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Abstract

This article studies the existence of solutions for a three-point inclusion problem of
Langevin equation with two fractional orders. Our main tools of study include a
nonlinear alternative of Leray-Schauder type, selection theorem due to Bressan and
Colombo for lower semicontinuous multivalued maps, and a fixed point theorem for
multivalued map due to Covitz and Nadler. An illustrative example is also presented.
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1 Introduction

The study of fractional calculus has recently gained a great momentum and has
emerged as an interesting and important field of research. The popularity of the sub-
ject can easily be witnessed by a huge number of articles and books published in the
last few years. It is mainly due to the extensive application of fractional calculus in the
mathematical modeling of physical, engineering and biological phenomena. Fractional
differential equations appear naturally in a number of fields such as physics, chemistry,
biology, economics, control theory, signal and image processing, biophysics, blood flow
phenomena, aerodynamics, fitting of experimental data, etc. For recent development in
theory and applications of fractional calculus, see the books [1-4]. Some results con-
cerning the initial and boundary value problems of fractional equations and inclusions
can be found in a series of articles [5-26] and the references therein.

Langevin equation is found to be an effective tool to describe the evolution of physi-
cal phenomena in fluctuating environments [27-29]. Various generalizations of Lange-
vin equation have been proposed to describe dynamical processes in a fractal medium.
One such generalization is the generalized Langevin equation [30-35] which incorpo-
rates the fractal and memory properties with a dissipative memory kernel into the Lan-
gevin equation. In another possible extension, ordinary derivative is replaced by a
fractional derivative in the Langevin equation to yield the fractional Langevin equation
[36-39]. Recently, Lim et al. [40] have studied a new type of Langevin equation with
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two different fractional orders. The solution to this new version of fractional Langevin
equation gives a fractional Gaussian process parameterized by two indices, which pro-
vides a more flexible model for fractal processes as compared with the usual one char-
acterized by a single index. In [41], Lim et al. discussed the fractional oscillator process
with two indices. Recently, a Dirichlet boundary value problem for Langevin equation
involving two fractional orders has been studied in [42]. Some more recent work on
Langevin equation can be found in [43-46]. In a more recent article [47], the authors
studied a nonlinear Langevin equation involving two fractional orders ¢ € (0, 1] and B
€ (1, 2] with three-point boundary conditions.

Motivated by recent work on Langevin equation of fractional order, we study the fol-
lowing inclusion problem of Langevin equation of two fractional orders in different
intervals with three-point boundary conditions

{CDﬁ(CD"‘ +A)x(t) e F(t, x(t)), O0<t<1l, O<a<l1l 1<B<2 (L1

x(0)=0, x(n)=0, x(1)=0, O0<n<l,

where °D is the Caputo fractional derivative, F:[0,1] x R > P (R) is a compact
valued multivalued map, and P (R) is the family of all subsets of R.

We present some existence results for the problem (1.1), when the right hand side is
convex as well as nonconvex valued. The first result relies on the nonlinear alternative
of Leray-Schauder type. In the second result, we shall combine the nonlinear alterna-
tive of Leray-Schauder type for single-valued maps with a selection theorem due to
Bressan and Colombo for lower semicontinuous multivalued maps with nonempty
closed and decomposable values. The third result, dealing with a nonconvex valued
right hand side of the fractional inclusion in (1.1), employs a fixed point theorem for
multivalued map due to Covitz and Nadler. Here we remark that the single-valued
case of (1.1) was discussed in [47].

2 Background material for multivalued analysis
First of all, we recall some basic definitions on multi-valued maps [48,49].

For a normed space (X, || - |[|), let Pa(X)= {Y ePX):Yis closed},
Pyp (X) ={Y € P(X) : Yiscompact}, Pyp (X) = {Y € P(X) : Yiscompact}, and
Py (X) = {Y € P (X) : Yiscompactand convex}. A multi-valued map G: X — P (X)
is convex (closed) valued if G(x) is convex (closed) for all x € X. The map G is
bounded on bounded sets if G(B) = [J,.g G (x) is bounded in X for all B € P, (X) (i.
e. sup,g {sup{|y| : ¥ € G@}} < 00). G is called upper semi-continuous (u.s.c.) on X
if for each xg € X, the set G(x,) is a nonempty closed subset of X, and if for each open
set N of X containing G(x,), there exists an open neighborhood N of x, such that
G (No) € N. G is said to be completely continuous if G (B) is relatively compact for
every B e Py, (X) . If the multi-valued map G is completely continuous with nonempty
compact values, then G is u.s.c. if and only if G has a closed graph, i.e., x, = x-, y,, >
¥s, ¥ € G(x,) imply y- € G(x-). G has a fixed point if there is x € X such that x € G
(x). The fixed point set of the multivalued operator G will be denoted by FixG. A mul-
tivalued map G : [0; 1] — P.(R) is said to be measurable if for every y € R, the
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function
t—d(y, G(t)) =inf{ly —z| : z € G(t)}

is measurable.
Definition 2.1 A multivalued map F : [0,1] x R — P (R) is said to be Carathéodory

if

(i) t > F (t, x) is measurable for each x € R;
(ii) x —> F (¢, x) is upper semicontinuous for almost all t € [0, 1].

Further a Carathéodory function F is called L'-Carathéodory if

(iii) for each p > 0, there exists ¢, € LY([0, 1], R™) such that

HF(t, x) || =supflv] : veF(t x)} < ,(t)

for all ||x||. < p and for a.e. t € [0, 1].

For each y € C([0, 1], R), define the set of selections of F by

Sky :={v e L'([0,1],R) : v(t) € F(t, (1)) for a.e. t € [0, 1]}.

Let X be a nonempty closed subset of a Banach space E and G: X — P (E) is a
multivalued operator with nonempty closed values. G is lower semi-continuous (l.s.c.)
if the set {y € X : G(y) n B = &} is open for any open set B in E. Let A be a subset of
[0, 1] x R. A is L ® & measurable if A belongs to the o-algebra generated by all sets
of the form J x D, where J is Lebesgue measurable in [0, 1] and D is Borel mea-
surable in R. A subset 4 of L'([0, 1], R) is decomposable if for all u,v € A and mea-
surable J C [0,1] =], the function uyxJ +vy—7 € A, where X7 stands for the
characteristic function of 7.

Definition 2.2 Let Y be a separable metric space and let
N:Y—>P (L1 ([0, 11, IR)) be a multivalued operator. We say N has a property (BC) if
N is l.s.c. and has nonempty closed and decomposable values.

Let F:[0,1] x R — P (R) be a multivalued map with nonempty compact values.
Define a multivalued operator F : C([0,1] x R) — P (L1 ([0, 11, [R)) associated with F

as
F(x) = {weL'([0,1],R) : w(t) € F(t,x(t)) for a.e.t € [0, 1]},

which is called the Nemytskii operator associated with F.

Definition 2.3 Let F:[0,1] x R — P (R) be a multivalued function with nonempty
compact values. We say F is of Ls.c. type if its associated Nemytskii operator F is l.s.c.
and has nonempty closed and decomposable values.
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Let (X, d) be a metric space induced from the normed space (X, ||-||). Consider
Hy:PX) xPX) — RU{oo} given by

Hy(A, B) = max{supd(a, B), supd(A, b)},
aeA beB

where d(A, b) = inf, 4 d(a; b) and d(a, B) = infy g d(a; b). Then (P, 4(X), H,) is a
metric space and (P(X), H,) is a generalized metric space (see [50]).
Definition 2.4 A multivalued operator N : X — Py(X) is called

(a) y-Lipschitz if and only if there exists y > 0 such that
Hy(N(x), N(y)) < yd(x, y) for each x, y € X;

(b) a contraction if and only if it is y-Lipschitz with y < 1.

The following lemmas will be used in the sequel.

Lemma 2.1 [51]Let X be a Banach space. Let F : [0, 1] x R — P, (X) be an L'-Car-
athéodory multivalued map and let © be a linear continuous mapping from L'([0, 1],
X) to C([0, 1], X), then the operator

© o Sp:C([0,1], X) > Pepc(C([0, 1], X)), x> (O o Sp)(x) = O(Skx)

is a closed graph operator in C([0, 1], X) x C([0, 1], X).

In passing, we remark that if dim X < oo, then S¢ (x) = & for any x(-) € C([0, 1], X)
with F (, -) as in Lemma 2.1.

Lemma 2.2 (Nonlinear alternative for Kakutani maps [52]) Let E be a Banach space,
C a closed convex subset of E, U an open subset of C and 0 € U. Suppose that
F:U — P, (C) is a upper semicontinuous compact map; here P (C) denotes the

family of nonempty, compact convex subsets of C. Then either

(i) F has a fixed point in U, or
(ii) there is a u € oU and A € (0, 1) with u € AF (u).

Lemma 2.3 [53]Let Y be a separable metric space and let
N:Y—>P (L1 ([o, 11, IR)) be a multivalued operator satisfying the property (BC). Then
N has a continuous selection, that is, there exists a continuous function (single-valued) g
1Y — LY([0, 1], R) such that g(x) € N(x) for every x € Y.

Lemma 2.4 [54]Let (X, d) be a complete metric space. If N : X — Py(X) is a contrac-
tion, then FixN = O.

For some recent results on multivalued maps, we refer the reader to the articles
[55,56].
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3 Existence results
We are concerned with the existence of solutions for the problem (1.1) when the right
hand side has convex as well as nonconvex values. Initially, we assume that F is a com-
pact and convex valued multivalued map.

Definition 3.1 [47]A function x € C([0, 1], R) is said to be a solution of (1.1), if there
exists a function vl LY([0, 1], R) with v(t) € F (¢, x(¢)) a.e. te [0, 1] and

(- ( F (=)

W= ) rs)

v(s)ds — Ax(u)) du
0

1 u
eo-0 | fO-w " [@-9
+ (1-n) 0/. I(a) 0/ r(8) v(s)ds Ax(u)) du

IO R R Sl (VRS L
(l—n)n“O/ I'(a) (0/ r(8) v(s)ds Ax(u))du

Theorem 3.1 Suppose that

(Hy) the map F:10,1] x R = P (R) is Carathéodory and has nonempty compact
convex values;

(Hy) there exist a continuous non-decreasing function y : [0, o) — (0, ) and a posi-

tive continuous function p such that
[F(& 2| = sup{iv] = ve F(t, )} < p(6) ¥ (Ilxl)

foreach (t, u) e [0, T] x R;
(H5) there exists a number M > 0 such that

[T+ 1) = [A[(1+A(1 + 7)) T (e + B + 1)Ix]l oo
C(a+1)[1+A(n>! + nﬁ)]Hp”wlp(HxHoo)

’

[(a+1) (@)”
+1 dl/ld A= l+a*
(1+A(1+n*1)) (1-n)(1+a)
Then the problem (1.1) has at least one solution.

with |\ <

Proof. In view of Definition 3.1, the existence of solutions to (1.1) is equivalent to

the existence of solutions to the integral inclusion

Ol RS _
x(t) € r'(@) (/ r(8) F(s, u(s))ds Ax(u)) du

Ol e el AU _
BE Lf I(«) ( r O HOE kx(u))du}

(-0 | for—w [ [ @-s
T (1= e {f ') (/ r(8) E(s, u(s))ds—kx(u))du:|, te[0,1].

0
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Let us introduce the operator N : C([0,1],R) — P (C ([0, 1],R)) as

heC(o,1], R):

(e

*“(n—1)

N(x) =
T (1-n)

h(t) =

e
(1 —n)n~

J

r

(n—
r

s)ﬂ_l
(8)

[ (u—s)P!

e
0

u)a—l u
()
0

r'(s)

(u— s)ﬂ_1
r'(8)

v(s)ds — Ax(u)) du

v(s)ds — Ax(u)) du:|
v(s)ds — Ax(u)) dui| ,

Page 6 of 16

(3.1)

for ve Sg ,. We will show that the operator N satisfies the assumptions of the non-
linear alternative of Leray-Schauder type. The proof consists of several steps. As a first
step, we show that N(x) is convex for each x € C([0, 1], R). For that, let /&, h; € N(x).

Then there exist vy, v, € Sk , such that for each ¢ € [0, 1], we have

s)ﬁ_1

r(8) vi(s)ds — Ax(u)) du

hi(t) = /(tl“(a) (/'(u

-0 | [ a-w [ [
+_“_”){/ I() (/ r'(8) ”ﬂﬁ—kmw)m}

Q=0 | fo-w ( [w=9" .
(=) [/ () (/ mﬂ)'“ﬂﬁ AMW)ﬁi, i=1,2.

Let 0 < @ < 1. Then, for each ¢t € [0, 1], we have

[whi + (1 — w)ha] (1)

/u m*1< (u—

(@)

sy

r(8) [wv1(s) + (1 — w)vo(s)]ds — Ax(u)) du

RN R el A UED N _

(1 ) |:/ F(a) (0 r(8) [wv1(s) + (1 — w)va(s)]ds Ax(u)) du:|
e=0 | [ o-wT ([ -9

S [/ o) (0 rgy 1)+ (= oua(lds - kx(u)) du:| .

Since Sg , is convex (F has convex values), therefore it follows that wh; + (1 - w)h,

€ N(x).
Next, we show that N(x) maps bounded sets into bounded sets in C([0, 1], R). For a
positive number r, let B, = {x € C([0, 1], R): ||x||.. < 7} be a bounded set in C([0, 1],

R). Then, for each & € N(x), x € B,, there exists v e Sg , such that
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() I'(B)
_ 1 _ a—1 p-1
. t‘(’ fn_ n;) [ (1 l"(l(;)) ( f (“F(ﬂ)) v(s)ds — )\x(u)) du}

e-0 [ fa-u0 [ [a-g
_ (1 ) |:0/ F (o) (/ r(p) v(s)ds — Ax(u)) duj| ,

ey - [ 0 ( [w—9""
0

v(s)ds — Ax(u)) du

and

; (=w ([ = .
lh(t)l_t:[%ﬁ]‘ r@) (/ F(ﬂ) o+ Ix(u)H)du]

t“(n—1t) (1 _u)'H (u_s)ﬁ—l
(1-n) |:/ I(e) (0/ r'(8) [v(s)lds + |A] [x(x) ||) du:|

+ sup

te[0,1]
“=0 | fo-u" ([ @-5"
"SR e [/ o (/ rgp MO ”x(”)”)d"}

n(en) (L-w) " =
sllpllmvf(l\xlloo)(l ;7)(1+a)“”)/ (@) / ()

n(en) (a-w',
+ 1Al xlloo (1 + — (1 _HX)HD!)/. I'(«)

olloo¥ (Il Xlloo) (@) [ (1 —u)*™" [ (u—s)’""
+((1—n)n“(1+a)lm>0/ r'(a) 0/ rgy A

lxlao(@)® ) [ (n— )"
+<(177)77D‘(1+°‘)1W>0 I'(«) du,

where ||p||. = sup; ¢ |0, 1] P(¢). Using the relations for Beta function B(, .):

T(e)r(s+1)

1

- AT S

B(ﬂ+1,oe)-/(l u)* " ufdu = Fa+f+1)’
0

n

e T@T(B+1) .,
/(’7 u)' udu MNa+p+1)

’

0

we find that

[1 +A(na+1 + nﬁ)]”p“ww(r) |)\|[1 +A(1 + 7]a+1)]T

Hh(t)”oo = T(a+p+1) * MNo+1)

where

@
(1-n)(1 +a)1+a
Now we show that N maps bounded sets into equicontinuous sets of C([0, 1], R). Let

t, t” [0, 1] with ¢ <t” and x € B,, where B, is a bounded set of C([0, 1], R). For each
h € N(x), we obtain
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Ih(t") = h(0)]

/7 a—1 p-1
‘/ ‘ F(Z)) (/ (ur(sﬁ)) IV(S)Ids+A|x(u)|) du

u)a 1 (u
/ I(a) (/ F(ﬂ) '”(S)'d“klx(uﬂ)du

+[((t”) — () — () = (1))
(1—n)

PO (s ot )
_[((t”) (t) ) ((t//)Dt+l ( )a+1)]
(1 —n)n*

(n—u)*" ! (u— S)ﬁ—l
[/ r(a) ( / r(p) v(s)ds—xx(u)) du:|
(" —w)™ —u)*] (u—s)!
/ F(a) (f r'(8) "’(5)'ds+klx(u)|) du

(& —u)! (u—s)f!
/ I'(@) (f r(p) '”(S)dﬂklx(un)du

L) =) = () = ()]
(1—n)

1 (1 _ u)a—l (u 5)571
e (s s so)s]

. ‘ ()" = () = (@) = (@)™)]

(1 —n)n~

(n—u)*" (u— 5)571
{ M) (f r(s) “(S)ds‘“(”’) d“}
(¢ =)™ = (¢ —w)* ] (-
/ r(a) ((Ilvll ¥ (1ll) / F(ﬂ) ds+A|x(u)|)du

[ ;(Z))“*l ((HPHOOW(IIxHOO) / (u ;(2:_]d5+k|x(u)|) du

. [((t//)ot _ (t/)ot)n _ ((t//)ou-l _ (t/)ou-l)]
(1—mn)

1
1—
X[f( r(l;) ((HpH v (Ilx ||oo)/(“r(ﬂ) ds—kx(u)) du:|
0

. [(()* = ()*) = () = ()]
(1 —n)n*

(77 B (u
H:/ F(a) ((”P| v (llx ”oo)/ F(ﬂ) ds—kx(u)) du:| )
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Obviously the right hand side of the above inequality tends to zero independently of x €
B,ast”-t’— 0. As N satisfies the above three assumptions, therefore it follows by Ascoli-
Arzeld theorem that N : C ([0, 1], R) — P (C([0, 1], R)) is completely continuous.

In our next step, we show that N has a closed graph. Let x,, — x-, h,, € N(x,) and h,

—> h.. Then we need to show that /- € N(x-). Associated with /4, € N(x,), there exists
vn € Sk, such that for each ¢ € [0, 1],

B—1
(1) _/ (t— r(a) (/ (ur(;g) Vn(s)ds—xxn(u)) du
ﬂm—ﬂ[/(l M“l(uW—gﬂzMWt_de)w}
(1-1n) I'(a) J r'(8)
“(1-1) [ m—m*l(”w—ﬂ&b ) }
_ g n(8)ds — Axy(u) | du | .
(1—n)n ) I'(a) . r'(8)
Thus we have to show that there exists v, € Spy, such that for each ¢t € [0,1]

F (=) ( F(u— )P )
h(t) = Vi (s)ds — Ax(u) | du
0/ ['(a) 0/ I'(8)
_ ! _ el p—1
t‘(’ in_ n;) [ ¢! r(jz)) ( (u F(ﬁ)) v, (s)ds — Ax*(u)) du}
t*(1—1) (n—u)*! (u—s)"!
~ (1o [/ r) (/ r() ”“”ﬁ‘”““”)d{m
Let us consider the continuous linear operator ©: L'([0, 1], R) — C([0, 1], R) so that

Lo a1 f R -
vi> O(v) = (¢ F(ua)) ( (uF(sﬁ)) v(s)ds — Ax(u)) du
0 0

_ 1 _ a—1 " _ \B-1
t‘:fn_ n;) {/ (1 F(L;)) (/ (“F(Sﬂ)) v(s)ds — kx(u)) du}
o _ £-1
B (t1 (_1 n);)” {/ (n— F(a) (/ (”F(Sﬂ)) v(s)ds — Ax(u)) du:| .
[ (t) —h ()]

1
) ufwwl (u—s!
+ (1) |: F(«) (/ r(8) (Vn(s) — vi(s))ds — A(xn(u) — x*(u))) duj|

e-0 [ fo-w [ [a-9
(1 — 17)7] |:/ F((x) ( 1’*(’3) (Vn(S V*(S))ds — }»(Xn(u) - x*(u))) dl{|

— 0 asn— oo.

Observe that
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Thus, it follows by Lemma 2.1 that ® ° Sg is a closed graph operator. Further, we
have h, (t) € ® (Sp,xn). Since x,, — x-, it follows that

(t— (u—s)"
he(t) = / F(a) / r(8) Vi (s)ds — Ax,(u) | du

-0 | fa—w ([ @9
: (1—n) f ['(«) f r'(g) Vs (s)ds — Ax,(u) | du

n

e[ fom (Fuoat, o))

= | ) T@ \] T

for some v, € Sy,
Finally, we discuss a priori bounds on solutions. Let x be a solution of (1.1). Then
there exists v e L'([0, 1], R) with v € S , such that, for t € [0, 1], we have

G W ECED
x(t)—/ F(@) / r(p) f(s)ds — ax(u) | du

- [ faoet [ Fumg
(1—n) / F(oz) r'(B) f(s)ds — ax(u) | du

ta 1— t) / (77 — u)a_l / (U )ﬁ_lf(s)ds — kx(u) du

C(1—nne ['(a) I'(B)
In view of (H,) together with the condition |A| < (1+£((‘1":,113+1 ) for each te [0, 1], w
find that
T+ D1+ A0+ 0)]1pllso ¥ (X1 0)
llxlloo <

[C(a+1)— A1 +A(L + )T (e + B+ 1)
which can alternatively be written as

[T+ 1) — A1+ A1 + )T (e + B + 1) [Ix]| oo
C(o+1)[1+A(n*! + nﬂ)]HpHool//(lleoo)

—= 4

In view of (H3), there exists M such that ||x||.. # M. Let us set

U={xeC0,1], R) : [Ixllc <M+ 1}.

Note that the operator is N : U — P(C(]0, 1], R)) is upper semicontinuous and
completely continuous. From the choice of U, there is no x € ol such that x € uN(x)
for some y € (0, 1). Consequently, by the nonlinear alternative of Leray-Schauder type
(Lemma 2.2), we deduce that N has a fixed point x € I which is a solution of the pro-
blem (1.1). This completes the proof. O

Next, we study the case where F is not necessarily convex valued. Our approach here
is based on the nonlinear alternative of Leray-Schauder type combined with the selec-
tion theorem of Bressan and Colombo for l.s.c. maps with decomposable values.
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Theorem 3.2 Assume that (H,)-(Hs) and the following conditions hold:
(Hy) F:[0,1]1 x R — P (R) is a nonempty compact-valued multivalued map such
that

(@) (¢ x) » F(t, x) is L @ B measurable,
(b) x » F(¢, x) is lower semicontinuous for each t € [0, 1];

(Hs) for each o > 0, there exists ¢5 € C([0, 1], R,) such that
||F(t, X) || =sup{ly| : y € F(t, x)} < @, (t) forall|x|l, <o andfora.e.t e [0,1].

Then the boundary value problem (1.1) has at least one solution on [0, 1].

Proof. It follows from (H,) and (Hs) that F is of Ls.c. type. Then from Lemma 2.3,
there exists a continuous function f: C([0, 1], R) — L'([0, 1], R) such that fx) e Ax)
for all x [ C([0, 1], R).

Consider the problem

{CDﬂ(CD‘X +A)x(0) =f(x(r)), O0<t<1l, O<a<1l 1<pB<2 (3.2)

x(0)=0, =x(n)=0 x(1)=0, 0<n<l,

Observe that if x € C3([0, 1]) is a solution of (3.2), then x is a solution to the pro-
blem (1.1). In order to transform the problem (3.2) into a fixed point problem, we

define the operator N as

- ; _ a—1 u _ p—1
(Nx)(t) = (¢ F(u;) ( (u r(spg) f(x(s))ds — Ax(u)) du
L= | fa—w )
(1 — ) / (o) (/ r'(8) f(x(s))ds — )»x(u)) du

_e(=9 (”_“)a_l (u—s)"" x(s))ds — Ax(u))du
(1—=n)n> J I'(a) (f F(,B) f(x(s))ds — Ax(u))d

It can easily be shown that N is continuous and completely continuous. The remain-
ing part of the proof is similar to that of Theorem 3.1. So we omit it. This completes
the proof.

o

Now we prove the existence of solutions for the problem (1.1) with a nonconvex
valued right hand side by applying a fixed point theorem for multivalued map due to
Covitz and Nadler (Lemma 2.4).

Theorem 3.3 Assume that the following conditions hold:

(Hg) F: [0, 1] x R = P,(R) is such that F (-, x): [0, 1] — P.,(R) is measurable for
each x € R;

(H7) Hy(F(t, x), F(t,%)) < m(t)|x — X|for almost all t € [0, 1] and x,X € R with m
C([0, 1], R") and d(0, F (¢, 0)) < m(t) for almost all t € [0, 1].
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Then the boundary value problem (1.1) has at least one solution on [0, 1] if

Il o ar |A| .-
|:F(Ol+ﬂ+l) (l +a(n 1+7]’3))+ Fla+1) (1+a(1+7] 1))i| < 1.

Proof. Observe that the set Sg, , is nonempty for each x € C([0, 1], R) by the
assumption (Hg), so F has a measurable selection (see [[57], Theorem II1.6]). Now we
show that the operator N defined by (3.1) satisfies the assumptions of Lemma 11.2.4.
To show that N(x) € P,((C[0, 1], R)) for each x € C([0, 1], R), let {u,},, - 0 € N(x) be
such that u, — u (n — ) in C([0, 1], R). Then u € C([0, 1], R) and there exists v,, €
St » such that, for each £ € [0, 1],

\ (t—u)! i (u—s)!
O] e ( r(p)

eI R
") U r(«) ( r() ""(S)ds‘“(“))d“}

IR N IR Sl (VU (N I
(1—n)n"L r@ ( rgp O “))d]

As F has compact values, we pass onto a subsequence to obtain that v, converges to
v in L'([0, 1], R). Thus, v € S, , and for each t e [0, 1],

; _ a—1 u _ aB-1
) = ule) = / ‘ F(u;) (/ ; F(sﬁ)) o(s)ds — kx(u)) du
0 0
e-0 | [ a-w [ [ au—s
+ (1-mn) |:0/. I'(«) (_0/ r(p) v(s)ds — Ax(u)) du:|

A Cab)) [ (n— i (u—s)f! B
(1 —n)n* U F(a) (0 r(8) v(s)ds Ax(u)) du:| .

0

vp(s)ds — Ax(u)) du

Hence, u € N(x).
Next we show that there exists ¥ < 1 such that

Hi(N(x), N(x)) < yllx—Xll, foreach x,xe C([0,1] R).

Let x,Xx € C(]0,1], R) and &, € N(x). Then there exists v,(¢) € F (¢ x(¢)) such that,
for each t e [0, 1],

Lo et f B (Bl
hi(t) = / (t F(uog) ( / (uF(Sﬁ)) yl(s)ds—kx(u)) du
0 0
ﬂ(n—t){l(l—u)“‘l(”(u—s)‘“v ) }
+ 1(s)ds — Ax(u) | du
(1-n) J () ) r'(B)

-0 [ fo-w (fu-g
R U M) (f ) ul(s)ds—xx(u))du}

0
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By (H-), we have

Hy(F(t, x), F(t, x)) < m(t)|x(t) — x(t)].
So, there exists w € F(t,%(t)) such that

lvi(t) —w| < m(t)|x(t) —x(¢)], te][0, 1].
Define U :[0,1] = P (R) by

U(e) = {weR: v (t) —wl < m(t)lx(t) — (1)1}

Since the multivalued operator U(t) NF(t, x(t)) is measurable ([[57], Proposition
I11.4])), there exists a function v,(¢) which is a measurable selection for V. So
v2(t) € F(t, %(t)) and for each t € [0, 1], we have |v1(t) — v2(t)| < m(t)|x(¢) — X(¢)|.

For each t € [0, 1], let us define

_ a—1 B—1
ha(t) = (@ 5 (u‘j) ( / (u r(sﬂ)) vy (s)ds — )»J'C(u)) du
L= | fa-w [ (u—s) ds — Ax(u) | d
(1—n) / IN (" J r'(B) vy (s)ds — Ax(u) | du
n u
B (1 —1¢) (n— (u_s)ﬂfl L
(1 —n)n* Lf r(a) (Of r(8) va(s)ds Ax(u)) du:|.

Thus,

1 () — ha(1)]

a 1 -1
/ (t— F(a) (/ (ur(ﬁ)) vy () — v2(5)Ids + || |x(w) —5c(u)|) du

_ a1 [ f o -1
t"‘(’? t) [/(lr(z;) (O/ (ur(sg) |u1(s)—uz(s)|ds|+x||x(u)—5c(u)|)du}

(T—mn)
1 a—1 " -1
L - (o "o '"1(5)_"2(5)"15””’6(”)_&(11)) du]

+‘ (1 —1)
(1 =n)n*

Hence,

|21
(o +

lmllo

lh —halle < [F(a+,3+1)

(1 +A()70Hl +r]“‘))+ 1 (1 +A(1 +r;°”1))i| lx — Xl o

Analogously, interchanging the roles of x and x, we obtain

< [F(a”’:l'l';i 1 (1+AM™" +17)) + r(ﬂ N (1+A(1+ n‘”l))} 1% — Xll o
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Since N is a contraction, it follows by Lemma 11.2.4 that N has a fixed point x which
is a solution of (1.1). This completes the proof. O
Example 3.1 Consider the problem

CD3/2 (CD1/2 + ;) x(t) IS F(t, x(t)), O<t< ].,
1 (3.3)
x(0) =0, x(s) =0, x(1)=0,

where F : [0,1] x R = P (R) is a multivalued map given by

1 x° 1 1 1
x — F(t, x) = + (t+1), sinx+ (t+1)].
(6 %) [4x5+3 8( ) 4 4( )}
For fe F, we have
foema [ F 2 aan, Veinee Y] <2
max , sInx < .
= axs 43 gl T S U 4

Thus,
IE(t, %)|p = supllyl = y € F(t, x)} < p()¥ (Ixl), xR,

with p(t) = 1, y(||x||..) = 3/4. Further, using the condition

[C(a+1) = [A|(1+A(1 + )T (@ + B+ 1)|Ixll oo
[+ [T +An* +08)]|p] ¥ (1xllo0)

’

we find that

M > M; ~ 1.255966.

Clearly, all the conditions of Theorem 3.1 are satisfied. So there exists at least one
solution of the problem (3.3) on [0, 1].
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