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Abstract
A two-component Bose-Einstein condensate described by two coupled
Gross-Pitaevskii (GP) equations in three dimensions is considered, where one
equation has dipole-dipole interactions while the other one has only the usual s-wave
contact interaction, in a harmonic trap. The singularity in the dipole-dipole
interactions brings significant difficulties both in mathematical analysis and in
numerical simulations. The backward Euler method in time and the sine spectral
method in space are proposed to compute the ground states. Numerical results are
given to show the efficiency of this method.
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1 Introduction
Since , the Bose-Einstein condensation (BEC) of ultra-cold atomic and molecular
gases has attracted much attention both theoretically and experimentally. Most of the
properties of these trapped quantum gases are governed by the interactions between par-
ticles in the condensate []. Over the past decade, there has been an investigation for real-
izing a new kind of quantum gases with the dipolar interaction, acting between particles
having a permanent magnetic or electric dipole moment. The experimental realization of
a BEC of Cr atoms [, ] at the University of Stuttgart in  gave new impetus to the
theoretical and numerical investigations on these novel dipolar quantum gases at low tem-
perature. Recently more detailed and controlled experimental results have been obtained,
illustrating the effects of phase separation in a multi-component BEC [–]. In these pa-
pers, the studies of the binary condensates were limited to the case of s-wave interactions,
while recently the dipolar BEC has drawn a great deal of attention.
In this work, a numerical method for computing the ground state of the two-component

dipolar BEC is considered, where one equation has dipole-dipole interactions and the
other has only the usual s-wave contact interaction. However, since the dipole-dipole in-
teractions are long range, anisotropic and partially attractive, and the computational cost
in three dimensions is high, the nontrivial task of achieving and controlling the dipolar
BEC is thus particularly challenging.
The two-component dipolar BEC, confined in a cylindrical trap, is described by two

coupled Gross-Pitaevskii equations. As far as the dipolar interaction is concerned, a con-
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volution term is introduced [–] tomodify the classical Gross-Pitaevskii equation, which
results in the following differential-integral equations (). Since the transition metal has a
magnetic dipole interaction while the alkali metal has not, we take into account this fac-
tor in this system. We take Cr as component  and Rb as component  []. Then the GP
equations for this system can be written as

{
i� ∂ϕ(�r,t)

∂t = [– �


m ∇ +V +U|ϕ| +U|ϕ| +V *
dip|ϕ|]ϕ,

i� ∂ϕ(�r,t)
∂t = [– �



m ∇ +V +U|ϕ| +U|ϕ|]ϕ,
()

where ϕ, ϕ are the wave functions of component  and , respectively. The inter-atomic
and inter-component s-wave scattering interactions are described by Uj (j = , ) and U,
respectively, with the following expressions []:

Uj =
π�aj
mj

, U =
π�aj

mm/(m +m)
(j = , ),

where aj is the scattering length of component j and a is that between component 
and . Here � is the Planck constant, mj is the mass of the atom of component j, and Vj

(j = , ) is the external trapping potential confining the gas. Generally, it is harmonic, that
is,Vj(�r) = mj

 (ω

jxx +ω

jyy +ω
jzz) with ωjp (p = x, y, z) represents the trap frequency in x, y,

z directions, respectively. The local mean-field Uj|ϕj| represents the s-wave interaction.
Vdip is the long-range isotropic dipolar interaction potential between two dipoles, and it
is defined by

Vdip =
μμ


dip

π
·  – (�r · �n)/|�r|

|�r| =
μμ


dip

π
·  –  cos θ

|�r| ,

where θ is the angle between the polarization axis �n and the relative of two atoms (i.e.,
cos θ = �n · �r/r), r = |�r| = √

x + y + z. The wave function ϕi(x, t) is normalized according
to ‖ϕi‖ =

∫
R |ϕi(�r, t)| d�r =Ni (i = , ), whereNi is the number of the atoms in the dipolar

BEC.
This paper is organized as follows. In Section , a numerical method for computing

ground states is presented. In Section , numerical results are reported to verify the effi-
ciency of this numericalmethod. Finally, some concluding remarks are drawn in Section .

2 Numerical method for computing the ground states
System () can be made dimensionless and simplified by adopting a unit system, where
the units for length, time and energy are given by a, /ω, and �ω, respectively, with
a =

√
�

mω
,ω =min{ωjx,ωjy,ωjz} []. By introducing the dimensionless variables t′ = t

ω
,

�r′ = �r/a, ϕ′
j = a/ ϕj, we obtain the dimensionless GP equations in D from () as follows:

{
i ∂ϕ′


∂t′ = [– 

∇ +V ′
 + β|ϕ′

| + β|ϕ′
| + λ(V *

dip|ϕ′
|)]ϕ′

,
i ∂ϕ′


∂t′ = [– 

∇ + amV ′
 + β|ϕ′

| + β|ϕ′
|)]ϕ′

,
()

where β = πaN, β = +am
am πaN, β = +am

am πaN, β = πa
am N, am = m

m
, λ =

mNμμ
dip

�a
, Vdip = 

π
· – cos θ

r . In addition the wave functions in () satisfy
∫
R |ϕ′

| = ,
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∫
R |ϕ′

| = . By using the following formula []


r

(
 –

(�n · �r)
r

)
= –


π

δ(�r) – ∂nn

(

r

)
, ()

where δ(�r) is the Dirac delta function and ∂nn = �n · ∇(�n · ∇), we can get

V *
dip

∣∣ϕ′

∣∣ = –

∣∣ϕ′

∣∣ – ∂nn(ξ ), ()

where

ξ (�r, t) = 
π

∫
R


|�r – �r′| · ∣∣ϕ′


(�r′, t)∣∣ d�r′. ()

And it is easy to see

∇ξ = –
∣∣ϕ′

(�r, t)
∣∣. ()

Plugging () into () and noticing () and (), we can reformulate GPE () into the
Schrödinger-Poisson type system

⎧⎪⎨
⎪⎩
i ∂ϕ

∂t = [– 
∇ +V + (β – λ)|ϕ| + β|ϕ| – λ∂nn(ξ )]ϕ,

i ∂ϕ
∂t = [– 

∇ +V + β|ϕ| + β|ϕ|]ϕ,
∇ξ = –|ϕ(�r, t)|,

by removing the symbol ‘′’ in ()-() to simplify the denotation. In practical computation,
the whole space problem is usually truncated into a bounded computational domain � =
[a,b]× [c,d]× [e, f ] with the homogeneous Dirichlet boundary condition. Let

�MKL =
{
(j,k, l)|j = , , . . . ,M – ,k = , , . . . ,K – , l = , , . . . ,L – 

}
,

�
MKL =

{
(j,k, l)|j = , , . . . ,M,k = , , . . . ,K , l = , , . . . ,L

}
.

Choose the spatial mesh size as hx = b–a
M , hy = d–c

K , hz = f –e
L , and define xj = a + jhx, yk = c +

khy, zl = e+ lhz, (j,k, l) ∈ �
MKL. Then denote the space YMKL = span{φpqs(�r), (p,q, s) ∈ �MKL}

with

φpqs(r) = sin
(
up(x – a)

)
sin

(
uq(y – c)

)
sin

(
us(z – e)

)
,

where up = pπ
b–a , uq =

qπ
d–c , us =

sπ
f –e .

To compute the ground state, an imaginary time method is adopted []. That is,

⎧⎪⎨
⎪⎩

∂ϕ
∂t = [ ∇ –V – (β – λ)|ϕ| – β|ϕ| + λ∂nn(ξ )]ϕ,
∂ϕ
∂t = [ ∇ –V – β|ϕ| – β|ϕ|)]ϕ,

∇ξ = –|ϕ(�r, t)|.

We use the backward Euler method for time discretization and the sine-pseudospectral
method for spatial derivatives. Then we obtain the following equations in a three-
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Figure 1 Ground state solutions for different parameter λ. (a) Surface for component 1, ϕ1(x, y, z), z = 0,
λ = 1/3; (b) Surface for component 2, ϕ2(x, y, z), z = 0, λ = 1/3; (c) Surface for component 1, ϕ1(x, y, z), z = 0,
λ = –1/3; (d) Surface for component 2, ϕ2(x, y, z), z = 0, λ = –1/3.

dimensional space. If we assume that

ϕ(r, tn+) = ϕn+
 (r) =

M–∑
p=

K–∑
q=

L–∑
s=

αpqsφpqs and

ϕ(r, tn+) = ϕn+
 (r) =

M–∑
p=

K–∑
q=

L–∑
s=

α′
pqsφpqs.

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ϕ*jkl–ϕnjkl
�t = 

∇
hϕ

*
|jkl – [V (xj, yk , zl) + (β – λ)|ϕn

jkl|
+ β|ϕn

jkl| – λ∂nnξ
n|jkl]ϕ*

jkl,
ϕ*jkl–ϕnjkl

�t = 
∇

hϕ
*
|jkl – [V (xj, yk , zl)

+ β|ϕn
jkl| + β|ϕn

jkl|]ϕ*
jkl, tn ≤ t ≤ tn+,

∇ξ = –|ϕ(�r, t)|,

()

with boundary conditions

ϕ*
kl = ϕ*

Mkl = ϕ*
jl = ϕ*

jKl = ϕ*
jk = ϕ*

jkL = , (j,k, l) ∈ �
MKL,

ϕ*
kl = ϕ*

Mkl = ϕ*
jl = ϕ*

jKl = ϕ*
jk = ϕ*

jkL = , (j,k, l) ∈ �
MKL,

and initial conditions

ϕ
jkl = ϕ,(xj, yk , zl), ϕ

jkl = ϕ,(xj, yk , zl), (j,k, l) ∈ �
MKL,
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Figure 2 Ground state solutions for different parameter λ. (a) Surface for component 1, ϕ1(x, y, z), y = 0,
λ = 1/3; (b) Surface for component 2, ϕ2(x, y, z), y = 0, λ = 1/3; (c) Surface for component 1, ϕ1(x, y, z), y = 0,
λ = –1/3; (d) Surface for component 2, ϕ2(x, y, z), y = 0, λ = –1/3.

ϕn+
jkl =

ϕ*
jkl

‖ϕ*
‖
, ϕn+

jkl =
ϕ*
jkl

‖ϕ*
‖

, (j,k, l) ∈ �MKL,

where ‖ϕ*
‖ = hxhyhz

∑M–
j=

∑K–
k=

∑L–
l= |ϕ*

jkl|, ‖ϕ*
‖ = hxhyhz

∑M–
j=

∑K–
k=

∑L–
l= |ϕ*

jkl|;
∇

hϕ
n and ∂nnξ

n are sine pseudo-spectral approximations of ∇ϕ and ∂nnξ at time t = tn,
respectively, defined for (p,q, s) ∈ �MKL as

∇ϕn+
 (r)|jkl = –

∑
pqs

(
up + uq + us

)
αpqs sin

(
jpπ
M

)
sin

(
kqπ
K

)
sin

(
lsπ
L

)
,

∇ϕn+
 (r)|jkl = –

∑
pqs

(
up + uq + us

)
α′
pqs sin

(
jpπ
M

)
sin

(
kqπ
K

)
sin

(
lsπ
L

)
,

∂nnξ
n(r)|jkl = –

∑
pqs

(
up + uq + us

)
βpqs sin

(
jpπ
M

)
sin

(
kqπ
K

)
sin

(
lsπ
L

)
= –

∣∣ϕpqs(r)
∣∣.

The discrete sine transform coefficients of the vector φpqs(r)|(xj ,yk ,zl) for (p,q, s) ∈ �MKL

are

αpqs =


MKL

M–∑
j=

K–∑
k=

L–∑
l=

ϕn+
jkl sin

(
jpπ
M

)
sin

(
kqπ
K

)
sin

(
lsπ
L

)
,

α′
pqs =


MKL

M–∑
j=

K–∑
k=

L–∑
l=

ϕn+
jkl sin

(
jpπ
M

)
sin

(
kqπ
K

)
sin

(
lsπ
L

)
,
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Figure 3 The energy evolution according to the time step N. (a) Kinetic energy; (b) Potential energy;
(c) Interaction energy; (d) Dipole energy; (e) The total energy.

βpqs =


up + uq + us


MKL

M–∑
j=

K–∑
k=

L–∑
l=

∣∣ϕn+
jkl

∣∣ sin( jpπ
M

)
sin

(
kqπ
K

)
sin

(
lsπ
L

)
.

Linear system () can be iteratively solved in a phase space very efficiently via discrete sine
transform under the conditionsmaxj,k,l |ϕn+

jkl –ϕn
jkl| < – andmaxj,k,l |ϕn+

jkl –ϕn
jkl| < –.

3 Numerical results
Example  Consider the ground state of the BEC withV (r) = 

 (x
 + y + z). The initial

condition is given as follows:

⎧⎨
⎩ϕ, = ϕ(x, y, z, ) = π–/γ /

x γ /
z e–


 (γx(x

+y)+γzz),

ϕ, = ϕ(x, y, z, ) = π–/γ /
x γ /

z e–

 (γx(x

+y)+γzz),
(x, y, z) ∈ R.

Here, γx = ωx
ω

, γz = ωz
ω

, ω =min{ωjx,ωjy,ωjz}. We solve this system on [–, ] with hx =
hy = hz = / and �t = ..

http://www.advancesindifferenceequations.com/content/2013/1/204
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Figure 4 The energy evolution according to the time step N. (a) Kinetic energy; (b) Potential energy;
(c) Interaction energy; (d) Dipole energy; (e) The total energy.

Figure  shows the results for the case of γx = γz = .

Example  Solve the ground state problem for a dipolar BECwithV (r) = 
 (x

 +y +z).
The initial condition is

⎧⎨
⎩ϕ, = ϕ(x, y, z, ) = π–/γ /

x γ /
y γ /

z e–

 (γxx

+γyy+γzz),

ϕ, = ϕ(x, y, z, ) = π–/γ /
x γ /

y γ /
z e–


 (γxx

+γyy+γzz),
(x, y, z) ∈ R.

Figure  shows the results for the case of γx = , γy = , γz = .

4 Conclusion
An efficient numerical method is presented for computing the ground states of dipo-
lar Bose-Einstein condensates based on two coupled three-dimensional Gross-Pitaevskii
equations, where one equation has a dipole-dipole interaction potential and the other one
has only the usual s-wave contact interaction. Using equality (), we can reformulate the

http://www.advancesindifferenceequations.com/content/2013/1/204
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GPE for dipolar BEC into aGross-Pitaevskii-Poisson type system.Numerical examples are
given to show the efficiency of our method. In all cases, total energy decreases (Figure 
and Figure ). The results agree with the previous work []. Numerical results are given
to demonstrate the efficiency of our numerical method. And dynamics will be the latter
part of our work to be carried out.
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