
Long and Pan Advances in Difference Equations 2012, 2012:199
http://www.advancesindifferenceequations.com/content/2012/1/199

RESEARCH Open Access

Asymptotically almost periodic solution to a
class of Volterra difference equations
Wei Long* and Wen-Hai Pan

*Correspondence:
hopelw@126.com
College of Mathematics and
Information Science, Jiangxi Normal
University, Nanchang, Jiangxi
330022, People’s Republic of China

Abstract
This paper is concerned with an asymptotically almost periodic solution to a class of
Volterra-type difference equations. We establish a compactness criterion for the sets
of asymptotically almost periodic sequences. Then, by using the compactness
criterion and Schauder’s fixed point theorem, we present an existence theorem for an
asymptotically almost periodic solution to the addressed Volterra-type difference
equation. Our existence theorem extends and complements a recent result due to
(Ding et al. in Electron. J. Qual. Theory Differ. Equ. 6:1-13, 2012).
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1 Introduction and preliminaries
In this paper, we consider the following nonlinear Volterra-type difference equation:

x(n) =
λ∑
i=

[
fi
(
n,x(n)

) ·
∑
m∈Z

ai(n,m)gi
(
m,x(m)

)]
, n ∈ Z, (.)

where λ is a fixed positive integer and fi : Z × R → R, ai : Z × Z → R, gi : Z × R → R

(i = , , . . . ,λ) satisfy some conditions recalled in Section .
For the background of discrete Volterra equations, we refer the reader to thewell-known

monograph [] by Agarwal. The first motivation for this paper is some recent work on
asymptotical periodicity for Volterra-type difference equations in [–] by Diblík et al. In
fact, asymptotical behavior for Volterra-type difference equations, including periodicity,
asymptotical periodicity, etc., has been of great interest for many mathematicians. How-
ever, to the best of our knowledge, there is seldom literature available about asymptotically
almost periodicity for Equation (.). Thus, in this paper, we will investigate this problem.
In addition, it is needed to note that compared with asymptotically periodic sequences,
in general, it is more difficult to obtain the compactness for a set of asymptotically almost
periodic sequences.
On the other hand, in a recent work [], by using the classical Schauder fixed point the-

orem, Ding et al. established an interesting existence theorem for the following functional
integral equation:

y(t) = e
(
t, y

(
α(t)

))
+ g

(
t, y

(
β(t)

))[
h(t) +

∫
R

k(t, s)f
(
s, y

(
γ (s)

))
ds

]
, t ∈R. (.)
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In fact, the existence of almost periodic type solutions has been an interesting and impor-
tant topic in the study of qualitative theory of difference equations. We refer the reader to
[–] and references therein for some recent developments on this topic. Equation (.)
can be seen as a discrete analogue (but more general) of Equation (.). That is another
main motivation for this work.
Throughout the rest of this paper, we denote by Z (Z+) the set of (nonnegative) integers,

by N the set of positive integers, by R (R+) the set of (nonnegative) real numbers, by � a
subset of R, and by X a Banach space.
First, let us recall some notations and basic results of almost periodic type sequences

(for more details, see [, , ]).

Definition . [] A function f : Z → X is called almost periodic if ∀ε, ∃N(ε) ∈ N such
that among any N(ε) consecutive integers there exists an integer p with the property that

∥∥f (k + p) – f (k)
∥∥ < ε, ∀k ∈ Z.

Denote by AP(Z,X) the set of all such functions. Moreover, we denote AP(Z,R) by AP(Z)
for convenience.

Lemma . [, Theorem .] A necessary and sufficient condition for the sequence
f : Z → R to be almost periodic is that for any integer sequence {n′

k}, one can extract a
subsequence {nk} such that {f (n + nk)} converges uniformly with respect to n ∈ Z.

Remark . Let f , g ∈ AP(Z). By Lemma ., it is not difficult to show that ∀ε, ∃N(ε) ∈ N

such that among any N(ε) consecutive integers there exists a common integer p with the
property that

∣∣f (k + p) – f (k)
∣∣ < ε and

∣∣g(k + p) – g(k)
∣∣ < ε

for all k ∈ Z.

Next, we denote by C(Z,X) the space of all the functions f : Z → X such that
lim|n|→∞ ‖f (n)‖ = .

Definition . A function f : Z → X is called asymptotically almost periodic if it admits
a decomposition f = g + h, where g ∈ AP(Z,X) and h ∈ C(Z,X). Denote by AAP(Z,X) the
set of all such functions. Moreover, we denote AAP(Z,R) by AAP(Z) for convenience.

Definition . Let � ⊂R and f be a function from Z× � to R such that f (n, ·) is contin-
uous for each n ∈ Z. Then f is called almost periodic in n ∈ Z uniformly for ω ∈ � if for
every ε >  and every compact 	 ⊂ �, there corresponds an integer Nε(	) >  such that
among Nε(	) consecutive integers there exists an integer p with the property that

∣∣f (k + p,ω) – f (k,ω)
∣∣ < ε

for all k ∈ Z and ω ∈ 	. Denote by AP(Z× �) the set of all such functions.

http://www.advancesindifferenceequations.com/content/2012/1/199
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Similarly, for each subset� ⊂R, we denote byC(Z×�) the space of all the functions f :
Z×� →R such that f (n, ·) is continuous for each n ∈ Z, and lim|n|→∞ f (n,x) =  uniformly
for x in any compact subset of �.

Definition . A function f : Z × � → R is called asymptotically almost periodic in n
uniformly for x ∈ � if it admits a decomposition f = g + h, where g ∈ AP(Z × �) and
h ∈ C(Z× �). Denote by AAP(Z× �) the set of all such functions.

Lemma . Let E ∈ {AP(Z,X),AAP(Z,X)}. Then the following hold true:
(a) f ∈ E implies that f is bounded.
(b) f , g ∈ E implies that f + g ∈ E.Moreover, f · g ∈ E if X =R.
(c) E is a Banach space equipped with the supremum norm.

Proof The proof is similar to that of the continuous case (cf. [, ]). So, we omit the
details. �

2 A compactness criterion
The following theorem is a well-known result for the continuous case (see, e.g., [, p.,
Theorem .]). Here, we give a discrete version.

Theorem . Let f be a function from Z to R. Then f ∈ AAP(Z) if and only if ∀ε,
∃M(ε),N(ε) ∈ N such that among any N(ε) consecutive integers there exists an integer p
with the property that

∣∣f (k + p) – f (k)
∣∣ < ε

for all k ∈ Z with |k| ≥ M(ε) and |k + p| ≥ M(ε).

Proof We first show the ‘only if ’ part. Let f ∈ AAP(Z). Then there exist g ∈ AP(Z) and
h ∈ C(Z,R) such that f = g + h. By g ∈ AP(Z), for each ε > , ∃N(ε) ∈ N such that among
any N(ε) consecutive integers there exists an integer p with the property that

∣∣g(k + p) – g(k)
∣∣ < ε


, ∀k ∈ Z.

In addition, since h ∈ C(Z,R), for the above ε > , there existsM(ε) ∈N such that |h(k)| <
ε
 for all k ∈ Z with |k| ≥ M(ε). Thus, we have

∣∣f (k + p) – f (k)
∣∣ ≤ ∣∣g(k + p) – g(k)

∣∣ + ∣∣h(k + p)
∣∣ + ∣∣h(k)∣∣ < ε

for all k ∈ Z with |k| ≥ M(ε) and |k + p| ≥ M(ε).
Next, let us prove the ‘if ’ part. First, let us show that f is bounded. Letting ε = , there

existsM(),N() ∈ N such that among anyN() consecutive integers there exists an integer
p with the property that

∣∣f (k + p) – f (k)
∣∣ < 
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for all k ∈ Zwith |k| ≥ M() and |k+p| ≥ M(). Then, for each k ∈ Zwith |k| ≥ M(), there
exists pk ∈ [M() – k,M() +N() – k]∩Z such that

∣∣f (k + pk) – f (k)
∣∣ < .

Noting that k + pk ∈ [M(),M() +N()], we get

∣∣f (k)∣∣ ≤ ∣∣f (k + pk)
∣∣ +  ≤ max

k∈[M(),M()+N()]

∣∣f (k)∣∣ + 

for all k ∈ Z with |k| ≥ M(). Thus,

sup
k∈Z

∣∣f (k)∣∣ ≤ max
k∈[–M(),M()+N()]

∣∣f (k)∣∣ +  < +∞.

Now, let us show that f ∈ AAP(Z). We divide the remaining proof into three steps.
Step . Since f is bounded, we can choose a sequence {sn} ⊂ N such that limn→+∞ sn =

+∞ and limn→+∞ f (k + sn) exists for each k ∈ Z. Let

g(k) = lim
n→+∞ f (k + sn), k ∈ Z.

For each ε > , among any N(ε) consecutive integers there exists an integer p with the
property that

∣∣f (k + p) – f (k)
∣∣ < ε

for all k ∈ Z with |k| ≥ M(ε) and |k + p| ≥ M(ε). Then, for each fixed k ∈ Z, we have

∣∣f (k + sn + p) – f (k + sn)
∣∣ < ε

for sufficiently large n, which yields that

∣∣g(k + p) – g(k)
∣∣ ≤ ε.

Thus, g ∈ AP(Z).
Step . Now fix ε > . Then, for each n ∈N, there exists tn ∈ [sn –N(ε), sn]∩Z such that

∣∣f (k + tn) – f (k)
∣∣ < ε (.)

for all k ∈ Zwith |k| ≥ M(ε) and |k+tn| ≥ M(ε). Let rn = sn–tn. Then rn ∈ {, , , . . . ,N(ε)},
which means that there exist a subsequence {r′n} ⊂ {rn} and r(ε) ∈ {, , , . . . ,N(ε)} such
that

r′n ≡ r(ε).

Thus, for all k ∈ Z with |k| ≥ M(ε), we have

∣∣f (k) – g
(
k – r(ε)

)∣∣ = ∣∣f (k) – f
(
k + t′n

)∣∣ + ∣∣f (k – r(ε) + s′n
)
– g

(
k – r(ε)

)∣∣.

http://www.advancesindifferenceequations.com/content/2012/1/199
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Combining this with (.), limn→+∞ t′n = +∞, and

g(k) = lim
n→+∞ f (k + sn), ∀k ∈ Z,

we conclude

∣∣f (k) – g
(
k – r(ε)

)∣∣ ≤ ε

for all k ∈ Z with |k| ≥ M(ε).
Step . By Step , we know that for each ε > , there exists r(ε) ∈ {, , , . . . ,N(ε)} such

that

∣∣f (k) – g
(
k – r(ε)

)∣∣ ≤ ε

for all k ∈ Zwith |k| ≥M(ε). Taking ε = , /, . . . , we get a sequence {r(/m)}. On the other
hand, it follows from Step  that g ∈ AP(Z). Thus, going to a subsequence, if necessary, we
may assume that g(· – r(/m)) is uniformly convergent on Z. Let

g(k) = lim
m→+∞ g

(
k – r(/m)

)
, k ∈ Z.

Then g ∈ AP(Z). In addition, noting that

∣∣f (k) – g(k)
∣∣ ≤ ∣∣f (k) – g

(
k – r(/m)

)∣∣ + ∣∣g(k – r(/m)
)
– g(k)

∣∣
≤ 

m
+

∣∣g(k – r(/m)
)
– g(k)

∣∣
for all k ∈ Z with |k| ≥ M(/m), we know that f – g ∈ C(Z). This completes the proof. �

Definition . F ⊆ AAP(Z) is said to be equi-asymptotically almost periodic if for each
ε > , there exist M(ε),N(ε) ∈ N such that among any N(ε) consecutive integers there
exists an integer p with the property that

sup
f∈F

∣∣f (k + p) – f (k)
∣∣ < ε

for all k ∈ Z with |k| ≥ M(ε) and |k + p| ≥ M(ε).

Theorem. Let F ⊆ AAP(Z).Then F is precompact in AAP(Z) if and only if the following
two conditions hold:

(i) for each k ∈ Z, {f (k) : f ∈ F} is bounded;
(ii) F is equi-asymptotically almost periodic.

Proof ‘only if ’ part
Let F ⊂ AAP(Z) be precompact. Then F is bounded in AAP(Z). So, (i) obviously holds.

In addition, ∀ε > , there exists N ∈N and f, f, . . . , fN ∈ F such that

F ⊂
N⋃
i=

B(fi, ε). (.)

http://www.advancesindifferenceequations.com/content/2012/1/199
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By Remark ., we can get that {f, f, . . . , fN } is equi-asymptotically almost periodic. Comb-
ing thiswith (.), we can show that F is equi-asymptotically almost periodic, i.e., (ii) holds.
‘if part’
Let {fn} ⊂ F . Since {fn(k)} is bounded for each k ∈ Z, we can assume that (if necessary

going to a subsequence) {fn(k)} is convergent for each k ∈ Z. On the other hand, since F is
equi-asymptotically almost periodic, for each ε > , there exist M(ε),N(ε) ∈ N such that
among any N(ε) consecutive integers there exists an integer p with the property that

sup
n∈Z

∣∣fn(k + p) – fn(k)
∣∣ < ε/ (.)

for all k ∈ Z with |k| ≥ M(ε) and |k + p| ≥ M(ε). For the above ε > , there exists a positive
integer K such that for all n,m > K , the following hold:

∣∣fn(k) – fm(k)
∣∣ < ε/, k ∈ [

–M(ε),M(ε) +N(ε)
] ∩Z. (.)

For all k ∈ Z with |k| ≥ M(ε), taking p ∈ [–k +M(ε), –k +M(ε) + N(ε)] ∩ Z, by (.) and
(.), we get

∣∣fn(k) – fm(k)
∣∣ ≤ ∣∣fn(k) – fn(k + p)

∣∣ + ∣∣fn(k + p) – fm(k + p)
∣∣ + ∣∣fm(k + p) – fm(k)

∣∣
< ε/ + ε/ + ε/ = ε, n,m > K ;

also, for all k ∈ Z with |k| <M(ε), by (.), we have

∣∣fn(k) – fm(k)
∣∣ < ε/ < ε, n,m > K .

Thus, we get

sup
k∈Z

∣∣fn(k) – fm(k)
∣∣ ≤ ε, n,m > K ,

which means that {fn(k)} is uniformly convergent on Z, i.e., {fn} is convergent in AAP(Z).
So, F is precompact in AAP(Z). �

3 Application to Volterra difference equations
In this section, we discuss the existence of an asymptotically almost periodic solution to
Volterra difference equation (.). Throughout the rest of this paper, p,q ≥  are two fixed
real numbers and


p
+

q
= .

In addition, we denote by lp(Z) (resp. lq(Z)) the space of all the functions f : Z → R satis-
fying

‖f ‖p :=
(∑

k∈Z

∣∣f (k)∣∣p)/p

< +∞
(
resp. ‖f ‖q :=

(∑
k∈Z

∣∣f (k)∣∣q)/q

< +∞
)
.

For convenience, we first list some assumptions.

http://www.advancesindifferenceequations.com/content/2012/1/199
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(H) For each i ∈ {, , . . . ,λ}, fi(·,x) ∈ AAP(Z) for any fixed x ∈R, and there exists a
constant Li ≥  such that

∣∣fi(k,x) – fi(k, y)
∣∣ ≤ Li|x – y|, ∀k ∈ Z,∀x, y ∈ R.

(H) For each i ∈ {, , . . . ,λ}, gi(k, ·) is continuous for each k ∈ Z, and for each r > ,
there exists a sequence {μr

i } ⊂ lp(Z) such that

∣∣gi(k,x)∣∣ ≤ μr
i (k), |x| ≤ r,k ∈ Z.

(H) For each i ∈ {, , . . . ,λ}, ãi ∈ AAP(Z, lq(Z)), where [̃ai(k)](l) = ai(k, l), ∀k, l ∈ Z.
(H) There exists a constantM >  such that

λ∑
i=

αiLi
∥∥μM

i
∥∥
p < ,

where αi = supn∈Z ‖̃ai(n)‖q; and

λ∑
i=

[
sup

n∈Z,|x|≤K

∣∣fi(n,x)∣∣ · αi ·
∥∥μM

i
∥∥
p

]
< K , ∀K >M,

Theorem . Assume that (H)-(H) hold. Then Equation (.) has an asymptotically
almost periodic solution.

Proof We denote

(Aix)(n) = fi
(
n,x(n)

)
, n ∈ Z,x ∈ AAP(Z), i = , , . . . ,λ;

(Bix)(n) =
∑
m∈Z

ai(n,m)gi
(
m,x(m)

)
, n ∈ Z,x ∈ AAP(Z), i = , , . . . ,λ;

and

(Mx)(n) =
λ∑
i=

(Aix)(n) · (Bix)(n), n ∈ Z,x ∈ AAP(Z).

It suffices to prove thatM has a fixed point in AAP(Z). We give the proof in three steps.
Step . Ai and Bi both map AAP(Z) into AAP(Z), i = , , . . . ,λ.
Since fi is Lipschitz, by Remark ., we can first show that for each compact subsetK ⊂R

and each i ∈ {, , . . . ,λ}, {fi(·,x) : x ∈ K} is equi-asymptotically almost periodic. Then it is
easy to show that Aix ∈ AAP(Z) for each x ∈ AAP(Z).
Since ãi ∈ AAP(Z, lq(Z)), there exist bi ∈ AP(Z, lq(Z)) and ci ∈ C(Z, lq(Z)) such that ãi =

bi + ci. For each x ∈ AAP(Z), noting that for n,p ∈ Z,

(Bix)(n) =
∑
m∈Z

ai(n,m)gi
(
m,x(m)

)
=

∑
m∈Z

[
bi(n)

]
(m)gi

(
m,x(m)

)
+

∑
m∈Z

[
ci(n)

]
(m)gi

(
m,x(m)

)
,

http://www.advancesindifferenceequations.com/content/2012/1/199
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∣∣∣∣∑
m∈Z

[
bi(n + p)

]
(m)gi

(
m,x(m)

)
–

∑
m∈Z

[
bi(n)

]
(m)gi

(
m,x(m)

)∣∣∣∣
≤ ∥∥bi(n + p) – bi(n)

∥∥
q · ∥∥μ

‖x‖
i

∥∥
p,

and ∣∣∣∣∑
m∈Z

[
ci(n)

]
(m)gi

(
m,x(m)

)∣∣∣∣ ≤ ∥∥ci(n)∥∥q · ∥∥μ
‖x‖
i

∥∥
p,

we know that Bix ∈ AAP(Z).
Step . For each y ∈ AAP(Z) with ‖y‖ ≤ M, there exists a unique xy ∈ AAP(Z) such that

xy =
λ∑
i=

Aixy · Biy.

Let

(Yx)(n) =
λ∑
i=

(Aix)(n) · (Biy)(n), n ∈ Z,x ∈ AAP(Z).

Then, by Step , Y maps AAP(Z) into AAP(Z). For all x,x ∈ AAP(Z) and n ∈ Z, we have

∣∣(Yx)(n) – (Yx)(n)
∣∣

≤
λ∑
i=

∣∣(Aix)(n) – (Aix)(n)
∣∣ · ∣∣(Biy)(n)

∣∣
=

λ∑
i=

∣∣fi(n,x(n)) – fi
(
n,x(n)

)∣∣ · ∣∣(Biy)(n)
∣∣

≤
λ∑
i=

Li
∣∣x(n) – x(n)

∣∣ ·
∣∣∣∣∑
m∈Z

ai(n,m)gi
(
m, y(m)

)∣∣∣∣
≤

λ∑
i=

Li‖x – x‖ ·
∣∣∣∣∑
m∈Z

ai(n,m)gi
(
m, y(m)

)∣∣∣∣
≤

λ∑
i=

Li‖x – x‖ ·
∑
m∈Z

∣∣[̃ai(n)](m)
∣∣ · μM

i (m)

≤
λ∑
i=

Li‖x – x‖ · ∥∥̃ai(n)∥∥q · ∥∥μM
i

∥∥
p

≤
(

λ∑
i=

αiLi
∥∥μM

i
∥∥
p

)
‖x – x‖,

which yields that

‖Yx –Yx‖ ≤
(

λ∑
i=

αiLi
∥∥μM

i
∥∥
p

)
‖x – x‖.

http://www.advancesindifferenceequations.com/content/2012/1/199
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Noting that
∑λ

i= αiLi‖μM
i ‖p < , Y has a unique fixed point xy in AAP(Z).

Step .M has a fixed point in AAP(Z).
Let E = {y ∈ AAP(Z) : ‖y‖ ≤ M} and

N y = xy, y ∈ E,

where xy is the unique fixed point of Y (see Step ).
We claim that N (E) ⊂ E. In fact, if there exists y ∈ E such that ‖N y‖ > M, then by

(H), we have

‖N y‖ = ‖xy‖

= sup
n∈Z

∣∣∣∣∣
λ∑
i=

(Aixy )(n) · (Biy)(n)

∣∣∣∣∣
≤ sup

n∈Z

(
λ∑
i=

∣∣fi(n,xy (n))∣∣ ·
∣∣∣∣∑
m∈Z

ai(n,m)gi
(
m, y(m)

)∣∣∣∣
)

≤ sup
n∈Z

(
λ∑
i=

∣∣fi(n,xy (n))∣∣ · αi ·
∥∥μM

i
∥∥
p

)

≤
λ∑
i=

[
sup

n∈Z,|x|≤‖N y‖

∣∣fi(n,x)∣∣ · αi ·
∥∥μM

i
∥∥
p

]
< ‖N y‖,

which is a contradiction.
Next, let us show thatN : E → E is continuous. For all y, y ∈ E, we have

‖N y –N y‖ = ‖xy – xy‖

=

∥∥∥∥∥
λ∑
i=

Aixy · Biy –
λ∑
i=

Aixy · Biy

∥∥∥∥∥
≤

λ∑
i=

‖Aixy · Biy –Aixy · Biy +Aixy · Biy –Aixy · Biy‖

≤
(

λ∑
i=

αiLi
∥∥μM

i
∥∥
p

)
‖xy – xy‖

+
λ∑
i=

(
MLi + sup

n∈Z

∣∣fi(n, )∣∣) · ‖Biy – Biy‖,

which gives that

‖N y –N y‖ ≤
λ∑
i=

βi · ‖Biy – Biy‖, (.)

http://www.advancesindifferenceequations.com/content/2012/1/199
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where

βi :=
MLi + supn∈Z |fi(n, )|
 – (

∑λ
i= αiLi‖μM

i ‖p)
, i = , , . . . ,λ.

Letting yk → y in E, by (.), we have

‖N yk –N y‖ ≤
λ∑
i=

βi · ‖Biyk – Biy‖

≤
λ∑
i=

βi · sup
n∈Z

(∑
m∈Z

∣∣ai(n,m)
∣∣ · ∣∣gi(m, yk(m)

)
– gi

(
m, y(m)

)∣∣)

≤
λ∑
i=

βi · sup
n∈Z

(∥∥̃ai(n)∥∥q · ∥∥gi(·, yk(·)) – gi
(·, y(·))∥∥p

)

≤
λ∑
i=

αiβi ·
∥∥gi(·, yk(·)) – gi

(·, y(·))∥∥p. (.)

For each i = , , . . . ,λ, noting that∣∣gi(m, yk(m)
)
– gi

(
m, y(m)

)∣∣ ≤ μM
i (m), m ∈ Z,

gi(m, ·) is continuous for eachm ∈ Z, and yk(m)→ y(m) for eachm ∈ Z, we conclude that∥∥gi(·, yk(·)) – gi
(·, y(·))∥∥p → .

Combining this with (.), we know thatN yk →N y. SoN : E → E is continuous.
Now, let us show that N (E) is precompact in AAP(Z). In order to show that, we first

prove each Bi(E) is precompact in AAP(Z). By a direct calculation, we can get∣∣(Biy)(n)
∣∣ ≤ αi ·

∥∥μM
i

∥∥
p, i = , , . . . ,λ,

for all y ∈ E and n ∈ Z. In addition, for all n,n ∈ Z and y ∈ E, we have∣∣(Biy)(n) – (Biy)(n)
∣∣ ≤

∑
m∈Z

∣∣ai(n,m) – ai(n,m)
∣∣ · ∣∣gi(m, y(m)

)∣∣
≤ ∥∥̃ai(n) – ãi(n)

∥∥
q · ∥∥μM

i
∥∥
p,

which yields that eachBi(E) is equi-asymptotically almost periodic since ãi∈AAP(Z,lq(Z)).
Then, by Theorem ., each Bi(E) is precompact in AAP(Z). Let {yk} ⊂ E. Then {Biyk},
if necessary going to a subsequence, is convergent in AAP(Z) for each i ∈ {, , . . . ,λ}. By
(.), we conclude that {N yk} is convergent inAAP(Z). So,N (E) is precompact inAAP(Z).
By applying Schauder’s fixed point theorem, there exists a fixed point y* ofN in E. Then

we have

y* =N y* = xy* =
λ∑
i=

Aixy* · Biy* =
λ∑
i=

Aiy* · Biy* =My*,

which means that y* is a fixed point ofM. This completes the proof. �
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Finally, we give a simple example to illustrate our result.

Example . Let λ = , p = , q = ∞,

f(n,x) =
x


(
sinn + sinπn +


|n| + 

)
, g(n,x) =

sin(xen )
( + n)

,

a(n,m) =
cosn + cos

√
n + 

n+
( +m)

,

and

f(n,x) =
cosn sinx


, g(n,x) =

arctan(nx)
 + n

, a(n,m) =


e–m


sinn.

It is easy to see that (H) holds with L = 
 and L = 

 . Also, (H) holds with μr
(n) ≡


(+n) and μr

(n)≡ π
 · 

+n . In addition, (H) can be easily verified. By a direct calculation,
we can get

α ≤ , α ≤ 

,

and

∥∥μr

∥∥
 ≤ π + 


,

∥∥μr

∥∥
 ≤ π + π


, ∀r > .

LettingM = , we have

∑
i=

αiLi
∥∥μM

i
∥∥
 ≤ (π + )


+

π + π


< ,

and

∑
i=

[
sup

n∈Z,|x|≤K

∣∣fi(n,x)∣∣ · αi ·
∥∥μM

i
∥∥


]
≤ (π + )


K +

π + π


< K , ∀K > .

Thus, (H) holds with M = . Then, by using Theorem ., Equation (.) has an asymp-
totically almost periodic solution.
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3. Diblík, J, Ružičková, M, Schmeidel, E: Existence of asymptotically periodic solutions of scalar Volterra difference

equations. Tatra Mt. Math. Publ. 43, 51-61 (2009)
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