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Abstract
In this paper, the existence of solutions for differential inclusions of fractional order
q ∈ (1, 2] with nonlocal strip conditions is investigated. Our study includes two cases:
(i) the multivalued map involved in the problem is not necessarily convex valued, (ii)
the multivalued map consists of non-convex values. We combine the nonlinear
alternative of Leray-Schauder type coupled with the selection theorem of Bressan
and Colombo to establish the first result, while the second result relies on Wegrzyk’s
fixed point theorem for generalized contractions.
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1 Introduction
Nonlocal nonlinear boundary value problems of fractional differential equations and in-
clusions have received considerable attention, and a great deal of work concerning a vari-
ety of boundary conditions can be found in the recent literature on the topic. It has been
due to the extensive applications of fractional calculus in numerous branches of physics,
economics and technical sciences [–]. Fractional-order differential operators are found
to be effective and realistic mathematical tools for the description of memory and hered-
itary properties of various materials and processes. For examples and details, we refer the
reader to a series of papers [–] and the references therein.
In this paper, we discuss the existence of solutions for a boundary value problem of

differential inclusions of fractional order with nonlocal strip conditions given by

{
cDqx(t) ∈ F(t,x(t)),  < t < ,  < q ≤ ,
x() = , αx() + βx′() = η

∫ τ

ν
x(s)ds,  < ν < τ <  (ν �= τ ),

(.)

where cDq denotes the Caputo fractional derivative of order q, F : [, ] × R → P(R) is a
multivalued map, P(R) is a family of all nonempty subsets of R, and α,β ,η ∈ R satisfy the
relation η �= (α + β)/(τ  – ν).
The present work is motivated by a recent paper [] where the author studied problem

(.) with F(t,x(t)) as a single-valuedmapping.We establish our existence results bymeans
of the nonlinear alternative of Leray-Schauder type, the selection theorem of Bressan and
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Colombo for lower semi-continuousmaps with decomposable values andWegrzyk’s fixed
point theorem for generalized contraction maps.

2 Preliminaries
In this section, we present some basic concepts of multivalued maps and fixed point the-
orems needed in the sequel.
Let Y denote a normed space with the norm | · |. A multivalued map G : Y → P(Y ) is

convex (closed) valued if G(u) is convex (closed) for all u ∈ Y . G is bounded on bounded
sets if G(B) =

⋃
u∈B G(u) is bounded in Y for all bounded sets B in Y (i.e., supu∈B{|v| : v ∈

G(u)} <∞). G is called upper semi-continuous (u.s.c.) on Y if for each u ∈ Y , the set G(u)
is a nonempty closed subset of Y , and if for each open set N of Y containing G(u), there
exists an open neighborhood N of u such that G(N) ⊆ N . G is said to be completely
continuous if G(B) is relatively compact for every bounded set B in Y . If the multivalued
map G is completely continuous with nonempty compact values, then G is u.s.c. if and
only if G has a closed graph (i.e., un −→ u*, vn −→ v*, vn ∈ G(un) imply v* ∈ G(u*)). G has
a fixed point if there is u ∈ Y such that u ∈ G(u). The fixed point set of the multivalued
operator G will be denoted by FixG .
For more details on multivalued maps, see [–].
Let C([, ],R) denote the Banach space of all continuous functions from [, ] into R

with the norm ‖u‖ = sup{|u(t)| : t ∈ [, ]}. Let L([, ],R) be the Banach space of measur-
able functions u : [, ] −→R which are Lebesgue integrable and normed by

‖u‖L =
∫ 



∣∣u(t)∣∣dt for all u ∈ L
(
[, ],R

)
.

Let E be a Banach space, X be a nonempty closed subset of E and let G : X →P(E) be a
multivalued operator with nonempty closed values. G is lower semi-continuous (l.s.c.) if
the set {x ∈ X :G(x)∩B �= ∅} is open for any open set B in E. Let A be a subset of [, ]×R.
A is L ⊗ B measurable if A belongs to the σ -algebra generated by all sets of the form
J ×D, where J is Lebesgue measurable in [, ] andD is Borel measurable inR. A subset
A of L([, ],R) is decomposable if for all u, v ∈ A and J ⊂ [, ] measurable, the function
uχJ + vχ[,]\J ∈ A, where χJ stands for the characteristic function of J .

Definition . If F : [, ] × R → P(R) is a multivalued map with compact values and
x(·) ∈ C([, ],R), then F(·, ·) is of lower semi-continuous type if

SF ,x =
{
w ∈ L

(
[, ],R

)
: w(t) ∈ F

(
t,x(t)

)
for a.e. t ∈ [, ]

}

is lower semi-continuous with closed and decomposable values.

Let (X,d) be a metric space associated with the metric d. The Pompeiu-Hausdorff dis-
tance of the closed subsets A,B ⊂ X is defined by

dPH(A,B) =max
{
d*(A,B),d*(B,A)

}
, d*(A,B) = sup

{
d(a,B) : a ∈ A

}
,

where d(x,B) = infy∈B d(x, y) [].
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Definition . [] A function l :R+ → R+ is said to be a strict comparison function if it
is continuous, strictly increasing and

∑∞
n= ln(t) < ∞ for each t > .

Definition . A multivalued operator N on X with nonempty values in X is called
(a) γ -Lipschitz if and only if there exists γ >  such that

dPH
(
N(x),N(y)

) ≤ γd(x, y) for each x, y ∈ X;

(b) a contraction if and only if it is γ -Lipschitz with γ < ;
(c) a generalized contraction if and only if there is a strict comparison function

l :R+ →R+ such that

dPH
(
N(x),N(y)

) ≤ l
(
d(x, y)

)
for each x, y ∈ X.

The following lemmas will be used in the sequel.

Lemma . [] Let Y be a separable metric space and let N : Y → P(L([, ],R)) be
a lower semi-continuous multivalued map with closed decomposable values. Then N(·)
has a continuous selection; i.e., there exists a continuous mapping (single-valued) g : Y →
L([, ],R) such that g(y) ∈N(y) for every y ∈ Y .

Lemma . (Wegrzyk’s fixed point theorem []) Let (X,d) be a complete metric space. If
N : X →P(X) is a generalized contraction with nonempty closed values, then FixN �= ∅.

Lemma. (Covitz andNadler’s fixed point theorem []) Let (X,d) be a completemetric
space. If N : X → P(X) is a multivalued contraction with nonempty closed values, then N
has a fixed point z ∈ X such that z ∈ N(z), i.e., FixN �= ∅.

In order to define the solution of (.), we consider the following lemma whose proof is
given in [].

Lemma . For h ∈ C([, ],R), the unique solution of the following problem:

{
cDqx(t) = h(t),  < t < ,  < q ≤ ,
x() = , αx() + βx′() = η

∫ τ

ν
x(s)ds,  < ν < τ <  (ν �= τ ),

(.)

is given by

x(t) =



(q)

∫ t


(t – s)q–h(s)ds – δt

[
α

∫ 



( – s)q–


(q)
h(s)ds

+ β

∫ 



( – s)q–


(q – )
h(s)ds – η

∫ τ

ν

(∫ s



(s –m)q–


(q)
h(m)dm

)
ds

]
, (.)

where

δ =


(α + β) – η(τ  – ν)
. (.)
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Definition . A function x ∈ AC([, ]) is a solution of problem (.) if there exists a
function f ∈ L([, ],R) such that f (t) ∈ F(t,x(t)) a.e. on [, ] and

x(t) =



(q)

∫ t


(t – s)q–f (s)ds – δt

[
α

∫ 



( – s)q–


(q)
f (s)ds

+ β

∫ 



( – s)q–


(q – )
f (s)ds – η

∫ τ

ν

(∫ s



(s –m)q–


(q)
f (m)dm

)
ds

]
.

3 Existence of solutions
In the sequel, we set

θ =



(q + )

(
 +

|δ|[(|α| + q|β|)(q + ) + |η(τ q+ – νq+)|]
(q + )

)
, (.)

where δ is given by (.).
Our first result deals with the case when F is not necessarily convex valued.We establish

this result by means of the nonlinear alternative of Leray-Schauder type together with the
selection theorem of Bressan and Colombo [] for lower semi-continuous maps with
decomposable values.

Theorem . Assume that

(A) there exists a continuous nondecreasing function ψ : [,∞) → (,∞) and a positive
continuous function p such that

∥∥F(t,x)∥∥ := sup
{|y| : y ∈ F(t,x)

} ≤ p(t)ψ
(‖x‖) for each (t,x) ∈ [, ]×R;

(A) there exists a numberM >  such that

M
θψ(M)‖p‖ > ,

where θ is given by (.);
(A) F : [, ]×R→P(R) is a nonempty compact-valued multivalued map such that

(a) (t,x) �−→ F(t,x) is L⊗ B measurable,
(b) x �−→ F(t,x) is lower semicontinuous for each t ∈ [, ].

Then boundary value problem (.) has at least one solution on [, ].

Proof By the conditions (A) and (A), it follows that F is of l.s.c. type. Then from
Lemma ., there exists a continuous function f : C([, ],R) → L([, ],R) such that
f (x) ∈ SF ,x for all x ∈ C([, ],R).
Let us consider the problem

{
cDqx(t) = f (x)(t), t ∈ [, ],  < q ≤ ,
x() = , αx() + βx′() = η

∫ τ

ν
x(s)ds,  < ν < τ <  (ν �= τ ).

(.)

Note that if x ∈ C([, ],R) is a solution of (.), then x is a solution to problem (.).
In order to transform problem (.) into a fixed point problem, we define the operator
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H : C([, ],R)→ C([, ],R)

H(x)(t) =



(q)

∫ t


(t – s)q–f (x)(s)ds – δt

[
α

∫ 



( – s)q–


(q)
f (x)(s)ds

+ β

∫ 



( – s)q–


(q – )
f (x)(s)ds – η

∫ τ

ν

(∫ s



(s –m)q–


(q)
f (x)(m)dm

)
ds

]
.

The proof consists of several steps.
(i)H is continuous. Let {yn} be a sequence such that yn → y in C([, ],R). Then

∣∣H(yn)(t) –H(y)(t)
∣∣ = ∣∣∣∣ 


(q)

∫ t


(t – s)q–

[
f (yn)(s) – f (y)(s)

]
ds

– δt
[
α

∫ 



( – s)q–


(q)
[
f (yn)(s) – f (y)(s)

]
ds

+ β

∫ 



( – s)q–


(q – )
[
f (yn)(s) – f (y)(s)

]
ds

– η

∫ τ

ν

(∫ s



(s –m)q–


(q)
[
f (yn)(m) – f (y)(m)

]
dm

)
ds

]∣∣∣∣
≤ 


(q)

∫ t


(t – s)q–

∣∣f (yn)(s) – f (y)(s)
∣∣ds

+ |δ|t
[
|α|

∫ 



( – s)q–


(q)
∣∣f (yn)(s) – f (y)(s)

∣∣ds
+ |β|

∫ 



( – s)q–


(q – )
∣∣f (yn)(s) – f (y)(s)

∣∣ds
+ |η|

∫ τ

ν

(∫ s



(s –m)q–


(q)
∣∣f (yn)(m) – f (y)(m)

∣∣dm)
ds

]
.

Hence

∥∥H(yn) –H(y)
∥∥ = sup

t∈[,]

∣∣H(yn)(t) –H(y)(t)
∣∣ →  as n→ ∞.

ThusH is continuous.
(ii) H maps bounded sets into bounded sets in C([, ],R). Indeed, it is enough to show

that there exists a positive constant ν such that, for each x ∈ Br = {x ∈ C([, ],R) : ‖x‖ ≤
r}, we have ‖H(x)‖ ≤ ν. From (A) we have

∣∣H(x)(t)
∣∣

≤ 

(q)

∫ t


(t – s)q–p(s)ψ

(‖x‖)ds + |δ|t
[
|α|

∫ 



( – s)q–


(q)
p(s)ψ

(‖x‖)ds
+ |β|

∫ 



( – s)q–


(q – )
p(s)ψ

(‖x‖)ds + |η|
∫ τ

ν

(∫ s



(s –m)q–


(q)
p(m)ψ

(‖x‖)dm)
ds

]

≤ 

(q + )

(
 +

|δ|[(|α| + q|β|)(q + ) + |η(τ q+ – νq+)|]
(q + )

)
‖p‖ψ(‖x‖).
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Taking norm and using (.), we get

∥∥H(x)
∥∥ ≤ θ‖p‖ψ(r) := ν.

(iii)Hmaps bounded sets into equicontinuous sets in C([, ],R). Let t, t ∈ [, ], t < t
and Br be a bounded set in C([, ],R). Then

∣∣H(x)(t) –H(x)(t)
∣∣

≤
∣∣∣∣
∫ t



(t – s)q– – (t – s)q–


(q)
p(s)ψ

(‖x‖)ds∣∣∣∣ +
∣∣∣∣
∫ t

t

(t – s)q–


(q)
p(s)ψ

(‖x‖)ds∣∣∣∣
+ |δ||t – t|

[
|α|

∫ 



( – s)q–


(q)
p(s)ψ

(‖x‖)ds
+ |β|

∫ 



( – s)q–


(q – )
p(s)ψ

(‖x‖)ds + |η|
∫ τ

ν

(∫ s



(s –m)q–


(q)
p(m)ψ(‖x‖)dm

)
ds

]
.

As t → t, the right-hand side of the above inequality tends to zero independently of x ∈
Br . Therefore it follows by the Arzelá-Ascoli theorem thatH : C([, ],R)→ C([, ],R) is
completely continuous.
(iv) Finally, we discuss a priori bounds on solutions. Let x be a solution of (.). In view

of (A), for each t ∈ [, ], we obtain

∣∣x(t)∣∣ ≤ 

(q)

∫ t


(t – s)q–p(s)ψ

(‖x‖)ds + |δ|t
[
|α|

∫ 



( – s)q–


(q)
p(s)ψ

(‖x‖)ds
+ |β|

∫ 



( – s)q–


(q – )
p(s)ψ

(‖x‖)ds
+ |η|

∫ τ

ν

(∫ s



(s –m)q–


(q)
p(m)ψ

(‖x‖)dm)
ds

]

≤ 

(q + )

(
 +

|δ|[(|α| + q|β|)(q + ) + |η(τ q+ – νq+)|]
(q + )

)
‖p‖ψ(‖x‖),

which, on taking norm and using (.), yields

‖x‖
θ‖p‖ψ(‖x‖) ≤ .

In view of (A), there existsM such that ‖x‖ �=M. Let us set

U =
{
x ∈ C

(
[, ],R

)
: ‖x‖ <M

}
.

Note that the operatorH :U → C([, ],R) is upper semicontinuous and completely con-
tinuous. From the choice of U , there is no x ∈ ∂U such that x = μH(x) for some μ ∈ (, ).
Consequently, by the nonlinear alternative of Leray-Schauder type [], we deduce thatH
has a fixed point x ∈U , which is a solution of problem (.). Consequently, it is a solution
to problem (.). This completes the proof. �

Next, we show the existence of solutions for problem (.) with a non-convex valued
right-hand side by applying Lemma . due to Wegrzyk.
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Theorem . Suppose that

(A) F : [, ] × R −→ P(R) has nonempty compact values and F(·,u) is measurable for
each u ∈ R;

(A) dPH(F(t,x),F(t,x)) ≤ k(t)�(|x – x|) for almost all t ∈ [, ] and x,x ∈ R with k ∈
C([, ],R+) and dPH(,F(t, )) ≤ k(t) for almost all t ∈ [, ], where � : R+ → R+ is
strictly increasing.

Then BVP (.) has at least one solution on [, ] if γ � : R+ → R+ is a strict comparison
function, where γ = θ‖k‖ (θ is given by (.)).

Proof Suppose that γ � : R+ → R+ is a strict comparison function. Observe that by the
assumptions (A) and (A), F(·,x(·)) is measurable and has a measurable selection v(·)
(see Theorem III. []). Also, k ∈ C([, ],R+) and

∣∣v(t)∣∣ ≤ dPH
(
,F(t, )

)
+ dPH

(
F(t, ),F

(
t,x(t)

))
≤ k(t) + k(t)�

(∣∣x(t)∣∣)
≤ (

 + �
(‖x‖))k(t).

Thus the set SF ,x is nonempty for each x ∈ C([, ],R).
Transform problem (.) into a fixed point problem. Consider the operator H : C([, ],

R) →P(C([, ],R)) defined by

H(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

y ∈ C([, ],R) :

y(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩



(q)

∫ t
 (t – s)q–f (s)ds

– δt[α
∫ 


(–s)q–

(q) f (s)ds

+ β
∫ 


(–s)q–

(q–) f (s)ds

– η
∫ τ

ν
(
∫ s


(s–m)q–

(q) f (m)dm)ds],

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

for f ∈ SF ,x.We shall show that themapH satisfies the assumptions of Lemma .. To show
that the map H(x) is closed for each x ∈ C([, ],R), let (xn)n≥ ∈ H(x) such that xn −→ x̃
in C([, ],R). Then x̃ ∈ C([, ],R) and there exists yn ∈ SF ,xn such that, for each t ∈ [, ],

xn(t) =



(q)

∫ t


(t – s)q–yn(s)ds – δt

[
α

∫ 



( – s)q–


(q)
yn(s)ds

+ β

∫ 



( – s)q–


(q – )
yn(s)ds – η

∫ τ

ν

(∫ s



(s –m)q–


(q)
yn(m)dm

)
ds

]
.

As F has compact values, we pass onto a subsequence to obtain that yn converges to y
in L([, ],R). Thus, y ∈ SF ,x and for each t ∈ [, ],

xn(t)−→ x̃(t)

=



(q)

∫ t


(t – s)q–y(s)ds – δt

[
α

∫ 



( – s)q–


(q)
y(s)ds

+ β

∫ 



( – s)q–


(q – )
y(s)ds – η

∫ τ

ν

(∫ s



(s –m)q–


(q)
y(m)dm

)
ds

]
.
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So, x̃ ∈H(x) and henceH(x) is closed.
Next, we show that

dPH
(
H(x),H(x)

) ≤ γ �
(‖x – x‖) for each x,x ∈ C

(
[, ],R

)
.

Let x,x ∈ C([, ],R) and h ∈ H(x). Then there exists y(t) ∈ F(t,x(t)) such that for each
t ∈ [, ],

h(t) =



(q)

∫ t


(t – s)q–y(s)ds – δt

[
α

∫ 



( – s)q–


(q)
y(s)ds

+ β

∫ 



( – s)q–


(q – )
y(s)ds – η

∫ τ

ν

(∫ s



(s –m)q–


(q)
y(m)dm

)
ds

]
.

From (A) it follows that

dPH
(
F
(
t,x(t)

)
,F

(
t,x(t)

)) ≤ k(t)�
(∣∣x(t) – x(t)

∣∣).
So, there exists w ∈ F(t,x(t)) such that

∣∣y(t) –w
∣∣ ≤ k(t)�

(∣∣x(t) – x(t)
∣∣), t ∈ [, ].

Define U : [, ]→P(R) as

U(t) =
{
w ∈R :

∣∣y(t) –w
∣∣ ≤ k(t)�

(∣∣x(t) – x(t)
∣∣)}.

Since the multivalued operator U(t) ∩ F(t,x(t)) is measurable (see Proposition III. in
[]), there exists a function y(t) which is a measurable selection for U(t) ∩ F(t,x(t)).
So, y(t) ∈ F(t,x(t)), and for each t ∈ [, ],

∣∣y(t) – y(t)
∣∣ ≤ k(t)�

(∣∣x(t) – x(t)
∣∣).

For each t ∈ [, ], let us define

h(t) =



(q)

∫ t


(t – s)q–y(s)ds – δt

[
α

∫ 



( – s)q–


(q)
y(s)ds

+ β

∫ 



( – s)q–


(q – )
y(s)ds – η

∫ τ

ν

(∫ s



(s –m)q–


(q)
y(m)dm

)
ds

]
.

Then

∣∣h(t) – h(t)
∣∣ ≤ 


(q)

∫ t


(t – s)q–

∣∣y(s) – y(s)
∣∣ds

+ |δ|t
[
|α|

∫ 



( – s)q–


(q)
∣∣y(s) – y(s)

∣∣ds
+ |β|

∫ 



( – s)q–


(q – )
∣∣y(s) – y(s)

∣∣ds

http://www.advancesindifferenceequations.com/content/2013/1/181
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+ |η|
∫ τ

ν

(∫ s



(s –m)q–


(q)
∣∣y(m) – y(m)

∣∣dm)
ds

]

≤ θ‖k‖�(‖x – x‖).
Thus

‖h – h‖ ≤ θ‖k‖�(‖x – x‖) = γ �
(‖x – x‖).

By an analogous argument, interchanging the roles of x and x, we obtain

dPH
(
H(x),H(x)

) ≤ θ‖k‖�(‖x – x‖) = γ �
(‖x – x‖)

for each x,x ∈ C([, ],R). So, H is a generalized contraction and thus, by Lemma ., H
has a fixed point x which is a solution to (.). This completes the proof. �

Remark . It is important to note that the condition (A) reduces to

dPH
(
F(t,x),F(t,x)

) ≤ k(t)|x – x|

for �(t) = t, where a contraction principle for a multivalued map due to Covitz and Nadler
[] (Lemma .) is applicable under the condition θ‖k‖ < . Thus, our result dealing with
a non-convex valued right-hand side of (.) is more general. Furthermore, Theorem .
holds for several values of the function �.
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