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Abstract
This paper addresses the oscillation problem of a class of impulsive differential
equations with delays and Riemann-Stieltjes integrals that cover many equations in
the literature. In the case of oscillatory potentials, both El-Sayed type and Kamenev
type oscillation criteria are established by overcoming the difficulty caused by
impulses and oscillatory potentials in the estimation of the delayed argument. The
main results not only generalize some existing results but also drop a restrictive
condition imposed on impulse constants. Finally, two examples are presented to
illustrate the theoretical results.
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1 Introduction
Recent years have witnessed a rapid progress in the theory of impulsive differential equa-
tions which provide a natural description of the motion of several real world processes
subject to short time perturbations. Due to many applications in physics, chemistry, pop-
ulation dynamics, ecology, biological systems, control theory, etc. [–], the theory of im-
pulsive differential equations has been extensively studied in [–].
We are here concerned with the oscillation problem of impulsive functional differential

equations. Compared to equations without impulses, the oscillation of impulsive differen-
tial equations receives less attention [–]. In this paper, we investigate the oscillation
of the following impulsive differential equation with delay and Riemann-Stieltjes integral:

⎧⎨
⎩(r(t)x′(t))′ + q(t)x(t) +

∫ h
 p(t, s)|x(τ (t, s))|α(s) sgnx(τ (t, s))dξ (s) = e(t), t �= tk ,

x(t+k ) = ckx(t–k ), x′(t+k ) = dkx′(t–k ),
()

where t ≥ t,  < h <∞;
∫ h
 f (s)dξ (s) denotes the Riemann-Stieltjes integral of the function

f on [,h] with respect to ξ , and ξ : [,h]→ R is nondecreasing; α(s) is a strictly increasing
continuous function on [,h] satisfying  ≤ α() <  < α(h); {tk}∞k= denotes the sequence
of impulse moments satisfying  ≤ t < t < t < · · · < tk < · · · and limk→∞ tk = +∞; ck ,
dk are positive impulse constants, and ck ≥ ; r ∈ C[t,∞) with r(t) > , q, e ∈ C[t,∞),
and p ∈ C([t,∞) × [,h]); the time delay τ (t, s) : [t,∞) × [,h] → [σ ,∞) with σ ≤ t is
continuous, τ (t, s)≤ t and limt→+∞ τ (t, s) = +∞ for s ∈ [,h].
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With the choice of ξ (s), α(s) and τ (t, s), we see that Eq. () reduces to many particular
forms considered in the literature. Throughout this paper, we denote

x
(
t±k

)
= lim

t→tk±
x(t), x′(t±k )

= lim
�t→±

x(tk +�t) – x(tk)
�t

.

Let J ⊂ R be an interval. Define PC(J ,R) = {z : J → R : z(t) is continuous everywhere
except some tk at which z(t+k ) and z(t–k ) exist and z(t–k ) = z(tk)}. By a solution of Eq. (), we
mean a function x(t) ∈ PC([t,∞),R) such that x′(t),x′′(t) ∈ PC([t,∞),R), and x(t) satis-
fies Eq. () for t ∈ [t,∞). A solution of Eq. () is said to be oscillatory if it is defined on
some ray [T ,∞) with T ≥ t, and has arbitrarily large zeros. Otherwise, it is called non-
oscillatory. Eq. () is said to be oscillatory if all of its nonconstant solutions defined for all
large T >  are oscillatory.
Recently, there have been many papers devoted to the oscillation problem for some par-

ticular cases of Eq. (). When there are no impulses and τ (t, s) ≡ τ (t), Sun and Kong []
established some interval oscillation criteria for the following equation:

(
r(t)x′(t)

)′ + q(t)x(t) +
∫ h


p(t, s)

∣∣x(τ (t))∣∣α(s) sgnx(τ (t))dξ (s) = e(t), ()

which generalize and improve some results for second-order differential equations with
mixed nonlinearities in [, ].
For the case of impulse, Özbekler and Zafer [, ] studied forced oscillation of a class

of super-half-linear differential equations. Without considering the influence of forced
term, some oscillation criteria were given in []. Liu and Xu [] studied the oscillation
of a forced mixed type Emden-Fowler equation (a particular case of Eq. ())

⎧⎨
⎩(r(t)x′(t))′ + q(t)x(t) +

∑n
i= pi(t)|x(t)|αi–x(t) = e(t), t �= τk ,

x(τ+
k ) = ckx(τ–

k ), x′(τ+
k ) = dkx′(τ–

k ),
()

where {τk}∞k= is the sequence of impulsemoments, α > · · · > αm >  > αm+ > · · · > αn > , r,
q, pi, e are real valued continuous functions on [t,∞) and r(t) > . We note that a restric-
tive condition is imposed on impulse constants that dk ≥ ck in [–]. Some oscillation
results for the second-order forced mixed nonlinear impulsive differential equation were
also established in [, ].
Zafer [] investigated a class of second-order sublinear delay impulses differential

equation

⎧⎪⎪⎨
⎪⎪⎩
x′′(t) + p(t)x(t) + p(t)|x(τ (t))|α–x(τ (t)) = , t �= θk ,

�x′(t)|t=θk + qk|x(τ (θk))|α–x(τ (θk)) = ,

�x(t)|t=θk = ,

()

where {θk}∞k= is the sequence of impulse moments and  < α < . The author established
oscillation criteria in two cases of τ (t) ≤ t and τ (t) = t. We see that x(t) is additionally
assumed to be continuous in [].
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In our recent paper [], we further extend the main results in [] to Eq. () with
τ (t, s) = t. However, the oscillation problem of Eq. () remains untouched in [] for the
case of oscillatory potentials.
Generally speaking, some ideas to oscillation of differential equations without impulses

can also be applied to impulsive differential equations. For example, the idea to interval
oscillation in [–] and the idea of dealing with mixed nonlinearities in []. However,
when the potentials q, p and e are allowed to change signs, it is difficult to deal with the
delayed argument x(τ (t, s)) for Eq. () as that for differential equations without impulses in
[]. In this paper, we will overcome difficulties caused by oscillatory potentials, delayed
argument and impulses, and establish both El-Sayed type and Kamenev type interval os-
cillation criteria for Eq. ().
The main contribution of this paper is threefold. First, in the case of oscillatory poten-

tials, we present an estimation on x(τ (t, s))/x(t) in a bounded interval, which plays a key
role in the proof of the main results. Second, the redundant restriction on impulse con-
stants ck and dk that dk ≥ ck is removed by introducing particular El-Sayed type functions
in [] and using Kong’s technique in [] many times based on the number of impulse
moments in a bounded interval. Finally, both impulse, delay andRiemann-Stieltjes integral
are taken into consideration in this paper. Therefore, most of mixed type Emden-Fowler
equations considered in the literature are included as special cases.
The remainder of this paper is organized as follows. In Section , some important lem-

mas are given. Interval oscillation criteria of the El-Sayed type and the Kong type are es-
tablished in Section . Finally, two examples are given in Section .

2 Preliminaries
Throughout this paper, we suppose that there are limited impulse moments in any
bounded time interval. For the sake of convenience, we introduce the following notations.
Denote

ϕ(a) =min{k|tk > a, tk > t}, ψ(b) =max{k|t < tk < b},

where b > a > t are constants. It is easy to see that tϕ(a), tϕ(a)+, tϕ(a)+, . . . , tψ(b) are all im-
pulse moments in the interval (a,b).
The following two lemmas are crucial in the proof of our main results.

Lemma . For given constants b > a ≥ t, assume that x(t),x′(t),x′′(t) ∈ PC((a,b),R),
x(t) >  (< ) and (r(t)x′(t))′ ≤  (≥ ) for t ∈ (a,b). Then we have

x′(t)
x(t)

≤ 
r(t)R(a, t)

, t ∈ (a,b), ()

where

R(a, t) =

[∫ t

tψ(t)

ds
r(s)

+


dψ(t)

∫ tψ(t)

tψ(t)–

ds
r(s)

+ · · · +
(

ψ(t)∏
k=ϕ(a)


dk

)∫ tϕ(a)

a

ds
r(s)

]
.

Proof It is sufficient to prove one of the cases when x(t) >  on (a,b) and (r(t)x′(t))′ ≤ 
for t ∈ (a,b). The other case can be proved similarly. By Eq. () and ck ≥ , we have that for

http://www.advancesindifferenceequations.com/content/2012/1/175
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t ∈ (a,b),

x(t) ≥ x(t) – x
(
t+ψ(t)

)
+ x

(
t+ψ(t)

)
– x

(
t–ψ(t)

)
+ x

(
t–ψ(t)

)
– x

(
t+ψ(t)–

)
+ · · · + x

(
t–ϕ(a)

)
– x(a)

=
∫ t

tψ(t)

x′(s)ds + (cψ(t) – )x(tψ(t)) +
∫ tψ(t)

tψ(t)–

x′(s)ds + (cψ(t)– – )x(tψ(t)–)

+ · · · +
∫ tϕ(a)+

tϕ(a)
x′(s)ds + (cϕ(a) – )x(tϕ(a)) +

∫ tϕ(a)

a
x′(s)ds

≥
∫ t

tψ(t)

x′(s)ds +
∫ tψ(t)

tψ(t)–

x′(s)ds + · · · +
∫ tϕ(a)+

tϕ(a)
x′(s)ds +

∫ tϕ(a)

a
x′(s)ds. ()

Since (r(t)x′(t))′ ≤  for t ∈ (a,b) and t �= tk , and x′(tk) = x′(t–k ) =

dk
x′(t+k ), we get from ()

that

x(t) ≥
∫ t

tψ(t)


r(s)

r(s)x′(s)ds +
∫ tψ(t)

tψ(t)–


r(s)

r(s)x′(s)ds + · · · +
∫ tϕ(a)

a


r(s)

r(s)x′(s)ds

≥ r(t)x′(t)
∫ t

tψ(t)


r(s)

ds + r(tψ(t))x′(t–ψ(t)
)∫ tψ(t)

tψ(t)–


r(s)

ds

+ · · · + r(tϕ(a))x′(t–ϕ(a))
∫ tϕ(a)

a


r(s)

ds

≥ r(t)x′(t)
∫ t

tψ(t)


r(s)

ds +
r(t)x′(t)
dψ(t)

∫ tψ(t)

tψ(t)–


r(s)

ds

+ · · · + r(t)x′(t)
dψ(t)dψ(t)– · · ·dϕ(a)

∫ tϕ(a)

a


r(s)

ds

= r(t)x′(t)R(a, t),

i.e.,

x′(t)
x(t)

≤ 
r(t)R(a, t)

, t ∈ (a,b).

This completes the proof of Lemma .. �

Remark  We see that R(a, t) is a piecewise continuous function on (a,b). When there is
no impulse moment on (a, t), R(a, t) =

∫ t
a


r(s) ds. When there is only one impulse moment

tk on (a,b), we have

R(a, t) =

⎧⎨
⎩

∫ t
a

ds
r(s) , t ∈ (a, tk],∫ t

tk
ds
r(s) +


dk

∫ tk
a

ds
r(s) , t ∈ (tk ,b).

Lemma . For given constants b > a ≥ t, assume that x(t),x′(t),x′′(t) ∈ PC((a,b),R),
x(t) >  (< ) and (r(t)x′(t))′ ≤  (≥ ) for t ∈ (τab,b), where τab = min{τ (t, s) : (t, s) ∈

http://www.advancesindifferenceequations.com/content/2012/1/175
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(a,b)× [,h]}. Then we have

x(τ (t, s))
x(t)

≥
[
exp

(∫ t

τ (t,s)


r(u)R(τab,u)

du
)]– ψ(t)∏

k=ϕ(τ (t,s))


ck
,

(t, s) ∈ (τab,b)× [,h], ()

where R(τab, t) is defined as in Lemma ..

Proof It is sufficient to prove the case when x(t) >  and (r(t)x′(t))′ ≤  for t ∈ (τab,b). By
Lemma ., we obtain

x′(t)
x(t)

≤ 
r(t)R(τab, t)

, t ∈ (τab,b). ()

Noting that

lnx
(
t+k

)
– lnx

(
t–k

)
= ln

x(t+k )
x(t–k )

= ln ck ,

and tϕ(τ (t,s)), tϕ(τ (t,s))+, . . . , tψ(t) ∈ (τ (t, s), t) are all impulse moments, we have that

ln
x(t)

x(τ (t, s))
=

(
lnx(t) – lnx

(
t+ψ(t)

))
+

(
lnx

(
t+ψ(t)

)
– lnx

(
t–ψ(t)

))
+

(
lnx

(
t–ψ(t)

)
– lnx

(
t+ψ(t)–

))
+ · · · + (

lnx
(
t+ϕ(τ (t,s))

)
– lnx

(
t–ϕ(τ (t,s))

))
+

(
lnx

(
t–ϕ(τ (t,s))

)
– lnx

(
τ (t, s)

))

=
∫ t

tψ(t)

x′(s)
x(s)

ds +
∫ tψ(t)

tψ(t)–

x′(s)
x(s)

ds + · · · +
∫ tϕ(τ (t,s))

τ (t,s)

x′(s)
x(s)

ds +
ψ(t)∑

k=ϕ(τ (t,s))

ln ck ,

i.e.,

ln
x(t)

x(τ (t, s))
=

∫ t

τ (t,s)

x′(s)
x(s)

ds +
ψ(t)∑

k=ϕ(τ (t,s))

ln ck .

Integrating () from τ (t, s) to t with (t, s) ∈ (τab,b)× [,h], we get

ln
x(t)

x(τ (t, s))
≤

∫ t

τ (t,s)


r(u)R(τab,u)

du +
ψ(t)∑

k=ϕ(τ (t,s))

ln ck .

Therefore,

x(t)
x(τ (t, s))

≤ exp

(∫ t

τ (t,s)


r(u)R(τab,u)

du
) ψ(t)∏

k=ϕ(τ (t,s))

ck ,

which implies (). The proof of Lemma . is complete. �
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Remark  For the sake of convenience, we denote

m(t, s;a,b)�
[
exp

(∫ t

τ (t,s;a,b)


r(u)R(τab,u)

du
)]– ψ(t)∏

k=ϕ(τ (t,s))


ck
. ()

It is easy to see that m(t, s;a,b) is a piecewise continuous function on [a,b] for given s ∈
[,h].

We denote by Lξ (,h) the set of Riemann-Stieltjes integrable functions on [,h] with
respect to ξ . Let c ∈ (,h) such that α(c) = . We further assume that α– ∈ Lξ (,h) such
that

∫ c


dξ (s) > ,

∫ h

c
dξ (s) > .

We see that the condition α– ∈ Lξ (,h) is satisfied if either α() >  or α(s) →  ‘slowly’
as s→ +, or ξ (s) is constant in a right neighborhood of .
The following two lemmas are given in [].

Lemma . Let

l =
(∫ h

c
α–(s)dξ (s)

)(∫ h

c
dξ (s)

)–

,

and

l =
(∫ c


α–(s)dξ (s)

)(∫ c


dξ (s)

)–

.

Then for any δ ∈ (l, l), there exists η ∈ Lξ (,b) such that η(s) >  on [,h],

∫ h


α(s)η(s)dξ (s) = , ()

and

∫ h


η(s)dξ (s) = δ. ()

Lemma . Let υ ∈ C[,h] and η ∈ Lξ (,h) satisfying υ ≥ , η >  on [,h] and∫ h
 η(s)dξ (s) = . Then

∫ h


η(s)υ(s)dξ (s)≥ exp

(∫ h


η(s) ln

[
υ(s)

]
dξ (s)

)
, ()

where we use the convention that ln = –∞ and e–∞ = .

http://www.advancesindifferenceequations.com/content/2012/1/175
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3 Main results
Let

(aj,bj) =
{
ω ∈ C[aj,bj],ω(t) �≡ ,

ω(aj) = ω(tϕ(aj)) = · · · = ω(tψ(bj)) = ω(bj) = 
}
,

for j = , .

Theorem . If for any T ≥ t, there exist constants aj,bj ≥ t for j = ,  such that T ≤
a < b ≤ a < b, and

⎧⎨
⎩p(t, s)≥ , (t, s) ∈ (a,b)× [,h]∪ (a,b)× [,h];

e(t)≤ , t ∈ (a,b); e(t) ≥ , t ∈ (a,b).

For each δ ∈ (l, l), let η ∈ Lξ (,h) be defined as in Lemma .. Assume further that there
exist ω ∈ (aj,bj) and ρ ∈ C((a,b)∪ (a,b), (,∞)) such that

∫ bj

aj

[
ρ(t)ω(t)

(
q(t) + ζ (t, s;aj,bj)

)

–


r(t)ρ(t)

(
ω′(t) +

ρ ′(t)
ρ(t)

ω(t)
)]

dt > , j = , ,

where

ζ (t, s;aj,bj) =
[ |e(t)|
 – δ

]–δ

exp

(∫ h


η(s) ln

p(t, s)[m(t, s;aj,bj)]α(s)

η(s)
dξ (s)

)
, ()

and m(t, s;aj,bj) is defined as (). Then Eq. () is oscillatory.

Proof Assume, for the sake of contradiction, that there exists a solution x(t) of Eq. ()
which does not have zero in (a,b) ∪ (a,b). Without loss of generality, we may assume
that x(t) >  for t ∈ (a,b). When x(t) <  for t ∈ (a,b), the proof follows the same argu-
ment by using the interval (a,b) instead of (a,b). Put

u(t) = –ρ(t)
r(t)x′(t)
x(t)

, t ∈ (a,b). ()

We have

u′(t) = –ρ ′(t)
r(t)x′(t)
x(t)

– ρ(t)
(r(t)x′(t))′

x(t)
+ ρ(t)

r(t)(x′(t))

x(t)

=
ρ ′(t)
ρ(t)

u(t) + ρ(t)q(t) +
ρ(t)
x(t)

(∫ h


p(t, s)

[
x
(
τ (t, s)

)]α(s) dξ (s) – e(t)
)

+
u(t)

ρ(t)r(t)
. ()

http://www.advancesindifferenceequations.com/content/2012/1/175
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By Lemma ., we have that for t ∈ (a,b)

ρ(t)
x(t)

(∫ h


p(t, s)

[
x
(
τ (t, s)

)]α(s) dξ (s) – e(t)
)

= ρ(t)
∫ h


p(t, s)

[
x(τ (t, s))
x(t)

]α(s)

x(t)α(s)– dξ (s) –
ρ(t)e(t)
x(t)

≥ ρ(t)
∫ h


p(t, s)

[
m(t, s;a,b)

]α(s)x(t)α(s)– dξ (s) –
ρ(t)e(t)
x(t)

.

Similar to the analysis in the proof of Theorem . in [], we can get from Lemmas .
and . that

u′(t)≥ ρ ′(t)
ρ(t)

u(t) + ρ(t)q(t) + ρ(t)ζ (t, s;a,b) +
u(t)

ρ(t)r(t)
, t ∈ (a,b), t �= tk . ()

By the definition of ω(t), multiplying both sides of () by ω(t), integrating over (a,b)
and using integration by parts, we get

 ≥
∫ b

a
ρ(t)ω(t)

(
q(t) + ζ (t, s;a,b)

)
–


r(t)ρ(t)

(
ω′(t) +

ρ ′(t)
ρ(t)

ω(t)
)

dt

+
∫ b

a


r(t)ρ(t)

[
u(t)ω(t) +



r(t)ρ(t)

(
ω′(t) +

ρ ′(t)
ρ(t)

ω(t)
)]

dt. ()

Noting that the second term of the right-hand side of () is nonnegative, we get

 ≥
∫ b

a

[
ρ(t)ω(t)

(
q(t) + ζ (t, s;a,b)

)
–


r(t)ρ(t)

(
ω′(t) +

ρ ′(t)
ρ(t)

ω(t)
)]

dt.

This contradicts the assumption. �

Next, we will establish a Kamenev type interval oscillation criterion for Eq. (). First, we
introduce a class of functions H which will be used in the sequel. Denote D = {(t, t*)|t ≤
t* ≤ t} andH ∈ C(D,R). A functionH is said to belong to the class H if there exist h,h ∈
Lloc(D,R) satisfying the following conditions:
(A) H(t, t) = , H(t, t*) >  for t > t*;
(A) ∂

∂t H(t, t*) = h(t, t*)H(t, t*), ∂

∂t*H(t, t*) = h(t, t*)H(t, t*).
For two constants θ , λ (θ < λ), we define two operators P, P by

P(θ ,λ) =
∫ λ

θ

H(t, θ )
[
ρ(t)

(
q(t) + ζ (t, s; θ ,λ)

)
–


r(t)ρ(t)

(
ρ ′(t)
ρ(t)

+ h(t, θ )
)]

dt,

P(θ ,λ) =
∫ λ

θ

H(λ, t)
[
ρ(t)

(
q(t) + ζ (t, s; θ ,λ)

)
–


r(t)ρ(t)

(
ρ ′(t)
ρ(t)

+ h(λ, t)
)]

dt,

where ζ (t, s; θ ,λ) is defined as in Theorem ..
Noticing that tϕ(aj), tϕ(aj)+, tϕ(aj)+, . . . , tψ(bj) are all impulsemoments in the interval (aj,bj)

for j = , , we denote the number of impulsemoments between aj and bj by nj := nj(aj,bj) =
ψ(bj) – ϕ(aj) +  for j = , . We also mean

∑m
n=l =  ifm < l.

http://www.advancesindifferenceequations.com/content/2012/1/175
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Theorem . Suppose that for any T ≥ , there exist nontrivial subintervals (a,b) and
(a,b) of [T ,∞), satisfying the conditions of Theorem .. Further assume that for j = , ,
there exist constants χj ∈ (ψ(bj),bj) and a function H ∈ H such that
(i) when nj = ψ(bj) – ϕ(aj) +  (j = , ) is an odd number,

 <

{


H(tϕ(aj),aj)
P(aj, tϕ(aj))

+
n=

nj–
∑

n=


H(tϕ(aj)+n, tϕ(aj)+n–)

P(tϕ(aj)+n–, tϕ(aj)+n)

+
n=

nj–
∑

n=

cϕ(aj)+n
dϕ(aj)+n


H(tϕ(aj)+n+, tϕ(aj)+n)

P(tϕ(aj)+n, tϕ(aj)+n+)

+
cϕ(aj)+nj–
dϕ(aj)+nj–


H(bj, tϕ(aj)+nj–)

P(tϕ(aj)+nj–,bj)

}
; ()

(ii) when nj (j = , ) is an even number,

 <

{


H(tϕ(aj),aj)
P(aj, tϕ(aj))

+
n=

nj–
∑

n=


H(tϕ(aj)+n, tϕ(aj)+n–)

P(tϕ(aj)+n–, tϕ(aj)+n)

+
n=

nj–
∑

n=

cϕ(aj)+n
dϕ(aj)+n


H(tϕ(aj)+n+, tϕ(aj)+n)

P(tϕ(aj)+n, tϕ(aj)+n+)

+


H(χj, tϕ(aj)+nj–)
P(tϕ(aj)+nj–,χj) +


H(bj,χj)

P(χj,bj)

}
. ()

Then Eq. () is oscillatory.

Proof Otherwise, we may assume that x(t) >  for t ∈ (a,b). Proceeding as in the proof
of Theorem ., we have that () holds for t ∈ (a,b) and t �= tk . Next, we consider the
following two cases:

(i) n, the number of impulse moments in the interval (a,b), is odd;
(ii) n is an even number.

For the case (i), we first consider the subinterval (a, tϕ(a)+]. Multiplying both sides of ()
by H(t,a), then integrating it from a to tϕ(a), and using integration by parts, we obtain

H(tϕ(a),a)u(tϕ(a))

≥
∫ tϕ(a)

a
H(t,a)

[
ρ(t)

(
q(t) + ζ (t, s;a,b)

)
+

(
ρ ′(t)
ρ(t)

+ h(t,a)
)
u(t) +

u(t)
ρ(t)r(t)

]
dt

=
∫ tϕ(a)

a
H(t,a)

{
ρ(t)

(
q(t) + ζ (t, s;a,b)

)
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+ r(t)ρ(t)
[

u(t)
r(t)ρ(t)

+



(
ρ ′(t)
ρ(t)

+ h(t,a)
)]

–


r(t)ρ(t)

(
ρ ′(t)
ρ(t)

+ h(t,a)
)}

dt.

It implies that

H(tϕ(a),a)u(tϕ(a))

≥
∫ tϕ(a)

a
H(t,a)

[
ρ(t)

(
q(t) + ζ(t, s)

)
–


r(t)ρ(t)

(
ρ ′(t)
ρ(t)

+ h(t,a)
)]

dt

= P(a, tϕ(a)). ()

On the other hand, multiplying both sides of () by H(tϕ(a)+, t), integrating it from tϕ(a)
to tϕ(a)+, and similar to the above analysis, we can get

–H(tϕ(a)+, tϕ(a))
dϕ(a)

cϕ(a)
u(tϕ(a)) ≥ P(tϕ(a), tϕ(a)+). ()

Dividing () and () by H(tϕ(a),a) and
dϕ(a)
cϕ(a)

H(tϕ(a)+, tϕ(a)), respectively, and adding
them, we have

 ≥ 
H(tϕ(a),a)

P(a, tϕ(a)) +
cϕ(a)
dϕ(a)


H(tϕ(a)+, tϕ(a))

P(tϕ(a), tϕ(a)+).

For the remaining intervals, similar to the analysis in Theorem . in [], we have that
for t ∈ (a,b),

 ≥ 
H(tϕ(a),a)

P(a, tϕ(a))

+
n= n–

∑
n=


H(tϕ(a)+n, tϕ(a)+n–)

P(tϕ(a)+n–, tϕ(a)+n)

+
n= n–

∑
n=

cϕ(a)+n
dϕ(a)+n


H(tϕ(a)+n+, tϕ(a)+n)

P(tϕ(a)+n, tϕ(a)+n+)

+
cϕ(a)+n–
dϕ(a)+n–


H(b, tϕ(a)+n–)

P(tϕ(a)+n–,b). ()

It can be concluded similarly for the case (ii) that

 ≥ 
H(tϕ(a),a)

P(a, tϕ(a))

+
n= n–

∑
n=


H(tϕ(a)+n, tϕ(a)+n–)

P(tϕ(a)+n–, tϕ(a)+n)

+
n= n–

∑
n=

cϕ(a)+n
dϕ(a)+n


H(tϕ(a)+n+, tϕ(a)+n)

P(tϕ(a)+n, tϕ(a)+n+)
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+


H(χ, tϕ(a)+n–)
P(tϕ(a)+n–,χ)

+


H(b,χ)
P(χ,b), t ∈ (a,b). ()

We see that () and () contradict () and (), respectively. The proof is complete. �

4 Examples
In this section, we give two examples to illustrate our main results. To simplify the com-
putation, we focus our attention on the simple case ξ (s) = s for Eq. ().

Example . Consider the following impulsive differential equation:
⎧⎨
⎩x′′(t) + x(t) + β sin t

∫ 
 |x(t – π

 )|

√
s

 sgnx(t – π
 )ds = e(t), t �= tk ,

x(t+k ) = ckx(t–k ), x′(t+k ) = dkx′(t–k ),
()

where β is a positive constant, ck ≥ , dk >  are constants, t ≥ , tk = kπ + π
 for k =

, , , . . . , r(t) = q(t) = , p(t, s) = β sin t, τ (t, s) = t – π
 , α(s) =


√
s

 and h = . For any T ≥ ,
we choose k large enough such that kπ ≥ T and let a = kπ , a = b = kπ + π

 and
b = kπ +π . Then we have p(t, s) ≥  for t ∈ (a,b)∪ (a,b). Assume that e(t) ∈ C[,∞)
is any function satisfying (–)je(t) ≥  on [aj,bj] (j = , ). Let η(s) = . It is easy to verify
that () and () are valid for δ = ,

R(τab , t) =
∫ t

t– π



r(s)

ds =
π


, t ∈

(
kπ , kπ +

π



]
,

and

R(τab , t) =
∫ t

kπ+ π


ds
r(s)

+

dk

∫ kπ+ π


t– π


ds
r(s)

= t – kπ –
π


+


dk

(
kπ +

π


– t

)

=
(dk – )(t – kπ – π ) + π

dk
, t ∈

(
kπ +

π


, kπ +

π



)
.

Since

m(t, s;a,b) =
[
exp

(∫ t

t– π



R(τab ,u)

du
)]– ψ(t)∏

k=ϕ(t– π
 )


ck
,

we have

m(t, s;a,b) =

⎧⎨
⎩


e , t ∈ (kπ , kπ + π

 ];

ck
[ (dk–)(t–kπ–π )+π

(dk–)(t–kπ–π )+π
]

dk
–dk , t ∈ (kπ + π

 , kπ + π
 ),

and

ζ (t, s;a,b) = exp

(∫ 


ln

(
β sin t

[
m(t, s;a,b)

] 
√
s


)
ds

)
.
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Similarly, for j = , i.e., t ∈ (kπ + π
 , kπ + π ), we havem(t, s;a,b) = 

e , and

ζ (t, s;a,b) = exp

(∫ 


ln

(
β sin t

[
m(t, s;a,b)

] 
√
s


)
ds

)

=
β sin t

e
.

Choose ρ(t) =  and ω(t) = sint. By Theorem ., we know that Eq. () is oscillatory if

∫ bj

aj
ρ(t)ζ (t, s;aj,bj)ω(t) –



r(t)ρ(t)

(
ω′(t) +

ρ ′(t)
ρ(t)

ω(t)
)

dt

=
∫ bj

aj
ζ (t, s;aj,bj) sin t dt – π > , j = , .

Example . Consider the following equation:

⎧⎨
⎩x′′(t) + x(t) +

∫ 
 |x(t – )|s sgnx(t – )ds = e(t), t �= tk ,

x(t+k ) = ckx(t–k ), x′(t+k ) = dkx′(t–k ),
()

where ck ≥ , dk >  are constants, t ≥ , tk = k –  (k = , , . . .), r(t) = q(t) = p(t, s) =
, τ (t, s) = t – , and α(s) = s. For any T > , we choose k large enough such that
(k – ) ≥ T and let a = (k – ), a = b = k – and b = k. Then we have p(t, s) ≥  for
t ∈ (a,b)∪ (a,b). Assume that e(t) ∈ C[,∞) is any function satisfying (–)je(t)≥  on
[aj,bj] (j = , ). For any δ ∈ (/, ], set

η(s) =
δ

δ – 
s(–δ)/(δ–).

It is easy to verify that () and () are valid. Let ρ(t) =  and H(t, s) = (t – s). We have
that h(t, s) = h(t, s)≡ . For j = , we have

R(τab , t) =

⎧⎨
⎩, t ∈ ((k – ), k – ];

(dk–)(t–k+)+
dk

, t ∈ (k – ,k – ),

m(t, s;a,b) =

⎧⎨
⎩


e , t ∈ ((k – ), k – ];

ck
[ (dk–)(t–k+)+(dk–)(t–k+)+

]
dk

–dk , t ∈ (k – ,k – ),

and

ζ (t, s;a,b) =
[ |e(t)|
 – δ

]–δ

exp

(∫ 


η(s) ln

[m(t, s;a,b)]s

η(s)
ds

)
.

For t ∈ ((k – ), k – ), we obtain


H(k – ,(k – ))

P
(
(k – ), k – 

)

=
∫ k–

(k–)
H

(
t, (k – )

)[
ρ(t)

(
q(t) + ζ (t, s;a,b)

)
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–


r(t)ρ(t)

(
ρ ′(t)
ρ(t)

+ h
(
t, (k – )

))]
dt

=
∫ k–

(k–)

[
t – (k – )

][

+ ζ (t, s;a,b)

]
dt,

and

ck
dk


H(k – ,k – )

P(k – ,k – )

=
ck
dk

∫ k–

k–
H(k – , t)

[
ρ(t)

(
q(t) + ζ (t, s;a,b)

)

–


r(t)ρ(t)

(
ρ ′(t)
ρ(t)

+ h(k – , t)
)]

dt

=
ck
dk

∫ k–

k–
(k –  – t)

[


+ ζ (t, s;a,b)

]
dt.

Similarly, for t ∈ (k – ,k), we have thatm(t, s;a,b) = 
e , and

ζ (t, s;a,b) =
[ |e(t)|
 – δ

]–δ

exp

(∫ 


η(s) ln

[m(t, s;a,b)]s

η(s)
ds

)

=
[ |e(t)|
 – δ

]–δ

exp

(
–

∫ 


η(s)

(
s + lnη(s)

)
ds

)
.

We choose χ = k – , so we have


H(χ , k – )

P(k – ,χ ) =
∫ k–

k–

[
t – (k – )

][ + ζ (t, s;a,b) –



]
dt,

and


H(k,χ )

P(χ , k) =
∫ k

k–
(k – t)

[


+ ζ (t, s;a,b)

]
dt.

From Theorem . we know that Eq. () is oscillatory if

∫ k–

(k–)

[
t – (k – )

][

+ ζ (t, s;a,b)

]
dt

+
ck
dk

∫ k–

k–
(k –  – t)

[


+ ζ (t, s;a,b)

]
dt > ,

and

∫ k–

k–

[
t – (k – )

][

+ ζ (t, s;a,b)

]
dt +

∫ k

k–
(k – t)

[


+ ζ (t, s;a,b)

]
dt > .
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