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Abstract

We deal with a Pexider difference

f (2x + y) + f (2x − y) − g(x + y) − g(x − y) − 2g(2x) + 2g(x)

where f and g map be a given abelian group (G, +) into a sequentially complete
Hausdorff topological vector space. We also investigate the Hyers-Ulam stability of
the following Pexiderized functional equation

f (2x + y) + f (2x − y) = g(x + y) + g(x − y) + 2g(2x) − 2g(x)

in topological vector spaces.
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1. Introduction and preliminaries
In 1940, Ulam [1] proposed the general stability problem: Let G1 be a group, G2 be a

metric group with the metric d. Given ε >0, does there exists δ >0 such that if a func-

tion h: G1® G2 satisfies the inequality

d
(
h(xy) − h(x)h(y)

)
< δ, (x, y ∈ G1),

then there is a homomorphism H: G1®G2 with

d(h(x),H(x)) < ε, (x ∈ G1)?

Hyers [2] gave a partial affirmative answer to the question of Ulam in the context of

Banach spaces. In 1950, Aoki [3] extended the theorem of Hyers by considering the

unbounded cauchy difference inequality
∥∥f (x + y) − f (x) − f (y)

∥∥ ≤ ε(‖x‖p + ∥∥y∥∥p) (ε > 0, p ε [0, 1)).

In 1978, Rassias [4] also generalized the Hyers’ theorem for linear mappings under

the assumption t ↦ f (tx) is continuous in t for each fixed x.

Recently, Adam and Czerwik [5] investigated the problem of the Hyers-Ulam stability

of a generalized quadratic functional equation in linear topological spaces. Najati and

Moghimi [6] investigated the Hyers-Ulam stability of the functional equation
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f (2x + y) + f (2x − y) = f (x + y) + f (x − y) + 2f (2x) − 2f (x)

in quasi-Banach spaces. In this article, we prove that the Pexiderized functional equa-

tion

f (2x + y) + f (2x − y) = g(x + y) + g(x − y) + 2g(2x) − 2g(x)

is stable for functions f, g defined on an abelian group and taking values in a topolo-

gical vector space.

Throughout this article, let G be an abelian group and X be a sequentially complete

Hausdorff topological vector space over the field ℚ of rational numbers.

A mapping f: G ® X is said to be quadratic if and only if it satisfies the following

functional equation

f (x + y) + f (x − y) = 2f (x) + 2f (y)

for all x y Î G. A mapping f G ® X is said to be additive if and only if it satisfies f

(x + y) = f (x) + f (y) for all x y ε G. For a given f: G ® X, we will use the following

notation

Df (x, y) := f (2x + y) + f (2x − y) − f (x + y) − f (x − y) − 2f (2x) + 2f (x).

For given sets A B ⊆ X and a number k Î ℝ, we define the well known operations

A + B := {a + b : a ∈ A, b ∈ B}, kA := {ka : a ∈ A}.

We denote the convex hull of a set U ⊆ X by conv(U) and by U the sequential clo-

sure of U. Moreover it is well know that:

(1) If A ⊆ X are bounded sets, then conv(A) and A are bounded subsets of X.

(2) If A, B ⊆ X and a b Î ℝ, then a conv(A) + b conv(B) = conv(aA + bB).
(3) Let X1 and X2 be linear spaces over ℝ. If f: X1®X2 is a additive (quadratic) func-

tion, then f (rx) = rf (x) (f (rx) = r2f (x)), for all x Î X1 and all r Î ℚ.

2. Main results
We start with the following lemma.

Lemma 2.1. Let G be a 2-divisible abelian group and B ⊆ X be a nonempty set. If the

functions f, g: G®X satisfy

f (2x + y) + f (2x − y) − g(x + y) − g(x − y) − 2g(2x) + 2g(x) ∈ B (2:1)

for all x, y Î G, then

Df (x, y) ∈ 2 conv(B − B), (2:2)

Dg(x, y) ∈ conv(B − B) (2:3)

for all x, y Î G.

Proof. Putting y = 0 in (2.1), we get

2f (2x) − 2g(2x) ∈ B (2:4)
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for all x Î G. If we replace x by
1
2
x in (2.4), then we have

f (x) − g(x) ∈ 1
2
B (2:5)

for all x Î G. It follows from (2.5) and (2.1) that

Df (x, y) = f (2x + y) + f (2x − y) − g(x + y) − g(x − y) − 2g(2x) + 2g(x)

− [f (x + y) − g(x + y)] − [f (x − y) − g(x − y)]

− [2f (2x) − 2g(2x)] + [2f (x) − 2g(x)]

∈ 2 conv(B − B).

Moreover, we have

Dg(x, y) = f (2x + y) + f (2x − y) − g(x + y) − g(x − y) − 2g(2x) + 2g(x)

− [f (2x + y) − g(2x + y)] − [f (2x − y) − g(2x − y)]

∈ conv(B − B).

Theorem 2.2. Let G be a 2-divisible abelian group and B ⊆ X be a bounded set. Sup-

pose that the odd functions f, g: G®X satisfy (2 1) for all x, y Î G. Then there exists

exactly one additive function A : G → X such that

A(x) − f (x) ∈ 4conv(B − B), A(x) − g(x) ∈ 2conv(B − B) (2:6)

for all x Î G. Moreover the function A is given by

A(x) = lim
n→∞

1
2n

f (2nx) = lim
n→∞

1
2n

g(2nx)

for all x Î G. Moreover, the convergence of the sequences are uniform on G.

Proof. By Lemma 2.1, we get (2.2). Setting y = x, y = 3x and y = 4x in (2.2), we get

f (3x) − 3f (2x) + 3f (x) ∈ 2 conv(B − B), (2:7)

f (5x) − f (4x) − f (2x) + f (x) ∈ 2conv(B − B), (2:8)

f (6x) − f (5x) + f (3x) − 3f (2x) + 2f (x) ∈ 2conv(B − B) (2:9)

for all x Î G. It follows from (2.7), (2.8), and (2.9) that

f (6x) − f (4x) − f (2x) ∈ 6 conv(B − B)

for all x Î G. So

f (3x) − f (2x) − f (x) ∈ 6 conv(B − B) (2:10)

for all x Î G. Using (2.7) and (2.10), we obtain

1
2
f (2x) − f (x) ∈ 2conv(B − B)
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for all x Î G. Therefore

1
2n

f (2nx) − 1
2m

f (2mx) =
n−1∑
k=m

[
1

2k+1
f (2k+1x) − 1

2k
f (2kx)

]

∈
n−1∑
k=m

2
2k

conv(B − B)

⊆ 4
2m

conv(B − B)

(2:11)

for all x Î G and all integers n > m ≥ 0. Since B is bounded, we conclude that conv

(B - B) is bounded. It follows from (2.11) and boundedness of the set conv(B - B) that

the sequence { 1
2n f (2

nx)} is (uniformly) Cauchy in X for all x Î G. Since X is a sequen-

tial complete topological vector space, the sequence { 1
2n f (2

nx)} is convergent for all x

Î G, and the convergence is uniform on G. Define

A1 : G → X, A1(x) := lim
n→∞

1
2n

f (2nx).

Since conv(B - B) is bounded, it follows from (2.2) that

DA1(x, y) = lim
n→∞

1
2n

Df (2nx, 2ny) = 0

for all x y Î G. So A1 is additive (see [6]). Letting m = 0 and n® ∞ in (2.11), we get

A1(x) − f (x) ∈ 4conv(B − B) (2:12)

for all x Î G. Similarly as before applying (2.3) we have an additive mapping

A2 : G → X defined by A2(x) := limn→∞
1
2n

g(2nx) which is satisfying

A2(x) − g(x) ∈ 2conv(B − B) (2:13)

for all x Î G. Since B is bounded, it follows from (2.5) that A1 = A2. Letting A := A1,

we obtain (2.6) from (2.12) and (2.13).

To prove the uniqueness of A, suppose that there exists another additive function A′:
G®X satisfying (2.6). So

A′(x) − A(x) = [A′(x) − f (x)] + [f (x) − A(x)] ∈ 8conv(B − B)

for all x Î G. Since A′ and A are additive, replacing x by 2nx implies that

A′(x) − A(x) ∈ 8
2n

conv(B − B)

for all x Î G and all integers n. Since conv(B − B) is bounded, we infer A′ = A. This

completes the proof of theorem.

Theorem 2.3 Let G be a 2, 3-divisible abelian group and B ⊆ X be a bounded set.

Suppose that the even functions f, g: G®X satisfy (2 1) for all x, y Î G. Then there

exists exactly one quadratic functionQ : G → Xsuch that

Q(x) − f (x) + f (0) ∈ 4conv(B − B), Q(x) − g(x) + g(0) ∈ 2conv(B − B)
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for all x Î G. Moreover, the functionQ is given by

Q(x) = lim
n→∞

1
4n

f (2nx) = lim
n→∞

1
4n

g(2nx)

for all x Î G. Moreover, the convergence of the sequences are uniform on G.

Proof. By replacing y by x + y in (2.2), we get

f (3x + y) + f (x − y) − f (2x + y) − f (y)

− 2f (2x) + 2f (x) ∈ 2conv(B − B)
(2:14)

for all x, y Î G. Replacing y by - y in (2.14), we get

f (3x − y) + f (x + y) − f (2x − y) − f (y)

− 2f (2x) + 2f (x) ∈ 2conv(B − B)
(2:15)

for all x, y Î G. It follows from (2.2), (2.14), and (2.15) that

f (3x + y) + f (3x − y) − 2f (y)

− 6f (2x) + 6f (x) ∈ 6conv(B − B)
(2:16)

for all x, y Î G. By letting y = 0 and y = 3x in (2.16), we get

2f (3x) − 6f (2x) + 6f (x) − 2f (0) ∈ 6conv(B − B), (2:17)

f (6x) − 2f (3x) − 6f (2x) + 6f (x) + f (0) ∈ 6conv(B − B) (2:18)

for all x Î G. Using (2.17) and (2.18), we obtain

f (6x) − 4f (3x) + 3f (0) ∈ 12conv(B − B) (2:19)

for all x Î G. If we replace x by
1
3
x in (2.19), then

f (2x) − 4f (x) + 3f (0) ∈ 12conv(B − B)

for all x Î G. Therefore

1
4n+1

f (2n+1x) − 1
4n

f (2nx) +
3

4n+1
f (0) ∈ 3

4n
conv(B − B) (2:20)

for all x Î G and all integers n. So

1
4n

f (2nx) − 1
4m

f (2mx)

=
n−1∑
k=m

1
4k+1

f (2k+1x) − 1
4k

f (2kx)

∈ −
n−1∑
k=m

3
4k+1

f (0) +
n−1∑
k=m

3
4k

conv(B − B)

⊆ −
n−1∑
k=m

3
4k+1

f (0) +
1

4m−1
conv(B − B)

(2:21)

for all x Î G and all integers n >m ≥ 0. It follows from (2.21) and boundedness of

the set conv(B - B) that the sequence { 1
4n f (2

nx)} is (uniformly) Cauchy in X for all x Î

G. The rest of the proof is similar to proof of of Theorem 2.2.
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Remark 2.4. If the functions f, g: G®X satisfy (2.1), where f is even (odd) and g is

odd (even), then it is easy to show that f and g are bounded.
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