem (17) has the unique solution

Zq
k = O (20)

Proof. Let q* be the index of the nilpotent matrix Hq, i.e. (H
q∗
q = O ), we obtain the

following equations
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HqZ
q
k+1 = Zq

k

H2
qZ

q
k+1 = HqZ

q
k

H3
qZ

q
k+1 = H2

qZ
q
k

...

Hq∗
q Zq

k+1 = Hq∗−1
q Zq

k

and

HqZ
q
k+1 = Zq

k

H2
qZ

q
k+2 = HqZ

q
k+1

H3
qZ

q
k+3 = H2

qZ
q
k+2

...

Hq∗
q Zq

k+q∗ = Hq∗−1
q Zq

k+q∗−1

The conclusion, i.e., Zq
k = O, is obtained by repetitive substitution of each equation in

the next one, and using the fact that Hq∗
q = O .

The boundary value problem

A necessary and sufficient condition for the boundary value problem to be consistent

is given by the following result

Theorem 3.1. The boundary value problem (1), (2) is consistent, if and only if

D ∈ colspan[AQp + BQpJ
kN−k0 ] (21)

Where Qp ∈ Mmp . The matrix Qp has column vectors the p linear independent

eigenvectors of the finite generalized eigenvalues of sF-G (see [1] for an algorithm of

the computation of Qp).

Proof. Let Q = [QpQq], where Qp ∈ Mmp and Qq ∈ Mmq ; Combining propositions

(3.2) and (3.3), we obtain

Yk = QZk = [QpQq]
[
Jk−k0
p C
O

]

or

Yk = QpJ
k−k0
p C. (22)

The solution exists if and only if

D = AYk0 + BYkN

D = [AQp + BQpJ
kN−k0
p ]C

or

D ∈ colspan[AQp + BQpJ
kN−k0
p ]
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It is obvious that, if there is a solution of the boundary value problem, it needs not

to be unique. The necessary and sufficient conditions, for uniqueness, when the pro-

blem is consistent, are given by the following theorem.

Theorem 3.2. Assume the boundary value problem (1), (2). Then when it is consis-

tent, it has a unique solutions if and only if

rank[AQp + BQpJ
kN−k0 ] = p (23)

Then the formula of the unique solution is

Yk = QpJ
k−k0
p C

where C is the solution of the equation

[AQp + BQpJ
k−k0
p ]C = D (24)

Proof. Let the boundary value problem (1), (2) be consistent, then from Theorem 3.1

and (22) the solution is

Yk = QpJ
k−k0
p C

with

D = AYk0 + BYkN

and

[AQp + BQpJ
kN−k0
p ]C = D

It is clear that for given A, B, D the problem (1), (2) has a unique solution if and

only if the system (24) has a unique solution. Since (AQp + BQpJ
kN−k0
p ) ∈ Mmp , the

solution is unique for system (24) if and only if the matrix AQp + BQpJ
kN−k0
p is left

invertible. This fact is equivalent to:

rank[AQp + BQpJ
kN−k0
p ] = p

Then the formula of the unique solution is

Yk = QpJ
k−k0
p C

where C is the solution of the equation

(AQp + BQpJ
kN−k0
p )C = D

Other type of boundary conditions

Assume that the matrix difference equation (1) has a different type of boundary condi-

tions. Let the boundary conditions be

KYk0 = S

LYkN = T
(25)
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where K, L, S,T ∈ M(m × m;F) . Then we can state the following theorem.

Theorem 3.3. The boundary value problem (1), (25) is consistent, if and only if

S,T ∈ colspan[KQp] = colspan[LQpJ
kN−k0 ] (26)

Moreover when it is consistent, it has a unique solution if and only

rank[KQp] = rank[LQpJ
kN−k0 ] = p (27)

and the linear system

KQpC = S

LQpJ
kN−k0
p C = T

(28)

gives a unique solution for the constant column C.

Proof. From (22) and (25) the solution exists if and only if

S = KQpC

T = LQpJ
kN−k0
p C

or

S,T ∈ colspan[KQp] = colspan[LQpJ
kN−k0 ]

It is obvious that a consistent solution of the boundary value problem (1), (25), is

unique if and only if the system (28) gives a unique solution for C. Since

KQp, LQpJ
kN−k0
p ∈ Mmp , the solution is unique if and only if the matrices

KQp, LQpJ
kN−k0
p are left invertible or rank[KQp] = rank[LQpJ

kN−k0
p ] = p .

4 Numerical example
Consider the boundary value problem (1), (2), where

F =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 1
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

G =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−4 2 2 −3 −2 −1
1 1 −1 −1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

and A, B the identity and zero matrices, respectively. The invariants of sF - G are s -

1, s - 2, s - 3 (finite elementary divisors) and ŝ3 (infinite elementary divisor of degree

3). Then

Jk3 =

⎡
⎣1 0 0
0 2k 0
0 0 3k

⎤
⎦

and the columns of Qp are the eigenvectors of the generalized eigenvalues 1, 2, 3,

respectively. Then

AQp + BQpJkN−k0 =

⎡
⎣3 −5 3 −5 3 −5
1 −1 2 −2 4 −4
1 −1 3 −3 9 −9

⎤
⎦

T

(29)
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where ()T is the transpose tensor.

4.1 Example 1

Let

D =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
−3
−2
0
−10
8

⎤
⎥⎥⎥⎥⎥⎥⎦

Then

D ∈ colspan[AQp + BQpJ
kN−k0
p ]

and by calculating C from (24) we get

C =
[
1 −1 −1

]
and the unique solution of the system by substituting in (22) is

Yk =

⎡
⎢⎢⎢⎢⎢⎢⎣

3 − 2k − 3k

−5 + 2k + 3k

3 − 2k+1 − 3k+1

−5 + 2k+1 + 3k+1

3 − 2k+2 − 3k+2

−5 + 2k+2 + 3k+2

⎤
⎥⎥⎥⎥⎥⎥⎦

4.2 Example 2

Let

D =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
1
1

⎤
⎥⎥⎥⎥⎥⎥⎦

Then

D /∈ colspan[AQp + BQpJ
kN−k0 ]

and the problem is not consistent.

5 Conclusions
The aim of this article was to give necessary and sufficient conditions for existence and

uniqueness of solutions for generalized linear discrete-time boundary value problems

of a class of linear rectangular matrix difference equations whose coefficients are

square constant matrices. By taking into consideration that the relevant pencil is regu-

lar, we use the Weierstrass canonical form to decompose the difference system into

two sub-systems. Afterwards, we provide analytical formulas when we have a consis-

tent problem. Moreover, as a further extension of this article, we can discuss the case

where the pencil is singular. Thus, the Kronecker canonical form is required. For all

these, there is some research in progress.
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