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Abstract
This paper is concerned with a single-species system with feedback control on time
scales. Based on the theory of calculus on time scales, by using the properties of
almost periodic functions and constructing a suitable Lyapunov functional, sufficient
conditions which guarantee the existence of a unique globally attractive positive
almost periodic solution of the system are obtained. Finally, an example and
numerical simulations are presented to illustrate the feasibility and effectiveness of
the results.
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1 Introduction
In the past few years, different types of ecosystems with periodic coefficients have been
studied extensively; see, for example, [–] and the references therein. However, if the var-
ious constituent components of the temporally nonuniform environment are with incom-
mensurable (nonintegral multiples) periods, then one has to consider the environment to
be almost periodic since there is no a priori reason to expect the existence of periodic
solutions. Therefore, if we consider the effects of the environmental factors (e.g., seasonal
effects of weather, food supplies, mating habits and harvesting), the assumption of almost
periodicity is more realistic, more important and more general. Almost periodicity of dif-
ferent types of ecosystems has received more recently researchers’ special attention; see
[–] and the references therein.
However, in the natural world, there are many species whose developing processes are

both continuous and discrete. Hence, using the only differential equation or difference
equation cannot accurately describe the law of their development; see, for example, [,
]. Therefore, there is a need to establish correspondent dynamic models on new time
scales.
To the best of the authors’ knowledge, there are few papers published on the existence

of an almost periodic solution of ecosystems on time scales.
Motivated by the above, in the present paper, we shall study an almost periodic single-

species system with feedback control on time scales as follows:

{
x�(t) = r(t)x(t)[ – x(t)

a(t)+d(t)x(t) – b(t)x(σ (t)) – c(t)y(t)],
y�(t) = –η(t)y(t) + g(t)x(t),

(.)
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where t ∈ T, T is an almost time scale. All the coefficients r(t), a(t), b(t), c(t), d(t), η(t), g(t)
are continuous, almost periodic functions.
For convenience, we introduce the notation

f u = sup
t∈T

f (t), f l = inf
t∈T

f (t),

where f is a positive and bounded function. Throughout this paper, we assume that the
coefficients of almost periodic system (.) satisfy

min
{
rl,al,bl, cl,dl,ηl, gl

}
> , max

{
ru,au,bu, cu,du,ηu, gu

}
< +∞.

The initial condition of system (.) is in the form

x(t) = x, y(t) = y, t ∈ T,x > , y > . (.)

The aim of this paper is, by using the properties of almost periodic functions and con-
structing a suitable Lyapunov functional, to obtain sufficient conditions for the existence
of a unique globally attractive positive almost periodic solution of system (.).
In this paper, the time scale T considered is unbounded above, and for each interval I of

T, we denote IT = I∩T.

2 Preliminaries
Let T be a nonempty closed subset (time scale) of R. The forward and backward jump
operators σ ,ρ : T→ T and the graininess μ : T →R

+ are defined, respectively, by

σ (t) = inf{s ∈ T : s > t}, ρ(t) = sup{s ∈ T : s < t}, μ(t) = σ (t) – t.

A point t ∈ T is called left-dense if t > infT and ρ(t) = t, left-scattered if ρ(t) < t, right-
dense if t < supT and σ (t) = t, and right-scattered if σ (t) > t. If T has a left-scattered max-
imumm, then T

k = T\{m}; otherwise Tk = T. If T has a right-scattered minimumm, then
Tk = T\{m}; otherwise Tk = T.
A function f : T →R is right-dense continuous provided it is continuous at a right-dense

point in T and its left-side limits exist at left-dense points in T. If f is continuous at each
right-dense point and each left-dense point, then f is said to be a continuous function
on T.
For the basic theories of calculus on time scales, one can see [].
A function p : T→R is called regressive provided  +μ(t)p(t) �=  for all t ∈ T

k . The set
of all regressive and rd-continuous functions p : T → R will be denoted by R =R(T,R).
Define the setR+ =R+(T,R) = {p ∈R :  +μ(t)p(t) > ,∀t ∈ T}.
If r is a regressive function, then the generalized exponential function er is defined by

er(t, s) = exp

{∫ t

s
ξμ(τ )

(
r(τ )

)
�τ

}
for all s, t ∈ T, with the cylinder transformation

ξh(z) =

{
Log(+hz)

h if h �= ,
z if h = .
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Let p,q : T→R be two regressive functions, define

p⊕ q = p + q +μpq, 	p = –
p

 +μp
, p	 q = p⊕ (	q).

Lemma . (see []) If p,q : T →R are two regressive functions, then
(i) e(t, s)≡  and ep(t, t)≡ ;
(ii) ep(σ (t), s) = ( +μ(t)p(t))ep(t, s);
(iii) ep(t, s) = 

ep(s,t) = e	p(s, t);
(iv) ep(t, s)ep(s, r) = ep(t, r);
(v) ep(t,s)

eq(t,s) = ep	q(t, s);
(vi) (ep(t, s))� = p(t)ep(t, s).

Lemma . (see []) Assume that a > , b >  and –a ∈R+. Then

y�(t) ≥ (≤)b – ay(t), y(t) > , t ∈ [t,∞)T

implies

y(t) ≥ (≤)
b
a

[
 +

(
ay(t)
b

– 
)
e(–a)(t, t)

]
, t ∈ [t,∞)T .

Lemma . (see []) Assume that a > , b > . Then

y�(t) ≤ (≥) y(t)
(
b – ay

(
σ (t)

))
, y(t) > , t ∈ [t,∞)T

implies

y(t) ≤ (≥)
b
a

[
 +

(
b

ay(t)
– 

)
e	b(t, t)

]
, t ∈ [t,∞)T .

Let T be a time scale with at least two positive points, one of them being always one:
 ∈ T. There exists at least one point t ∈ T such that  < t �= . Define the natural logarithm
function on the time scale T by

LT(t) =
∫ t




τ

�τ , t ∈ T∩ (, +∞).

Lemma . (see []) Assume that x : T→ R
+ is strictly increasing and T̃ := x(T) is a time

scale. If x�(t) exists for t ∈ T
k , then

�

�t
LT

(
x(t)

)
=
x�(t)
x(t)

.

Lemma. (see []) Assume that f , g : T→R are differentiable at t ∈ T
k , then fg : T →R

is differentiable at t with

(fg)�(t) = f �(t)g(t) + f
(
σ (t)

)
g�(t) = f (t)g�(t) + f �(t)g

(
σ (t)

)
.
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Definition . (see []) A time scale T is called an almost periodic time scale if

� = {τ ∈R : t ± τ ∈ T,∀t ∈ T}.

Definition . (see []) Let T be an almost periodic time scale. A function f : T → R is
called an almost periodic function if the ε-translation set of f

E{ε, f } = {
τ ∈ � :

∣∣f (t + τ ) – f (t)
∣∣ < ε,∀t ∈ T

}
is a relatively dense set in T for all ε > ; that is, for any given ε > , there exists a constant
l(ε) >  such that in any interval of length l(ε), there exists at least a τ ∈ E{ε, f } such that

∣∣f (t + τ ) – f (t)
∣∣ < ε, ∀t ∈ T.

τ is called the ε-translation number of f , and l(ε) is called the inclusion length of E{ε, f }.

For relevant definitions and the properties of almost periodic functions, see [–].
Similar to the proof of Corollary . in [], we can get the following lemma.

Lemma . Let T be an almost periodic time scale. If f (t), g(t) are almost periodic func-
tions, then, for any ε > , E{ε, f }∩E{ε, g} is a nonempty relatively dense set in T; that is, for
any given ε > , there exists a constant l(ε) >  such that in any interval of length l(ε), there
exists at least a τ ∈ E{ε, f } ∩ E{ε, g} such that

∣∣f (t + τ ) – f (t)
∣∣ < ε,

∣∣g(t + τ ) – g(t)
∣∣ < ε, ∀t ∈ T.

Remark . Lemma . is a special case of Theorem . in [].

3 Main results
Assume that the coefficients of (.) satisfy

(H)  – M
al – cuM > .

Lemma . Let (x(t), y(t)) be any positive solution of system (.) with initial condition
(.). If (H) holds, then system (.) is permanent, that is, any positive solution (x(t), y(t))
of system (.) satisfies

m ≤ lim inf
t→+∞ x(t)≤ lim sup

t→+∞
x(t)≤ M, (.)

m ≤ lim inf
t→+∞ y(t) ≤ lim sup

t→+∞
y(t) ≤ M, (.)

especially if m ≤ x ≤ M,m ≤ y ≤ M, then

m ≤ x(t)≤ M, m ≤ y(t) ≤ M, t ∈ [t, +∞)T ,

where

M =

bl
, M =

guM

ηl , m =
 – M

al – cuM

bu
, m =

glm

ηu .
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Proof Assume that (x(t), y(t)) is any positive solution of system (.) with initial condition
(.). From the first equation of system (.), we have

x�(t) ≤ rux(t)
(
 – blx

(
σ (t)

))
. (.)

By Lemma ., we can get

lim sup
t→+∞

x(t)≤ 
bl

:=M.

Then, for an arbitrarily small positive constant ε > , there exists a T >  such that

x(t) <M + ε, ∀t ∈ [T, +∞]T.

From the second equation of system (.), when t ∈ [T, +∞)T,

y�(t) < –ηly(t) + gu(M + ε).

Let ε → , then

y�(t) ≤ –ηly(t) + guM. (.)

By Lemma ., we can get

lim sup
t→+∞

y(t) =
guM

ηl :=M.

Then, for an arbitrarily small positive constant ε > , there exists a T > T such that

y(t) <M + ε, ∀t ∈ [T, +∞]T.

On the other hand, from the first equation of system (.), when t ∈ [T, +∞)T,

x�(t) > rlx(t)
[
 –

M + ε

al
– bux

(
σ (t)

)
– cu(M + ε)

]
.

Let ε → , then

x�(t) ≥ rlx(t)
[
 –

M

al
– bux

(
σ (t)

)
– cuM

]
. (.)

By Lemma ., we can get

lim inf
t→+∞ x(t) =

 – M
al – cuM

bu
:=m.

Then, for an arbitrarily small positive constant ε > , there exists a T > T such that

x(t) >m – ε, ∀t ∈ [T, +∞]T.
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From the second equation of system (.), when t ∈ [T, +∞)T,

y�(t) > –ηuy(t) + gl(m – ε).

Let ε → , then

y�(t) ≥ –ηuy(t) + glm. (.)

By Lemma ., we can get

lim inf
t→+∞ y(t) =

glm

ηu :=m.

Then, for arbitrarily small positive constant ε > , there exists a T > T such that

y(t) >m – ε, ∀t ∈ [T, +∞]T.

In special case, ifm ≤ x ≤ M,m ≤ y ≤ M, by Lemma . and Lemma ., it follows
from (.)-(.) that

m ≤ x(t)≤ M, m ≤ y(t) ≤ M, t ∈ [t, +∞)T ,

This completes the proof. �

Let S(T) be a set of all solutions (x(t), y(t)) of system (.) satisfying m ≤ x(t) ≤ M,
m ≤ y(t) ≤ M for all t ∈ T.

Lemma . S(T) �= ∅.

Proof By Lemma ., we see that for any t ∈ T withm ≤ x ≤ M,m ≤ y ≤ M, system
(.) has a solution (x(t), y(t)) satisfying m ≤ x(t) ≤ M, m ≤ y(t) ≤ M, t ∈ [t, +∞)T.
Since r(t), a(t), b(t), c(t), d(t), η(t), g(t), σ (t) are almost periodic, it follows fromLemma .
that there exists a sequence {tn}, tn → +∞ as n → +∞ such that r(t+ tn) → r(t), a(t+ tn) →
a(t), b(t + tn) → b(t), c(t + tn) → c(t), d(t + tn) → d(t), η(t + tn) → η(t), g(t + tn) → g(t),
σ (t + tn) → σ (t) as n→ +∞ uniformly on T.
We claim that {x(t + tn)} and {y(t + tn)} are uniformly bounded and equi-continuous on

any bounded interval in T.
In fact, for any bounded interval [α,β]T ⊂ T, when n is large enough, α + tn > t, then

t + tn > t, ∀t ∈ [α,β]T. So,m ≤ x(t + tn)≤ M,m ≤ y(t + tn)≤ M for any t ∈ [α,β]T, that
is, {x(t + tn)} and {y(t + tn)} are uniformly bounded. On the other hand, ∀t, t ∈ [α,β]T,
from the mean value theorem of differential calculus on time scales, we have

∣∣x(t + tn) – x(t + tn)
∣∣ ≤ ruM

(
 +

M

al
+ buM + cuM

)
|t – t|, (.)∣∣y(t + tn) – y(t + tn)

∣∣ ≤ (
ηuM + guM

)|t – t|. (.)

Inequalities (.) and (.) show that {x(t + tn)} and {y(t + tn)} are equi-continuous on
[α,β]T. By the arbitrariness of [α,β]T, the conclusion is valid.
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By the Ascoli-Arzela theorem, there exists a subsequence of {tn}, we still denote it as
{tn}, such that

x(t + tn) → p(t), y(t + tn)→ q(t),

as n → +∞ uniformly in t on any bounded interval in T. For any θ ∈ T, we can assume
that tn + θ ≥ t for all n. Let t ≥ , integrating both equations of system (.) from tn + θ to
t + tn + θ , we have

x(t + tn + θ ) – x(tn + θ )

=
∫ t+tn+θ

tn+θ

r(s)x(s)
(
 –

x(s)
a(s) + d(s)x(s)

– b(s)x
(
σ (s)

)
– c(s)y(s)

)
�s

=
∫ t+θ

θ

r(s + tn)x(s + tn)
(
 –

x(s + tn)
a(s + tn) + d(t + tn)x(s + tn)

– b(s + tn)x
(
σ (s + tn)

)
– c(s + tn)y(s + tn)

)
�s,

and

y(t + tn + θ ) – y(tn + θ )

=
∫ t+tn+θ

tn+θ

[
–η(s)y(s) + g(s)x(s)

]
�s

=
∫ t+θ

θ

[
–η(s + tn)y(s + tn) + g(s + tn)x(s + tn)

]
�s.

Using the Lebesgue dominated convergence theorem, we have

p(t + θ ) – p(θ ) =
∫ t+θ

θ

r(s)x(s)
(
 –

x(s)
a(s) + d(s)x(s)

– b(s)x
(
σ (s)

)
– c(s)y(s)

)
�s,

q(t + θ ) – q(θ ) =
∫ t+θ

θ

[
–η(s)y(s) + g(s)x(s)

]
�s.

This means that (p(t),q(t)) is a solution of system (.), and by the arbitrariness of θ ,
(p(t),q(t)) is a solution of system (.) on T. It is clear that

m ≤ p(t)≤ M, m ≤ q(t) ≤ M, ∀t ∈ T.

This completes the proof. �

Lemma . In addition to condition (H), assume further that the coefficients of system
(.) satisfy the following conditions:

(H) rlal
[au+duM]

– gu > ;
(H) ηl – rucu > .

Then system (.) is globally attractive.
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Proof Let z(t) = (x(t), y(t)) and z(t) = (x(t), y(t)) be any two positive solutions of
system (.). It follows from (.)-(.) that for a sufficiently small positive constant ε

( < ε <min{m,m}), there exists a T >  such that

m – ε < xi(t) <M + ε, m – ε < yi(t) <M + ε, t ∈ [T , +∞)T , i = , , (.)

and

rlal

[au + du(M + ε)]
– gu > . (.)

Since xi(t), i = , , are positive, bounded and differentiable functions on T, then there
exists a positive, bounded and differentiable functionm(t), t ∈ T, such that xi(t)( +m(t)),
i = , , are strictly increasing on T. By Lemma . and Lemma ., we have

�

�t
LT

(
xi(t)

[
 +m(t)

])
=
x�
i (t)[ +m(t)] + xi(σ (t))m�(t)

xi(t)[ +m(t)]

=
x�
i (t)
xi(t)

+
xi(σ (t))m�(t)
xi(t)[ +m(t)]

, i = , .

Here, we can choose a function m(t) such that |m�(t)|
+m(t) is bounded on T, that is, there exist

two positive constants ζ >  and ξ >  such that  < ζ < |m�(t)|
+m(t) < ξ , ∀t ∈ T.

Set

V (t) = e–δ(t,T)
(∣∣LT(

x(t)
(
 +m(t)

))
– LT

(
x(t)

(
 +m(t)

))∣∣ + ∣∣y(t) – y(t)
∣∣),

where δ ≥  is a constant (if μ(t) = , then δ = ; if μ(t) > , then δ > ). It follows from the
mean value theorem of differential calculus on time scales for t ∈ [T , +∞)T that


M + ε

∣∣x(t) – x(t)
∣∣ ≤ ∣∣LT(

x(t)
(
 +m(t)

))
– LT

(
x(t)

(
 +m(t)

))∣∣
≤ 

m – ε

∣∣x(t) – x(t)
∣∣. (.)

Let γ =min{(m – ε)( rlal
[au+du(M+ε)]

– gu),ηl – rucu}. We divide the proof into two cases.
Case I. If μ(t) > , set δ >max{(rubu + ξ

m
)M,γ } and –μ(t)δ < . Calculating the upper

right derivatives of V (t) along the solution of system (.), it follows from (.)-(.), (H)
and (H) that for t ∈ [T , +∞)T,

D+V (t)

= e–δ(t,T) sgn
(
x(t) – x(t)

)[x�
 (t)
x(t)

–
x�
 (t)
x(t)

+
m�(t)
 +m(t)

(
x(σ (t))
x(t)

–
x(σ (t))
x(t)

)]
– δe–δ(t,T)

∣∣LT(
x

(
σ (t)

)(
 +m

(
σ (t)

)))
– LT

(
x

(
σ (t)

)(
 +m

(
σ (t)

)))∣∣
+ e–δ(t,T) sgn

(
y(t) – y(t)

)(
y�
 (t) – y�

 (t)
)
– δe–δ(t,T)

∣∣y(σ (t)) – y
(
σ (t)

)∣∣
= e–δ(t,T) sgn

(
x(t) – x(t)

)[
r(t)

(
–

a(t)(x(t) – x(t))
(a(t) + d(t)x(t))(a(t) + d(t)x(t))

http://www.advancesindifferenceequations.com/content/2013/1/196
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– b(t)
(
x

(
σ (t)

)
– x

(
σ (t)

))
– c(t)

(
y(t) – y(t)

))
+

m�(t)
 +m(t)

x(σ (t))x(t) – x(t)x(σ (t))
x(t)x(t)

]
– δe–δ(t,T)

∣∣LT(
x

(
σ (t)

)(
 +m

(
σ (t)

)))
– LT

(
x

(
σ (t)

)(
 +m

(
σ (t)

)))∣∣
+ e–δ(t,T) sgn

(
y(t) – y(t)

)[
–η(t)

(
y(t) – y(t)

)
+ g(t)

(
x(t) – x(t)

)]
– δe–δ(t,T)

∣∣y(σ (t)) – y
(
σ (t)

)∣∣
= e–δ(t,T) sgn

(
x(t) – x(t)

)[
–

r(t)a(t)(x(t) – x(t))
(a(t) + d(t)x(t))(a(t) + d(t)x(t))

– r(t)b(t)
(
x

(
σ (t)

)
– x

(
σ (t)

))
– r(t)c(t)

(
y(t) – y(t)

)
+

m�(t)
 +m(t)

x(σ (t))(x(t) – x(t)) + x(t)(x(σ (t)) – x(σ (t)))
x(t)x(t)

]
– δe–δ(t,T)

∣∣LT(
x

(
σ (t)

)(
 +m

(
σ (t)

)))
– LT

(
x

(
σ (t)

)(
 +m

(
σ (t)

)))∣∣
+ e–δ(t,T) sgn

(
y(t) – y(t)

)[
–η(t)

(
y(t) – y(t)

)
+ g(t)

(
x(t) – x(t)

)]
– δe–δ(t,T)

∣∣y(σ (t)) – y
(
σ (t)

)∣∣
≤ –e–δ(t,T)

[
r(t)a(t)

(a(t) + d(t)x(t))(a(t) + d(t)x(t))
– g(t)

+
|m�(t)|
 +m(t)

x(σ (t))
x(t)x(t)

]∣∣x(t) – x(t)
∣∣

– e–δ(t,T)
[

δ

M + ε
– r(t)b(t) –

|m�(t)|
 +m(t)


x(t)

]∣∣x(σ (t)) – x
(
σ (t)

)∣∣
– e–δ(t,T)

(
η(t) – r(t)c(t)

)∣∣y(t) – y(t)
∣∣

– δe–δ(t,T)
∣∣y(σ (t)) – y

(
σ (t)

)∣∣
≤ –e–δ(t,T)

(
rlal

[au + du(M + ε)]
– gu

)∣∣x(t) – x(t)
∣∣

– e–δ(t,T)
(
ηl – rucu

)∣∣y(t) – y(t)
∣∣

≤ –e–δ(t,T)
[
(m – ε)

(
rlal

[au + du(M + ε)]
– gu

)∣∣LT(
x(t)

(
 +m(t)

))
– LT

(
x(t)

(
 +m(t)

))∣∣ + (
ηl – cu

)∣∣y(t) – y(t)
∣∣]

≤ –γ e–δ(t,T)
(∣∣LT(

x(t)
(
 +m(t)

))
– LT

(
x(t)

(
 +m(t)

))∣∣ + ∣∣y(t) – y(t)
∣∣)

= –γV (t). (.)

By the comparison theorem and (.), we have

V (t) ≤ e–γ (t,T)V (T) < 
(
M + ε

m – ε
+M + ε

)
e–γ (t,T),

http://www.advancesindifferenceequations.com/content/2013/1/196
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that is,

e–δ(t,T)
(∣∣LT(

x(t)
(
 +m(t)

))
– LT

(
x(t)

(
 +m(t)

))∣∣ + ∣∣y(t) – y(t)
∣∣)

< 
(
M + ε

m – ε
+M + ε

)
e–γ (t,T),

then


M + ε

∣∣x(t) – x(t)
∣∣ + ∣∣y(t) – y(t)

∣∣
< 

(
M + ε

m – ε
+M + ε

)
e(–γ )	(–δ)(t,T). (.)

Since  –μ(t)δ <  and  < γ < δ, then (–γ )	 (–δ) < . It follows from (.) that

lim
t→+∞

∣∣x(t) – x(t)
∣∣ = , lim

t→+∞
∣∣y(t) – y(t)

∣∣ = .

Case II. If μ(t) = , set δ = , then σ (t) = t and e–δ(t,T) = . Calculating the upper right
derivatives of V (t) along the solution of system (.), it follows from (.)-(.), (H) and
(H) that for t ∈ [T , +∞)T,

D+V (t)

= sgn
(
x(t) – x(t)

)(x�
 (t)
x(t)

–
x�
 (t)
x(t)

)
+ sgn

(
y(t) – y(t)

)(
y�
 (t) – y�

 (t)
)

= sgn
(
x(t) – x(t)

)
r(t)

[
–
(

a(t)
(a(t) + d(t)x(t))(a(t) + d(t)x(t))

+ b(t)
)(

x(t) – x(t)
)

– c(t)
(
y(t) – y(t)

)]
+ sgn

(
y(t) – y(t)

)[
–η(t)

(
y(t) – y(t)

)
+ g(t)

(
x(t) – x(t)

)]
≤ –

(
r(t)a(t)

(a(t) + d(t)x(t))(a(t) + d(t)x(t))
+ r(t)b(t) – g(t)

)∣∣x(t) – x(t)
∣∣

–
(
η(t) – r(t)c(t)

)∣∣y(t) – y(t)
∣∣

≤ –
(
(m – ε)

(
rlal

[au + du(M + ε)]
+ rlbl – gu

)∣∣LT(
x(t)

(
 +m(t)

))
– LT

(
x(t)

(
 +m(t)

))∣∣ + (
ηl – rucu

)∣∣y(t) – y(t)
∣∣)

≤ –γ̂
(∣∣LT(

x(t)
(
 +m(t)

))
– LT

(
x(t)

(
 +m(t)

))∣∣ + ∣∣y(t) – y(t)
∣∣)

≤ –γV (t), (.)

where γ̂ =min{(m – ε)( rlal
[au+du(M+ε)]

+ rlbl – gu),ηl – rucu}. By the comparison theorem
and (.), we have

V (t) ≤ e–γ (t,T)V (T) < 
(
M + ε

m – ε
+M + ε

)
e–γ (t,T),

http://www.advancesindifferenceequations.com/content/2013/1/196
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that is,∣∣LT(
x(t)

(
 +m(t)

))
– LT

(
x(t)

(
 +m(t)

))∣∣ + ∣∣y(t) – y(t)
∣∣

< 
(
M + ε

m – ε
+M + ε

)
e–γ (t,T),

then


M + ε

∣∣x(t) – x(t)
∣∣ + ∣∣y(t) – y(t)

∣∣
< 

(
M + ε

m – ε
+M + ε

)
e–γ (t,T). (.)

It follows from (.) that

lim
t→+∞

∣∣x(t) – x(t)
∣∣ = , lim

t→+∞
∣∣y(t) – y(t)

∣∣ = .

From the above discussion, we can see that system (.) is globally attractive. This com-
pletes the proof. �

Theorem . Assume that conditions (H)-(H) hold, then system (.) has a unique glob-
ally attractive positive almost periodic solution.

Proof By Lemma ., there exists a bounded positive solution u(t) = (u(t),u(t)) ∈ S(T),
then there exists a sequence {t′k}, {t′k} → +∞ as k → +∞, such that (u(t + t′k),u(t + t′k)) is
a solution of the following system:{

x�(t) = r(t + t′k)x(t)[ –
x(t)

a(t+t′k )+d(t+t′k )x(t)
– b(t + t′k)x(σ (t + t′k)) – c(t + t′k)y(t)],

y�(t) = –η(t + t′k)y(t) + g(t + t′k)x(t).

From the above discussion and Lemma ., we have that not only {ui(t + t′k)}, i = , , but
also {u�

i (t + t′k)}, i = , , are uniformly bounded, thus {ui(t + t′k)}, i = , , are uniformly
bounded and equi-continuous. By the Ascoli-Arzela theorem, there exists a subsequence
of {ui(t + tk)} ⊆ {ui(t + t′k)} such that for any ε > , there exists aN(ε) >  with the property
that ifm,k >N(ε) then∣∣ui(t + tm) – ui(t + tk)

∣∣ < ε, i = , .

It shows that ui(t), i = , , are asymptotically almost periodic functions, then {ui(t + tk)},
i = , , are the sum of an almost periodic function qi(t + tk), i = , , and a continuous
function pi(t + tk), i = , , defined on T, that is,

ui(t + tk) = pi(t + tk) + qi(t + tk), ∀t ∈ T,

where

lim
k→+∞

pi(t + tk) = , lim
k→+∞

qi(t + tk) = qi(t),

qi(t) is an almost periodic function. It means that limk→+∞ ui(t + tk) = qi(t), i = , .

http://www.advancesindifferenceequations.com/content/2013/1/196
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On the other hand,

lim
k→+∞

u�
i (t + tk) = lim

k→+∞
lim
h→

ui(t + tk + h) – ui(t + tk)
h

= lim
h→

lim
k→+∞

ui(t + tk + h) – ui(t + tk)
h

= lim
h→

qi(t + h) – qi(t)
h

.

So, the limit qi(t), i = , , exists.
Next, we shall prove that (q(t),q(t)) is an almost solution of system (.).
From the properties of an almost periodic function, there exists a sequence {tn}, tn →

+∞ as n→ +∞, such that r(t+ tn) → r(t), a(t+ tn) → a(t), b(t+ tn) → b(t), c(t+ tn) → c(t),
d(t + tn) → d(t), η(t + tn) → η(t), g(t + tn) → g(t), σ (t + tn) → σ (t) as n → +∞ uniformly
on T.
It is easy to know that ui(t + tn) → qi(t), i = ,  as n→ +∞, then we have

q�
 (t) = lim

n→+∞u�
 (t + tn)

= lim
n→+∞ r(t + tn)u(t + tn)

[
 –

u(t + tn)
a(t + tn) + d(t + tn)u(t + tn)

– b(t + tn)u
(
σ (t + tn)

)
– c(t + tn)u(t + tn)

]
= r(t)q(t)

[
 –

q(t)
a(t) + d(t)q(t)

– b(t)q
(
σ (t)

)
– c(t)q(t)

]
,

q�
 (t) = lim

n→+∞u�
 (t + tn)

= lim
n→+∞

[
–η(t + tn)u(t + tn) + g(t + tn)x(t + tn)

]
= –η(t)q(t) + g(t)q(t).

This proves that (q(t),q(t)) is a positive almost periodic solution of system (.). To-
gether with Lemma ., system (.) has a unique globally attractive positive almost peri-
odic solution. This completes the proof. �

4 Example and simulations
Consider the following system on time scales:

{
x�(t) = (. + . sin

√
t)x(t)[ – x(t)

(.+. sin t)+.x(t) – x(σ (t)) – .y(t)],
y�(t) = –(. + . cos

√
t)y(t) + (. + . sin

√
t)x(t).

(.)

By a direct calculation, we can get

ru = , rl = ., au = , al = ,

bu = bl = , cu = cl = ., du = dl = .,

ηu = ., ηl = ., gu = ., gl = ., M = , M = .,

http://www.advancesindifferenceequations.com/content/2013/1/196
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Figure 1 T =R. Dynamics behavior of system (4.1) with initial condition
(x(0),y(0)) = {(0.5, 0.06); (0.8, 0.02); (1, 0.03)}.

Figure 2 T = Z. Dynamics behavior of system (4.1) with initial condition (x(1),y(1)) = (1, 0.05).

then

 –
M

al
– cuM = . > ,

rlal

[au + duM]
– gu = . > ,

ηl – rucu = . > ,

http://www.advancesindifferenceequations.com/content/2013/1/196
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that is, conditions (H)-(H) hold. According to Theorem ., system (.) has a unique
globally attractive positive almost periodic solution. For dynamic simulations of system
(.) with T =R and T = Z, see Figures  and , respectively.
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