A pexider difference for a pexider functional equation

Abbas Najati ${ }^{1 *}$, Saeid Ostadbashi², Gwang Hui Kim ${ }^{3}$ and Sooran Mahmoudfakhe ${ }^{2}$

* Correspondence: a.nejati@yahoo. com
${ }^{1}$ Department of Mathematical Sciences, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran Full list of author information is available at the end of the article

Abstract

We deal with a Pexider difference

$$
f(2 x+y)+f(2 x-y)-g(x+y)-g(x-y)-2 g(2 x)+2 g(x)
$$

where f and g map be a given abelian group $(G,+)$ into a sequentially complete Hausdorff topological vector space. We also investigate the Hyers-Ulam stability of the following Pexiderized functional equation

$$
f(2 x+y)+f(2 x-y)=g(x+y)+g(x-y)+2 g(2 x)-2 g(x)
$$

in topological vector spaces.
Mathematics subject classification (2000): Primary 39B82; Secondary 34K20, 54A20.
Keywords: Hyers-Ulam stability, additive mapping, quadratic mapping, topological vector space

1. Introduction and preliminaries

In 1940, Ulam [1] proposed the general stability problem: Let G_{1} be a group, G_{2} be a metric group with the metric d. Given $\varepsilon>0$, does there exists $\delta>0$ such that if a function $h: G_{1} \rightarrow G_{2}$ satisfies the inequality

$$
d(h(x y)-h(x) h(y))<\delta, \quad\left(x, y \in G_{1}\right)
$$

then there is a homomorphism $H: G_{1} \rightarrow G_{2}$ with

$$
d(h(x), H(x))<\varepsilon, \quad\left(x \in G_{1}\right) ?
$$

Hyers [2] gave a partial affirmative answer to the question of Ulam in the context of Banach spaces. In 1950, Aoki [3] extended the theorem of Hyers by considering the unbounded cauchy difference inequality

$$
\|f(x+y)-f(x)-f(y)\| \leq \varepsilon\left(\|x\|^{p}+\|y\|^{p}\right) \quad(\varepsilon>0, p \varepsilon[0,1))
$$

In 1978, Rassias [4] also generalized the Hyers' theorem for linear mappings under the assumption $t \mapsto f(t x)$ is continuous in t for each fixed x.

Recently, Adam and Czerwik [5] investigated the problem of the Hyers-Ulam stability of a generalized quadratic functional equation in linear topological spaces. Najati and Moghimi [6] investigated the Hyers-Ulam stability of the functional equation

[^0]$$
f(2 x+y)+f(2 x-y)=f(x+y)+f(x-y)+2 f(2 x)-2 f(x)
$$
in quasi-Banach spaces. In this article, we prove that the Pexiderized functional equation
$$
f(2 x+y)+f(2 x-y)=g(x+y)+g(x-y)+2 g(2 x)-2 g(x)
$$
is stable for functions f, g defined on an abelian group and taking values in a topological vector space.
Throughout this article, let G be an abelian group and X be a sequentially complete Hausdorff topological vector space over the field \mathbb{Q} of rational numbers.
A mapping $f: G \rightarrow X$ is said to be quadratic if and only if it satisfies the following functional equation
$$
f(x+y)+f(x-y)=2 f(x)+2 f(y)
$$
for all $x y \in G$. A mapping $f G \rightarrow X$ is said to be additive if and only if it satisfies f $(x+y)=f(x)+f(y)$ for all $x y \varepsilon G$. For a given $f: G \rightarrow X$, we will use the following notation
$$
D f(x, y):=f(2 x+y)+f(2 x-y)-f(x+y)-f(x-y)-2 f(2 x)+2 f(x)
$$

For given sets $A B \subseteq X$ and a number $k \in \mathbb{R}$, we define the well known operations

$$
A+B:=\{a+b: a \in A, b \in B\}, \quad k A:=\{k a: a \in A\} .
$$

We denote the convex hull of a set $U \subseteq X$ by $\operatorname{conv}(U)$ and by \bar{U} the sequential closure of U. Moreover it is well know that:
(1) If $A \subseteq X$ are bounded sets, then $\operatorname{conv}(A)$ and \bar{A} are bounded subsets of X.
(2) If $A, B \subseteq X$ and $\alpha \beta \in \mathbb{R}$, then $\alpha \operatorname{conv}(A)+\beta \operatorname{conv}(B)=\operatorname{conv}(\alpha A+\beta B)$.
(3) Let X_{1} and X_{2} be linear spaces over \mathbb{R}. If $f: X_{1} \rightarrow X_{2}$ is a additive (quadratic) function, then $f(r x)=r f(x)\left(f(r x)=r^{2} f(x)\right)$, for all $x \in X_{1}$ and all $r \in \mathbb{Q}$.

2. Main results

We start with the following lemma.
Lemma 2.1. Let G be a 2-divisible abelian group and $B \subseteq X$ be a nonempty set. If the functions $f, g: G \rightarrow X$ satisfy

$$
\begin{equation*}
f(2 x+y)+f(2 x-y)-g(x+y)-g(x-y)-2 g(2 x)+2 g(x) \in B \tag{2.1}
\end{equation*}
$$

for all $x, y \in G$, then

$$
\begin{align*}
& D f(x, y) \in 2 \operatorname{conv}(B-B) \tag{2.2}\\
& D g(x, y) \in \operatorname{conv}(B-B) \tag{2.3}
\end{align*}
$$

for all $x, y \in G$.
Proof. Putting $y=0$ in (2.1), we get

$$
\begin{equation*}
2 f(2 x)-2 g(2 x) \in B \tag{2.4}
\end{equation*}
$$

for all $x \in G$. If we replace x by $\frac{1}{2} x$ in (2.4), then we have

$$
\begin{equation*}
f(x)-g(x) \in \frac{1}{2} B \tag{2.5}
\end{equation*}
$$

for all $x \in G$. It follows from (2.5) and (2.1) that

$$
\begin{aligned}
D f(x, y)= & f(2 x+y)+f(2 x-y)-g(x+y)-g(x-y)-2 g(2 x)+2 g(x) \\
& -[f(x+y)-g(x+y)]-[f(x-y)-g(x-y)] \\
& -[2 f(2 x)-2 g(2 x)]+[2 f(x)-2 g(x)] \\
\in & 2 \operatorname{conv}(B-B) .
\end{aligned}
$$

Moreover, we have

$$
\begin{aligned}
D g(x, y)= & f(2 x+y)+f(2 x-y)-g(x+y)-g(x-y)-2 g(2 x)+2 g(x) \\
& -[f(2 x+y)-g(2 x+y)]-[f(2 x-y)-g(2 x-y)] \\
\in & \operatorname{conv}(B-B) .
\end{aligned}
$$

Theorem 2.2. Let G be a 2-divisible abelian group and $B \subseteq X$ be a bounded set. Suppose that the odd functions $f, g: G \rightarrow X$ satisfy (21) for all $x, y \in G$. Then there exists exactly one additive function $\mathcal{A}: G \rightarrow X$ such that

$$
\begin{equation*}
\mathcal{A}(x)-f(x) \in 4 \overline{\operatorname{conv}(B-B)}, \quad \mathcal{A}(x)-g(x) \in 2 \overline{\operatorname{conv}(B-B)} \tag{2.6}
\end{equation*}
$$

for all $x \in G$. Moreover the function \mathcal{A} is given by

$$
\mathcal{A}(x)=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} f\left(2^{n} x\right)=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} g\left(2^{n} x\right)
$$

for all $x \in G$. Moreover, the convergence of the sequences are uniform on G.
Proof. By Lemma 2.1, we get (2.2). Setting $y=x, y=3 x$ and $y=4 x$ in (2.2), we get

$$
\begin{align*}
& f(3 x)-3 f(2 x)+3 f(x) \in 2 \operatorname{conv}(B-B) \tag{2.7}\\
& f(5 x)-f(4 x)-f(2 x)+f(x) \in 2 \operatorname{conv}(B-B) \tag{2.8}\\
& f(6 x)-f(5 x)+f(3 x)-3 f(2 x)+2 f(x) \in 2 \operatorname{conv}(B-B) \tag{2.9}
\end{align*}
$$

for all $x \in G$. It follows from (2.7), (2.8), and (2.9) that

$$
f(6 x)-f(4 x)-f(2 x) \in 6 \operatorname{conv}(B-B)
$$

for all $x \in G$. So

$$
\begin{equation*}
f(3 x)-f(2 x)-f(x) \in 6 \operatorname{conv}(B-B) \tag{2.10}
\end{equation*}
$$

for all $x \in G$. Using (2.7) and (2.10), we obtain

$$
\frac{1}{2} f(2 x)-f(x) \in 2 \operatorname{conv}(B-B)
$$

for all $x \in G$. Therefore

$$
\begin{align*}
\frac{1}{2^{n}} f\left(2^{n} x\right)-\frac{1}{2^{m}} f\left(2^{m} x\right) & =\sum_{k=m}^{n-1}\left[\frac{1}{2^{k+1}} f\left(2^{k+1} x\right)-\frac{1}{2^{k}} f\left(2^{k} x\right)\right] \\
& \in \sum_{k=m}^{n-1} \frac{2}{2^{k}} \operatorname{conv}(B-B) \tag{2.11}\\
& \subseteq \frac{4}{2^{m}} \operatorname{conv}(B-B)
\end{align*}
$$

for all $x \in G$ and all integers $n>m \geq 0$. Since B is bounded, we conclude that conv $(B-B)$ is bounded. It follows from (2.11) and boundedness of the set $\operatorname{conv}(B-B)$ that the sequence $\left\{\frac{1}{2^{n}} f\left(2^{n} x\right)\right\}$ is (uniformly) Cauchy in X for all $x \in G$. Since X is a sequential complete topological vector space, the sequence $\left\{\frac{1}{2^{n}} f\left(2^{n} x\right)\right\}$ is convergent for all x $\in G$, and the convergence is uniform on G. Define

$$
\mathcal{A}_{1}: G \rightarrow X, \quad \mathcal{A}_{1}(x):=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} f\left(2^{n} x\right)
$$

Since $\operatorname{conv}(B-B)$ is bounded, it follows from (2.2) that

$$
D \mathcal{A}_{1}(x, y)=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} D f\left(2^{n} x, 2^{n} y\right)=0
$$

for all $x y \in G$. So \mathcal{A}_{1} is additive (see [6]). Letting $m=0$ and $n \rightarrow \infty$ in (2.11), we get

$$
\begin{equation*}
\mathcal{A}_{1}(x)-f(x) \in 4 \overline{\operatorname{conv}(B-B)} \tag{2.12}
\end{equation*}
$$

for all $x \in G$. Similarly as before applying (2.3) we have an additive mapping $\mathcal{A}_{2}: G \rightarrow X$ defined by $\mathcal{A}_{2}(x):=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} g\left(2^{n} x\right)$ which is satisfying

$$
\begin{equation*}
\mathcal{A}_{2}(x)-g(x) \in 2 \overline{\operatorname{conv}(B-B)} \tag{2.13}
\end{equation*}
$$

for all $x \in G$. Since B is bounded, it follows from (2.5) that $\mathcal{A}_{1}=\mathcal{A}_{2}$. Letting $\mathcal{A}:=\mathcal{A}_{1}$, we obtain (2.6) from (2.12) and (2.13).

To prove the uniqueness of \mathcal{A}, suppose that there exists another additive function \mathcal{A}^{\prime} : $G \rightarrow X$ satisfying (2.6). So

$$
\mathcal{A}^{\prime}(x)-\mathcal{A}(x)=\left[\mathcal{A}^{\prime}(x)-f(x)\right]+[f(x)-\mathcal{A}(x)] \in 8 \overline{\operatorname{conv}(B-B)}
$$

for all $x \in G$. Since \mathcal{A}^{\prime} and \mathcal{A} are additive, replacing x by $2^{n} x$ implies that

$$
\mathcal{A}^{\prime}(x)-\mathcal{A}(x) \in \frac{8}{2^{n}} \overline{\operatorname{conv}(B-B)}
$$

for all $x \in G$ and all integers n. Since $\overline{\operatorname{conv(B-B)}}$ is bounded, we infer $\mathcal{A}^{\prime}=\mathcal{A}$. This completes the proof of theorem.

Theorem 2.3 Let G be a 2, 3-divisible abelian group and $B \subseteq X$ be a bounded set. Suppose that the even functions $f, g: G \rightarrow X$ satisfy (2 1) for all $x, y \in G$. Then there exists exactly one quadratic function $\mathcal{Q}: G \rightarrow$ Xsuch that

$$
\mathcal{Q}(x)-f(x)+f(0) \in 4 \overline{\operatorname{conv}(B-B)}, \mathcal{Q}(x)-g(x)+g(0) \in 2 \overline{\operatorname{conv}(B-B)}
$$

for all $x \in G$. Moreover, the function \mathcal{Q} is given by

$$
\mathcal{Q}(x)=\lim _{n \rightarrow \infty} \frac{1}{4^{n}} f\left(2^{n} x\right)=\lim _{n \rightarrow \infty} \frac{1}{4^{n}} g\left(2^{n} x\right)
$$

for all $x \in G$. Moreover, the convergence of the sequences are uniform on G.
Proof. By replacing y by $x+y$ in (2.2), we get

$$
\begin{align*}
f(3 x+y)+f(x-y) & -f(2 x+y)-f(y) \tag{2.14}\\
& -2 f(2 x)+2 f(x) \in 2 \operatorname{conv}(B-B)
\end{align*}
$$

for all $x, y \in G$. Replacing y by $-y$ in (2.14), we get

$$
\begin{align*}
f(3 x-y)+f(x+y) & -f(2 x-y)-f(y) \\
& -2 f(2 x)+2 f(x) \in 2 \operatorname{conv}(B-B) \tag{2.15}
\end{align*}
$$

for all $x, y \in G$. It follows from (2.2), (2.14), and (2.15) that

$$
\begin{align*}
f(3 x+y) & +f(3 x-y)-2 f(y) \\
& -6 f(2 x)+6 f(x) \in 6 \operatorname{conv}(B-B) \tag{2.16}
\end{align*}
$$

for all $x, y \in G$. By letting $y=0$ and $y=3 x$ in (2.16), we get

$$
\begin{align*}
& 2 f(3 x)-6 f(2 x)+6 f(x)-2 f(0) \in 6 \operatorname{conv}(B-B) \tag{2.17}\\
& f(6 x)-2 f(3 x)-6 f(2 x)+6 f(x)+f(0) \in 6 \operatorname{conv}(B-B) \tag{2.18}
\end{align*}
$$

for all $x \in G$. Using (2.17) and (2.18), we obtain

$$
\begin{equation*}
f(6 x)-4 f(3 x)+3 f(0) \in 12 \operatorname{conv}(B-B) \tag{2.19}
\end{equation*}
$$

for all $x \in G$. If we replace x by $\frac{1}{3} x$ in (2.19), then

$$
f(2 x)-4 f(x)+3 f(0) \in 12 \operatorname{conv}(B-B)
$$

for all $x \in G$. Therefore

$$
\begin{equation*}
\frac{1}{4^{n+1}} f\left(2^{n+1} x\right)-\frac{1}{4^{n}} f\left(2^{n} x\right)+\frac{3}{4^{n+1}} f(0) \in \frac{3}{4^{n}} \operatorname{conv}(B-B) \tag{2.20}
\end{equation*}
$$

for all $x \in G$ and all integers n. So

$$
\begin{align*}
& \frac{1}{4^{n}} f\left(2^{n} x\right)-\frac{1}{4^{m}} f\left(2^{m} x\right) \\
& =\sum_{k=m}^{n-1} \frac{1}{4^{k+1}} f\left(2^{k+1} x\right)-\frac{1}{4^{k}} f\left(2^{k} x\right) \\
& \in-\sum_{k=m}^{n-1} \frac{3}{4^{k+1}} f(0)+\sum_{k=m}^{n-1} \frac{3}{4^{k}} \operatorname{conv}(B-B) \tag{2.21}\\
& \subseteq-\sum_{k=m}^{n-1} \frac{3}{4^{k+1}} f(0)+\frac{1}{4^{m-1}} \operatorname{conv}(B-B)
\end{align*}
$$

for all $x \in G$ and all integers $n>m \geq 0$. It follows from (2.21) and boundedness of the set $\operatorname{conv}(B-B)$ that the sequence $\left\{\frac{1}{4^{n}} f\left(2^{n} x\right)\right\}$ is (uniformly) Cauchy in X for all $x \in$ G. The rest of the proof is similar to proof of of Theorem 2.2.

Remark 2.4. If the functions $f, g: G \rightarrow X$ satisfy (2.1), where f is even (odd) and g is odd (even), then it is easy to show that f and g are bounded.

Author details

${ }^{1}$ Department of Mathematical Sciences, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran ${ }^{2}$ Department of Mathematics, Urmia University, Urmia, Iran ${ }^{3}$ Department of Applied Mathematics, Kangnam University, Giheung-gu, Yongin, Gyoenggi 446-702, Republic of Korea

Authors' contributions

All authors carried out the proof. All authors conceived of the study, and participated in its design and coordination. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.
Received: 27 June 2011 Accepted: 6 March 2012 Published: 6 March 2012

References

1. Ulam, SM: Problem in Modern Mathematics, Science edn. Wiley, New York (1960)
2. Hyers, DH: On the stability of the linear functional equation. Proc Nat Acad Sci USA. 27, 222-224 (1941). doi:10.1073/ pnas.27.4.222
3. Aoki, T: On the stability of linear trasformation in Banach spaces. J Math Soc Japan. 2, $64-66$ (1950). doi:10.2969/jmsj/ 00210064
4. Rassias, ThM: On the stability of the linear mapping in Banach spaces. Proc Amer Math Soc. 72, 297-300 (1978). doi:10.1090/S0002-9939-1978-0507327-1
5. Adam, M, Czerwik, S: On the stability of the quadratic functional equation in topological spaces. Banach J Math Anal. 1 245-251 (2007)
6. Najati, A, Moghimi, MB: Stability of a functional equation deriving from quadratic and additive functions in quasiBanach spaces. J Math Anal Appl. 337, 399-415 (2008). doi:10.1016/j.jmaa.2007.03.104
[^1]
Submit your manuscript to a SpringerOpen ${ }^{\text {© }}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at $>$ springeropen.com

[^0]: © 2012 Najati et al; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

[^1]: doi:10.1186/1687-1847-2012-26
 Cite this article as: Najati et al.: A pexider difference for a pexider functional equation. Advances in Difference Equations 2012 2012:26

