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Abstract
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1 Introduction
In [], Gurney et al. proposed the following nonlinear autonomous delay equation:

x′(t) = –αx(t) + βx(t – τ )e–λx(t–τ ), α,β , τ ,λ ∈ (,∞) (.)

to describe the population of the Australian sheep blowfly and to agree with the experi-
mental data obtained by Nicholson in []. Here x(t) is the size of the population at time t,
β is themaximum per capita daily egg production, /λ is the size at which the blowfly pop-
ulation reproduces at its maximum rate, α is the per capita daily adult death rate, and τ is
the generation time. Equation (.) is recognized in the literature as Nicholson’s blowflies
model. The dynamical behavior of solutions of this model and its various modifications
have been extensively studied bymany authors during the last couple of decades. Formore
details, we suggest to the readers that they consult [–].
Biologists have proposed that the process of harvesting population is of great signifi-

cance in the exploitation of biological resources, i.e., in fishery, forestry and wildlife man-
agement. This justification has attracted the attention of many mathematicians who are
interested in studying the dynamic behavior of populationmodels governed by differential
or difference equations [, ]. In their recent paper [], in particular, Berezansky et al.
have put forward a question about the asymptotic behavior of the well-knownNicholson’s
blowflies model involving a linear harvesting term of the form

x′(t) = –αx(t) + βx(t – τ )e–λx(t–τ ) –Hx(t – σ ), α,β , τ ,λ,σ ,H ∈ (,∞). (.)
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Recently, there have appeared many results concerning the investigation of periodic and
almost periodic behaviors of system (.) via employing several utilities such as fixed-point
theorems and the coincidence degree theory [–, , ].
The delay difference equation

�x(n) = –αx(n) + βx(n – τ )e–γ x(n–τ ), α,β , τ ,λ ∈ (,∞)

is a discrete analogue of the delay differential equation (.). For the purpose of conve-
nience, however, we shall consider a discreteNicholson’s blowfliesmodel involving a linear
harvesting term of the form

�x(n) = –α(n)x(n + ) + β(n)x
(
n – τ (n)

)
e–γ (n)x(n–τ (n)) –H(n)x

(
n – σ (n)

)
, (.)

where n ∈ Z and α,β ,γ , τ ,σ ,H : Z→ [,∞) are almost periodic sequences.
A primary purpose of this paper is to study the almost periodic dynamics of equation

(.).We shall employ the contractionmapping principle to establish sufficient conditions
for the existence of an almost periodic solution for (.). By constructing an appropriate
Lyapunov functional, we also prove that the solutions of (.) converge exponentially to an
almost periodic solution.We provide a numerical example to illustrate the effectiveness of
the main theorems. To the best of authors’ knowledge, no paper regarding the investiga-
tion of almost periodicity of equation (.) has been published. Thus, our paper is different
and presents a new approach.

2 Preliminaries
For a bounded sequence g defined on Z, we define g+ and g– as follows:

g+ = lim sup
n→∞

g(n) and g– = lim inf
n→∞ g(n).

In the sequel, we assume that

α– > , β– > , γ – >  (.)

and

r =max
{
τ+,σ +} > . (.)

Let I = {–r, –r + , . . . , –, }, C = {ϕ : I → Z} and C+ = {ϕ ∈ C : ϕ ≥ ,ϕ() > }. For each
ϕ ∈ C, we define the norm of ϕ as ‖ϕ‖ =maxs∈I |ϕ|. Denote xn = x(n + s) for all s ∈ I . For
any ϕ ∈ C+, it is easy to see that there is a unique solution x(n, ,ϕ) of (.) with

x = ϕ (.)

and x(n, ,ϕ) >  for all n ∈ Z.

Definition  A sequence f (n) is said to be almost periodic if for ε > , there is a constant
l(ε) >  such that in any interval of length l(ε) there exists a number τ ∈ Z such that the
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inequality

∣∣f (n + τ ) – f (n)
∣∣ < ε

is satisfied for all n ∈ Z.

The following basic results are essential for proving the main results in Section . They
were provided in [] for arbitrary time scale T. If T = Z, then these results can be formu-
lated as follows.

Theorem ([]) Let f : Z →R be an almost periodic sequence, then f (n) is bounded onZ.

Theorem ([]) If f , g : Z →R are almost periodic sequences, then f +g and fg are almost
periodic.

Theorem ([]) If f : Z →R is an almost periodic sequence, then F(n) is almost periodic
if and only if F(n) is bounded on Z where F(n) =

∑n–
k= f (k).

Theorem  ([]) If f : Z → R is an almost periodic sequence and F(·) is defined on the
value field of f (n), then F ◦ f is almost periodic.

We assume that
A. There exist two constants � and � such that

� > �,
(

β

γ

)+ 
α–e

< � and
β–

α+ �e–γ +� –
H+�

α+ > � ≥ 
γ – .

The following result tells that every solution of (.) persists.

Lemma  Let A. hold. Then for ϕ ∈ C := {ϕ : � < ϕ(n) < �,∀n ∈ I}, the solution
x(n,n,ϕ) of (.) and (.) satisfy

� < x(n,n,ϕ) < �, ∀n ∈ [n,∞). (.)

Proof Set x(n) = x(n,n,ϕ). Let [n,T) ⊆ [n,∞) be an interval such that

x(n) > , ∀n ∈ [n,T). (.)

We claim that

 < x(n) < �, ∀n ∈ [n,T). (.)

For the sake of contradiction, we assume that (.) is not true. Then, one can find n ∈
(n,T) such that

x(n + ) ≥ � and  < x(n) < �, ∀n ∈ [n – r,n + ). (.)

http://www.advancesindifferenceequations.com/content/2012/1/158
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In view of (.), A., (.) and the fact that supu≥ ue–u = 
e , we have

 ≤ �x(n)

= –α(n)x(n + ) + β(n)x
(
n – τ (n)

)
e–γ (n)x(n–τ (n)) –H(n)x

(
n – σ (n)

)
= –α(n)x(n + ) +

β(n)
γ (n)

γ (n)x
(
n – τ (n)

)
e–γ (n)x(n–τ (n))

–H(n)x
(
n – σ (n)

)
≤ –α–x(n + ) +

(
β

γ

)+ 
e

≤ α–
[
–� +

(
β

γ

)+ 
α–e

]
< ,

which is a contradiction, and this implies that (.) holds. Next, we show that

x(n) > �, ∀n ∈ [n,T). (.)

On the contrary, assume that there exists n ∈ (n,T) such that

x(n + )≤ �, and x(n) > �, ∀n ∈ [n – r,n + ). (.)

In virtue of A. and (.), we obtain

� < x(n) < �, γ +x(n)≥ γ + 
γ – ≥ , ∀n ∈ [n – r,n + ). (.)

In view of (.), A., (.), (.) and the fact that min≤u≤δ ue–u = δe–δ , we have

 ≥ �x(n)

= –α(n)x(n + ) + β(n)x
(
n – τ (n)

)
e–γ (n)x(n–τ (n)) –H(n)x

(
n – σ (n)

)
= –α(n)x(n + ) +

β(n)
γ (n)

γ (n)x
(
n – τ (n)

)
e–γ (n)x(n–τ (n))

–H(n)x
(
n – σ (n)

)
≥ –α+� +

β–

γ + γ +�e–γ +� –H+�

≥ α+
[
–� +

β–

α+ �e–γ +� –
H+�

α+

]
> ,

which is a contradiction, and this implies that (.) holds. In view of (.) and (.), it
follows that relation (.) is true. Hence the proof is complete. �

3 Themain results
Consider the linear difference system

x(n + ) = A(n)x(n), (.)

http://www.advancesindifferenceequations.com/content/2012/1/158
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where x ∈ Z
m, and A : Z → Z

m×m is a matrix sequence. In what follows, we denote by ‖ · ‖
any convenient norm either of a vector or of a matrix.

Definition  The difference system (.) is said to possess an exponential dichotomy on
Z if there exists a projection P, that is, anm×mmatrix P such that P = P, and constants
K > , ν >  such that

∥∥X(r)PX–(s + )
∥∥ ≤ K

(


 + ν

)r–s–

, r ≥ s,

∥∥X(r)(I – P)X–(s + )
∥∥ ≤ K

(


 + ν

)s+–r

, s≥ r,

where X(t) is the fundamental solution matrix of (.) and r, s ∈ Z.

Consider the following almost periodic difference system:

x(n + ) = A(n)x(n) + f (n), (.)

where A : Z → Z
m×m is an almost periodic matrix sequence and f : Z → Z

m is an almost
periodic vector sequence.

Theorem  If the linear system (.) admits an exponential dichotomy, then system (.)
has a bounded solution x(n) in the form

x(n) =
n–∑

k=–∞
X(n)PX–(k + )f (k) –

∞∑
k=n

X(n)(I – P)X–(k + )f (k), (.)

where X(t) is the fundamental solution matrix of (.).

Proof By direct substitution, we obtain

x(n + ) –A(n)x(n) =
n∑

k=–∞
X(n + )PX–(k + )f (k)

–
∞∑

k=n+

X(n + )X–(k + )f (k)

+
∞∑

k=n+

X(n + )PX–(k + )f (k)

–A(n)
n–∑

k=–∞
X(n)PX–(k + )f (k)

+A(n)
∞∑
k=n

X(n)X–(k + )f (k)

–A(n)
∞∑
k=n

X(n)PX–(k + )f (k).

http://www.advancesindifferenceequations.com/content/2012/1/158
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It follows that

x(n + ) –A(n)x(n) = X(n + )PX–(n + )f (n) –A(n)X(n)PX–(n + )f (n)

+A(n)X(n)X–(n + )f (n) = f (n).

Moreover, we have

∥∥x(n)∥∥ = sup
n∈Z

∣∣∣∣∣
n–∑

k=–∞
X(n)PX–(k + )f (k) –

∞∑
k=n

X(n)(I – P)X–(k + )f (k)

∣∣∣∣∣
≤ sup

n∈Z

(∣∣∣∣∣
n–∑

k=–∞
X(n)PX–(k + )

∣∣∣∣∣ +
∣∣∣∣∣

∞∑
k=n

X(n)(I – P)X–(k + )

∣∣∣∣∣
)
K‖f ‖

≤
(∣∣∣∣∣

n–∑
k=–∞

(


 + ν

)n–k–
∣∣∣∣∣ +

∣∣∣∣∣
∞∑
k=n

(


 + ν

)k+–n
∣∣∣∣∣
)
K‖f ‖

≤
(
 + ν

ν
+

ν

)
K‖f ‖ =  + ν

ν
K‖f ‖,

where ‖ · ‖ = supt∈Z | · |. By Theorem , x(n) is a bounded solution of system (.). The
proof is complete. �

Theorem  ([]) Let α(n) >  be an almost periodic sequence on Z and

inf
n∈Z

α(n)
 + α(n)

> , (.)

then the linear system

�x(n) = –α(n)x(n + ) (.)

admits an exponential dichotomy on Z.

Set

B = {ϕ : ϕ is an almost periodic sequence on Z}.

If we define the norm ‖ϕ‖B =supn∈Z |ϕ(n)|, for any ϕ ∈ B, then one can easily deduce that
B is a Banach space.
We assume that
A. β+

α–

e +

H+

α– < .

Theorem  Let A. and A. hold. Then, there exists a unique positive almost periodic
solution of (.) in B∗ := {ϕ : ϕ ∈ B,� < ϕ(n) < �,∀n ∈ Z}.

Proof For any φ ∈ B, we consider an auxiliary equation

�x(n) = –α(n)x(n + ) + β(n)φ
(
n – τ (n)

)
e–γ (n)φ(n–τ (n)) –H(n)φ

(
n – σ (n)

)
. (.)

http://www.advancesindifferenceequations.com/content/2012/1/158
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Since infn∈Z α(n)
+α(n) > , it follows from Theorem  that the linear system

�x(n) = –α(n)x(n + ) (.)

admits an exponential dichotomy on Z. By Theorem  and Theorem , we deduce that
system (.) has a bounded solution of the form

xφ(n) =
n–∑

m=–∞

n–∏
r=m

(


 + α(r)

)[
β(m)φ

(
m – τ (m)

)
e–γ (m)φ(m–τ (m))

–H(m)φ
(
m – σ (m)

)]
. (.)

In virtue of Theorem , Theorem , Theorem , and using the almost periodicity of∏n–
r=m(


+α(r) ) and the fact that the uniform limit of almost periodic sequences is also al-

most periodic, we deduce that xφ is also almost periodic.
Define a mapping T : B → B by setting

T
(
φ(n)

)
= xφ(n), ∀φ ∈ B.

It is easy to see that B∗ is a closed subset of B. For any φ ∈ B∗, we have

xφ(n) ≤
n–∑

m=–∞

n–∏
r=m

(


 + α(r)

)
β(m)φ

(
m – τ (m)

)
e–γ (m)φ(m–τ (m))

=
n–∑

m=–∞

n–∏
r=m

(


 + α(r)

)
β(m)
γ (m)

γ (m)φ
(
m – τ (m)

)
e–γ (m)φ(m–τ (m)).

By the fact that supu≥ ue–u = 
e , we obtain

xφ(n) ≤
n–∑

m=–∞

n–∏
r=m

(


 + α(r)

)
β(m)
γ (m)e

(.)

or

xφ(n) ≤
n–∑

m=–∞

n–∏
r=m

(


 + α–

)(
β

γ

)+ 
e
. (.)

Using that
∑n–

m=–∞
∏n–

r=m(


+α– ) =


α– , we end up with

xφ(n) ≤
(

β

γ

)+ 
α–e

≤ �, ∀n ∈ Z. (.)

On the other hand, we have

xφ(n) =
n–∑

m=–∞

n–∏
r=m

(


 + α(r)

)[
β(m)φ

(
m – τ (m)

)
e–γ (m)φ(m–τ (m)) –H(m)φ

(
m – σ (m)

)]

≥
n–∑

m=–∞

n–∏
r=m

(


 + α(r)

)[
β(m)
γ + γ +φ

(
m – τ (m)

)
e–γ +φ(m–τ (m)) –H+�

]
.

http://www.advancesindifferenceequations.com/content/2012/1/158
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By virtue of the fact that min≤u≤κ ue–u = κe–κ , we obtain

xφ(n) ≥ β–

α+ �e–γ +� –
H+�

α+ ≥ �, ∀n ∈ Z.

This tells that the mapping T is a self-mapping from B∗ to B∗.
Let ϕ,ψ ∈ B∗. Then

∥∥T(ϕ) – T(ψ)
∥∥
B = sup

n∈Z

∣∣T(
ϕ(n)

)
– T

(
ψ(n)

)∣∣

= sup
n∈Z

∣∣∣∣∣
n–∑

m=–∞

n–∏
r=m

(


 + α(r)

)
β(m)

[
ϕ
(
m – τ (m)

)
e–γ (m)ϕ(m–τ (m))

–ψ
(
m – τ (m)

)
e–γ (m)ψ(m–τ (m))]

–H(m)
[
ϕ
(
m – σ (m)

)
–ψ

(
m – σ (m)

)]∣∣∣∣∣
= sup

n∈Z

∣∣∣∣∣
n–∑

m=–∞

n–∏
r=m

(


 + α(r)

)
β(m)
γ (m)

[
γ (m)ϕ

(
m – τ (m)

)
e–γ (m)ϕ(m–τ (m))

– γ (m)ψ
(
m – τ (m)

)
e–γ (m)ψ(m–τ (m))]

–H(m)
[
ϕ
(
m – σ (m)

)
–ψ

(
m – σ (m)

)]∣∣∣∣∣.
In virtue of the fact that supu≥ | –ueu | = 

e , we observe that

∣∣xe–x – ye–y
∣∣ = ∣∣∣∣ – (x + θ (y – x))

ex+θ (y–x)

∣∣∣∣|x – y|

≤ 
e

|x – y|, x, y ∈ [,∞),  < θ < . (.)

By A., we get

γ (m)ϕ
(
m – τ (m)

) ≥ γ (m)� ≥ γ (m)


γ – ≥ , ∀n ∈ Z.

Therefore, by (.), (.) and (.), we have

∥∥T(ϕ) – T(ψ)
∥∥
B ≤ sup

n∈Z

n–∑
m=–∞

n–∏
r=m

(


 + α–

)[
β(m)
e

∣∣ϕ(
m – τ (m)

)
–ψ

(
m – τ (m)

)∣∣
+H(m)

∣∣ϕ(
m – σ (m)

)
–ψ

(
m – σ (m)

)∣∣]

≤
(
sup
n∈Z

n–∑
m=–∞

n–∏
r=m

(


 + α–

))(
β(m)
e

+H+
)

‖ϕ –ψ‖.

Therefore, we end up with

∥∥T(ϕ) – T(ψ)
∥∥
B ≤

(
β+

α–e
+
H+

α–

)
‖ϕ –ψ‖,

http://www.advancesindifferenceequations.com/content/2012/1/158
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which implies by A. that the mapping T is contractive on B∗. Therefore, the mapping T
possesses a unique fixed point ϕ∗ ∈ B∗ such that Tϕ∗ = ϕ∗. Thus, ϕ∗ is an almost periodic
solution of (.) in the B∗. The proof is complete. �

We assume that
A. α– >  + β+

e +H+.

Theorem  Let A. and A. hold. Further, assume x∗(n) is a positive almost periodic so-
lution of (.) in the set B∗. Then, the solution x(n,n,ϕ) of (.) with ϕ ∈ C converges
exponentially to x∗(n) as n→ ∞.

Proof Set x(n) = x(n,n,ϕ) and y(n) = x(n) – x∗(n), where n ∈ [n – r,∞). Then

�y(n) = –α(n)y(n + ) + β(n)
[
x
(
n – τ (n)

)
e–γ (n)x(n–τ (n))

– x∗(n – τ (n)
)
e–γ (n)x∗(n–τ (n))] –H(n)y

(
n – σ (n)

)
. (.)

The result of Lemma  tells that x(n) is positive and bounded on [n,∞) and

� < x(n) < �, ∀n ∈ [n – r,∞). (.)

Define a function �(u) by setting

�(u) = eu – α– + β+ 
e
eu(r+) +H+eu(r+), u ∈ [, ]. (.)

It is clear that � is continuous on [, ]. Then, by A. we have

�() =  – α– +
β+

e
+H+ < ,

which implies that there exist two constants η >  and  < λ ≤  such that

�(λ) = eλ – α– + β+ 
e
eλ(r+) +H+eλ(r+) < –η < . (.)

We consider the discrete Lyapunov functional

V (n) =
∣∣y(n)∣∣eλn. (.)

Calculating the difference of V (n) along the solution y(n) of (.), we have

�V (n) = �
(∣∣y(n)∣∣eλn)

= �
∣∣y(n)∣∣eλ(n+) +

∣∣y(n)∣∣�eλn

≤ –α(n)
∣∣y(n + )

∣∣eλ(n+) + β(n)
∣∣x(n – τ (n)

)
e–γ (n)x(n–τ (n))

– x∗(n – τ (n)
)
e–γ (n)x∗(n–τ (n))∣∣eλ(n+)

+H(n)
∣∣y(n – σ (n)

)∣∣eλ(n+) +
∣∣y(n)∣∣(eλ(n+) – eλn)

≤ ∣∣y(n)∣∣eλ(n+) – α(n)
∣∣y(n + )

∣∣eλ(n+)

http://www.advancesindifferenceequations.com/content/2012/1/158
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+
[
β(n)

∣∣x(n – τ (n)
)
e–γ (n)x(n–τ (n)) – x∗(n – τ (n)

)
e–γ (n)x∗(n–τ (n))∣∣

+H(n)
∣∣y(n – σ (n)

)∣∣]eλ(n+) (.)

for all n ≥ n.
Let

M := eλn
(

max
n∈[n,∞)

∣∣ϕ(n) – x∗(n)
∣∣ + 

)
, ∀n≥ n.

Then, we claim that

V (n) =
∣∣y(n)∣∣eλn <M, ∀n≥ n. (.)

Assume, on the contrary, that there exists n∗ > n such that

V (n∗) ≥ M and V (n) <M, ∀n ∈ [n – r,n∗), (.)

which implies that

V (n∗) –M ≥  and V (n) –M < , ∀n ∈ [n – r,n∗). (.)

In virtue of (.), (.) and (.), we obtain

 ≤ �
(
V (n∗) –M

)
= �V (n∗)

≤ ∣∣y(n∗)
∣∣eλ(n∗+) – α(n∗)

∣∣y(n∗ + )
∣∣eλ(n∗+)

+
[
β(n∗)

∣∣x(n∗ – τ (n∗)
)
e–γ (n∗)x(n∗–τ (n∗)) – x∗(n∗ – τ (n)

)
e–γ (n∗)x∗(n∗–τ (n∗))∣∣

+H(n∗)
∣∣y(n∗ – σ (n∗)

)∣∣]eλ(n∗+)

≤ ∣∣y(n∗)
∣∣eλ(n∗+) – α(n∗)

∣∣y(n∗ + )
∣∣eλ(n∗+)

+
β(n∗)
e

∣∣y(n∗ – τ (n∗)
)∣∣eλ(n∗+–τ (n∗))eλτ (n∗)

+H(n∗)
∣∣y(n∗ – σ (n∗)

)∣∣eλ(n∗+–σ (n∗))eλσ (n∗)

≤ (
eλ – α–)M +

β+

e
Meλ(r+) +H+Meλ(r+)

=
[
eλ – α– +

β+

e
eλ(r+) +H+eλ(r+)

]
M.

Thus,

eλ – α– +
β+

e
eλ(r+) +H+eλ(r+) ≥ ,

which contradicts (.). Hence (.) holds. It follows that |y(n)| <Me–λn for all n ≥ n.
The proof is complete. �
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4 An example and concluding remark
In this section, we construct an example to demonstrate the results obtained in the previ-
ous sections. A concluding remark is also reported.

Example  Consider the following Nicholson’s blowflies model with a linear harvesting
term of the form

�x(n) = –
(
 + cos n

)
x(n + )

+ ee–
(
 + .| sin√

n|)x(n – e| cos
√
n|)e–x(n–e| cos√n|)

–
( + sin n)| sinn|

,
x
(
n – e| cos

√
n|), (.)

where

α(n) =  + cos n, β(n) = ee–
(
 + .| sin√

n|),
τ (n) = e| cos

√
n|, γ (n) = 

and

σ (n) = e| cos
√
n|, H(n) =

( + sin n)| sinn|
,

.

It is clear that

α– = , α+ = , β– = ee–, β+ = .ee–, γ + = γ – = 

and

τ+ = σ + = e, H– = , H+ =


,
.

Thus, conditions (.) and (.) hold. Let � = e and � = . Then

� = e > � = ,
(

β

γ

)+ 
α–e

≈ . < e,
β–

α+ �e–γ +� –
H+�

α+ ≈ . > 

and this shows that condition A. is satisfied. It remains to check conditions A. and A..
However, one can see the validity of these conditions since

β+

α–

e

+
H+

α– ≈ . <  and  +
β+

e
+H+ ≈  < .

Therefore, we conclude that all assumptions of Theorem  and Theorem  are fulfilled.
Hence, system (.) has a positive almost periodic solution x∗ in B∗ = {ϕ : ϕ ∈ B,  < ϕ(n) <
e,∀n ∈ Z}. Moreover, if ϕ ∈ C, then x(n,n,ϕ) converges exponentially to x∗ as n → ∞.

Remark  It is well known that the optimal management of renewable resources has di-
rect relationship to the sustainable development of exploitation of population. One way

http://www.advancesindifferenceequations.com/content/2012/1/158
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to handle this is to study population models involving harvesting, dispersal or competi-
tion. Assuming that harvesting is a function of the delayed estimate of the true population,
Nicholson’s blowflies model involving a linear harvesting term has been the object of re-
cent research.
Following this trend, we study the almost periodic behavior of a discrete analogue of

Nicholson’s blowflies model involving a linear harvesting term of form (.). It is worth
mentioning here that most of the discrete analogues of Nicholson’s models investigated in
the literature have involved a linear part of form�x(n) = –α(n)x(n). In this paper, however,
we consider Nicholson’s model of form (.) to guarantee the convergence of the series
appears in the solution representation (.).
A result concerning the persistence of the solutions is provided prior to proving the

main theorems. Under the assumptions A.-A., sufficient conditions are established for
the existence and exponential convergence of positive almost periodic solutions of (.).
Our approach is based on the contractionmapping principle as well as on the construction
of an appropriate Lyapunov functional.
The results of this paper could be generalized to Nicholson’s model involving multiple

delays and multiple linear harvesting terms. As Nicholson’s model under consideration
is involving a linear harvesting term, one can easily figure out that some of the results
reported in the literature might be no longer applicable for proving the existence and ex-
ponential convergence of almost periodic solutions of (.). This implies that the main
theorems of this paper improve and extend some of previously obtained results.
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