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Abstract
By using Mawhin’s coincidence degree theory, this paper establishes a new criterion
on the existence of four periodic solutions for a food-limited two-species Gilpin-Ayala
type predator-prey system with harvesting terms on time scales. An example is given
to illustrate the effectiveness of the result.

1 Introduction
The theory of calculus on time scales was initiated by Hilger [] in order to unify continu-
ous and discrete analysis, and it has become an effective approach to the study of mathe-
matical models involving the hybrid discrete-continuous processes. Since the population
dynamics in the real world usually involves the hybrid discrete-continuous processes, it
may be more realistic to consider population models on time scales [].
In recent years, some researchers studied the existence of periodic solutions for some

populationmodels on time scales under the assumption of periodicity of the parameters by
usingMawhin’s coincidence degree theory (see [–]). To our best knowledge, few papers
deal with the existence of multiple periodic solutions for population models with harvest-
ing terms on time scales. The main difficulty is that the techniques used in continuous
population models with harvesting terms are generally not available to population mod-
els with harvesting terms on time scales. Indeed, almost all papers involving continuous
population models with harvesting terms used Fermat’s theorem on local extrema of dif-
ferentiable functions in real analysis; for example, see [–]. However, Fermat’s theorem
is not true in time scales calculus.
In this paper, we consider a food-limited two-species Gilpin-Ayala type predator-prey

system with harvesting terms on time scales:
⎧⎨
⎩
u�
 (t) =


k(t)+c(t)eu(t)

[a(t) – a(t)eθu(t) – a(t)eθu(t)] – H(t)
eu(t)

,

u�
 (t) =


k(t)+c(t)eu(t)

[a(t) + a(t)eθu(t) – a(t)eθu(t)] – H(t)
eu(t)

.
(.)

In system (.), let xi(t) = exp{ui(t)}, i = , . If the time scale T = R (the set of all real
numbers), then system (.) reduces to

{
x′
(t) =

x(t)
k(t)+c(t)x(t)

[a(t) – a(t)xθ
 (t) – a(t)xθ

 (t)] –H(t),

x′
(t) =

x(t)
k(t)+c(t)x(t)

[a(t) + a(t)xθ
 (t) – a(t)xθ

 (t)] –H(t),
(.)
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where x and x denote the prey and the predator, respectively; ai(t) (i = , ), aii(t) (i = , ),
Hi(t) (i = , ) are all positive continuous functions denoting the intrinsic growth rate, the
intra-specific competition rates and the harvesting rates, respectively; a(t) is the preda-
tion rate of the predator and a(t) represents the conversion rate; ki(t) (i = , ) are the
population numbers of two species at saturation, respectively. θi (i = , ) represent a non-
linear measure of interspecific interference. When ci(t) �=  (i = , ), ai(t)

ki(t)ci(t)
(i = , ) are

the rate of replacement of mass in the population at saturation (including the replace-
ment of metabolic loss and of dead organisms). In this case, system (.) is a food-limited
population model. For other food-limited population models, we refer to [–] and the
references cited therein. When θi �=  (i = , ), system (.) is a Gilpin-Ayala type pop-
ulation model. Gilpin-Ayala type population models were firstly proposed by Gilpin and
Ayala in []. For some recent work, we refer to [, –].When ci(t)≡ , θi =  (i = , ),
system (.) was consider by Zhao and Ye [].
Motivated by the work of Bohner et al. [] and Chen [], we study the existence of mul-

tiple periodic solutions of (.) by using Mawhin’s coincidence degree.

2 Preliminaries from calculus on time scales
In this section, we briefly present some foundational definitions and results from the cal-
culus on time scales so that the paper is self-contained. For more details, one can see
[, , ].

Definition . [] A time scale T is an arbitrary nonempty closed subset of the real
numbers R.

Letω > . Throughout this paper, the time scaleT is assumed to beω-periodic, i.e., t ∈ T

implies t +ω ∈ T. In particular, the time scale T under consideration is unbounded above
and below.

Definition . [] We define the forward jump operator σ : T → T, the backward jump
operator ρ : T → T, and the graininess μ : T →R

+ = [,+∞) by

σ (t) := inf{s ∈ T : s > t}, ρ(t) := sup{s ∈ T : s < t}, μ(t) = σ (t) – t for t ∈ T,

respectively. If σ (t) = t, then t is called right-dense (otherwise, right-scattered), and if
ρ(t) = t, then t is called left-dense (otherwise, left-scattered).

Definition . [] Assume that f : T → R is a function, and let t ∈ T. Then we define
f �(t) to be the number (provided it exists) with the property that given any ε > , there is
a neighborhood U of t (i.e., U = (t – δ, t + δ)∩T for some δ > ) such that

∣∣[f (σ (t)) – f (s)
]
– f �(t)

[
σ (t) – s

]∣∣ ≤ ε
∣∣σ (t) – s

∣∣ for all s ∈ U .

In this case, f �(t) is called the delta (or Hilger) derivative of f at t. Moreover, f is said to
be delta or Hilger differentiable on T if f �(t) exists for all t ∈ T.

Definition . [] A function F : T →R is called an antiderivative of f : T→R provided
F�(t) = f (t) for all t ∈ T. Then we define

∫ s

r
f (t)�t = F(s) – f (r) for r, s ∈ T.
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Definition . [] A function f : T→R is said to be rd-continuous if it is continuous at
right-dense points in T and its left-sided limits exist (finite) at left-dense points in T. The
set of rd-continuous functions f : T →R will be denoted by Crd(T).

The following notation will be used throughout this paper.
Let

T
κ =

{
T\(ρ(supT), supT], if supT < +∞,
T, if supT = +∞,

κ =min
{
[, +∞)∩T

}
, Iω = [κ ,κ +ω]∩T, gu = sup

t∈Iω
g(t), gl = inf

t∈Iω
g(t),

ḡ =

ω

∫
Iω
g(s)�s =


ω

∫ κ+ω

κ

g(s)�s,

where g ∈ Crd(T) is a nonnegative ω-periodic real function, i.e., g(t +ω) = g(t) for all t ∈ T.

Lemma . [] Every rd-continuous function has an antiderivative.

Lemma . [] Assume that f : T →R is a function, and let t ∈ T
κ . Then we have:

(i) If f is continuous at t and t is right-scattered, then f is differential at t with

f �(t) =
f (σ (t)) – f (t)

μ(t)
.

(ii) If f is right-dense, then f is differential at t iff the limit

lim
s→t

f (t) – f (s)
t – s

exists as a finite number. In this case,

f �(t) = lim
s→t

f (t) – f (s)
t – s

.

Lemma . [] Let t, t ∈ Iω and t ∈ T. If g : T →R is ω-periodic, then

g(t) ≤ g(t) +
∫ κ+ω

κ

∣∣g(s)∣∣�s and g(t) ≥ g(t) –
∫ κ+ω

κ

∣∣g(s)∣∣�s.

Lemma . [] Assume that {fn}n∈N is a function sequence on Iω such that
(i) {fn}n∈N is uniformly bounded on Iω ;
(ii) {f �

n }n∈N is uniformly bounded on Iω .
Then there is a subsequence of {fn}n∈N converging uniformly on Iω .

3 Existence of multiple periodic solutions
We first briefly state Mawhin’s coincidence degree theory (see []).
Let X, Z be normed vector spaces, L : domL ⊂ X → Z be a linear mapping, N : X → Z

be a continuousmapping. Themapping Lwill be called a Fredholmmapping of index zero
if dimKerL = codim ImL < +∞ and ImL is closed in Z. If L is a Fredholmmapping of index
zero, then there exist continuous projectors (i.e., linear and idempotent linear operators)
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P : X → X and Q : Z → Z such that ImP = KerL, ImL = KerQ = Im(I – Q). If we define
LP : domL ∩ KerP → ImL as the restriction L|domL∩KerP of L to domL ∩ KerP, then LP is
invertible. We denote the inverse of that map by KP . If 
 is an open bounded subset of X,
the mappingN will be called L-compact on 
̄ ifQN(
̄) is bounded and KP(I –Q)N : 
̄ →
X is compact, i.e., continuous and such that KP(I – Q)N(
̄) is relatively compact. Since
ImQ is isomorphic to KerL, there exists an isomorphism J : ImQ→ KerL.
For convenience, we introduce Mawhin’s continuation theorem [] as follows.

Lemma . Let L be a Fredholm mapping of index zero, and let N : 
̄ × [, ] → Z be
L-compact on 
̄ × [, ]. Suppose
(a) Lu �= λN(u,λ) for every u ∈ domL∩ ∂
 and every λ ∈ (, );
(b) QN(u, ) �=  for every u ∈ ∂
 ∩KerL;
(c) Brouwer degree degB(JQN(·, )|KerL,
 ∩KerL, ) �= .

Then Lu =N(u, ) has at least one solution in domL∩ 
̄.

Set

h(x) = b – axα –
c
x
, x ∈ (, +∞).

Lemma . [] Assume that a, b, c, α are positive constants and

b > ( + α)a


+α

(
c
α

) α
+α

.

Then there exist  < x– < x+ such that

h
(
x–

)
= h

(
x+

)
= , h(x) >  for x ∈ (

x–,x+
)
,

h(x) <  for x ∈ (
,x–

) ∪ (
x+, +∞)

and

h′(x–) > , h′(x+) < .

Set

N =
ln( a

a
)u

θ
+ ω

(
a
k

)u

,

N =
ln[( a

a
)u + ( aa

)ueθN ]
θ

+ ω
(
a
k

)u

+ ω
(
a
k

)u

eθN .

From now on, we always assume that:

(H) ci(t), ki(t), ai(t), Hi(t) (i = , ), aij(t) (i, j = , ) are positive continuous ω-periodic
functions, θi (i = , ) are positive constants.

(H) 
+( ck )

ueN
[( ak )

l – ( ak )
ueθN ] > ( + θ)[( ak )

u]


+θ [H
u


θ
]

θ
+θ .

(H)
( ak )

l

+( ck )
ueN

> ( + θ)[( ak )
u]


+θ [H

u


θ
]

θ
+θ .
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Set

M(x) =


 + ( ck )
ueN

[(
a
k

)l

–
(
a
k

)u

eθN

]
–

(
a
k

)u

xθ –
Hu


x
,

M(x) =
( ak )

l

 + ( ck )
ueN

–
(
a
k

)u

xθ –
Hu


x
,

pi(x) =
(
ai
ki

)
–

(
aii
ki

)
xθi –

H̄i

x
(i = , ),

m(x) =
(
a
k

)u

–
( ak )

l

 + ( ck )
u[( a

a
)u]


θ

xθ –
Hl


x
,

m(x) =
(
a
k

)u

+
(
a
k

)u

eθN –
( ak )

l

 + ( ck )
u[( a

a
)u + ( aa

)ueθN ]

θ

xθ –
Hl


x
.

Lemma . Assume that (H)-(H) hold. Then the following assertions hold:
() There exist  < u–i < u+i such that

Mi
(
u–i

)
=Mi

(
u+i

)
= , Mi(x) >  for x ∈ (

u–i ,u
+
i
)

and

Mi(x) <  for x ∈ (
,u–i

) ∪ (
u+i , +∞)

, i = , .

() There exist  < x–i < x+i such that

pi
(
x–i

)
= pi

(
x+i

)
= , pi(x) >  for x ∈ (

x–i ,x
+
i
)
,

pi(x) <  for x ∈ (
,x–i

) ∪ (
x+i , +∞)

and

p′
i
(
x–i

)
> , p′

i
(
x+i

)
< , i = , .

() There exist  < l–i < l+i such that

mi
(
l–i

)
=mi

(
l+i

)
= , mi(x) >  for x ∈ (

l–i , l
+
i
)

and

mi(x) <  for x ∈ (
, l–i

) ∪ (
l+i , +∞)

, i = , .

()

l–i < x–i < u–i < u+i < x+i < l+i , i = , .
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()

lnu+i <Ni, i = , .

Proof It follows from (H)-(H) and Lemma . that assertions ()-() hold. Noticing that


 + ( ck )

ueN

[(
a
k

)l

–
(
a
k

)u

eθN

]
<

(
a
k

)
≤

(
a
k

)u

,

( ak )
l

 + ( ck )
u[( a

a
)u]


θ

<
(
a
k

)
≤

(
a
k

)u

,

( ak )
l

 + ( ck )
ueN

<
(
a
k

)
<

(
a
k

)u

+
(
a
k

)u

eθN ,

( ak )
l

 + ( ck )
u[( a

a
)u + ( aa

)ueθN ]

θ

<
(
a
k

)
≤

(
a
k

)u

,

Hl
i ≤ H̄i ≤ Hu

i (i = , ),

we have

Mi(x) < pi(x) <mi(x), i = , .

By assertions ()-(), assertion () holds.
It follows fromMi(u+i ) =  (i = , ) that

(
a
k

)u[
u+

]θ <


 + ( ck )
ueN

[(
a
k

)l

–
(
a
k

)u

eθN

]
<

(
a
k

)l

,

(
a
k

)u[
u+

]θ <
( ak )

l

 + ( ck )
ueN

<
(
a
k

)l

.

Therefore, we have

u+ <
[ ( ak )

l

( ak )
u

] 
θ ≤

[(
a
a

)u] 
θ
< eN ,

u+ <
[ ( ak )

l

( ak )
u

] 
θ ≤

[(
a
a

)u] 
θ

< eN ,

which implies that assertion () also holds. �

Now, we are ready to state the main result of this paper.

Theorem . Assume that (H)-(H) hold. Then system (.) has at least four ω-periodic
solutions.

Proof Take

X = Z =
{
u = (u,u)T : ui ∈ Crd

(
T,R) and ui(t +ω) = ui(t) for all t ∈ T, i = , 

}
,

http://www.advancesindifferenceequations.com/content/2013/1/278
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and define

‖u‖ =
[ ∑

i=

(
max
t∈Iω

∣∣ui(t)∣∣)
] 



, u ∈ X (or Z).

Equipped with the above norm ‖ · ‖, it is easy to verify that X and Z are both Banach
spaces.
Set

�(u, t,λ) =
[
k(t) + ( – λ)c(t)eu(t)

k(t) + c(t)eu(t)

]

×
[
a(t)
k(t)

–
a(t)eθu(t)

k(t)
–

λa(t)eθu(t)

k(t)

]
–
H(t)
eu(t)

,

�(u, t,λ) =
[
k(t) + ( – λ)c(t)eu(t)

k(t) + c(t)eu(t)

]

×
[
a(t)
k(t)

+
λa(t)eθu(t)

k(t)
–
a(t)eθu(t)

k(t)

]
–
H(t)
eu(t)

.

Define the mappings L : X → Z, N : X × [, ] → Z, P : X → X and Q : Z → Z as follows:

N(u,λ) =

(
�(u, t,λ)
�(u, t,λ)

)
,

Lu =

(
u�


u�


)
, Pu =


ω

∫ κ+ω

κ

u(t)�t =Qu, u ∈ X (or Z).

We first show that L is a Fredholmmapping of index zero andN is L-compact on 
̄× [, ]
for any open bounded set 
 ⊂ X. The argument is standard, one can see [–]. But for the
sake of completeness, we give the details here.
It is easy to see that KerL = {u ∈ X : (u(t),u(t))T = (h,h)T ∈ R

 for t ∈ T}, ImL =
{u ∈ X :

∫ κ+ω

κ
u(t)�t = } is closed in Z, and dimKerL = codim ImL = . Therefore, L is a

Fredholm mapping of index zero. Clearly, P and Q are continuous projectors such that

ImP =KerL, KerQ = ImL = Im(I –Q).

On the other hand, Kp : ImL → domL∩KerP, the inverse to L, exists and is given by

Kp(u) =
∫ t

κ

u(s)�s –

ω

∫ κ+ω

κ

∫ η

κ

u(s)�s�η.

Obviously, QN and Kp(I – Q)N are continuous. By Lemma ., it is not difficult to
show that Kp(I –Q)N(
̄ × [, ]) is compact for any open bounded set 
 ⊂ X. Moreover,
QN(
̄× [, ]) is bounded. Hence,N is L-compact on 
̄× [, ] for any open bounded set

 ⊂ X.
In order to apply Lemma ., we need to find at least four appropriate open, bounded

subsets 
, 
, 
, 
 in X.

http://www.advancesindifferenceequations.com/content/2013/1/278
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Corresponding to the operator equation Lu = λN(u,λ), λ ∈ (, ), we have

u�
 (t) = λ

[
k(t) + ( – λ)c(t)eu(t)

k(t) + c(t)eu(t)

]

×
[
a(t)
k(t)

–
a(t)eθu(t)

k(t)
–

λa(t)eθu(t)

k(t)

]
–

λH(t)
eu(t)

, (.)

u�
 (t) = λ

[
k(t) + ( – λ)c(t)eu(t)

k(t) + c(t)eu(t)

]

×
[
a(t)
k(t)

+
λa(t)eθu(t)

k(t)
–
a(t)eθu(t)

k(t)

]
–

λH(t)
eu(t)

. (.)

Suppose that (u(t),u(t))T is anω-periodic solution of (.), (.) for some λ ∈ (, ). Since
u(t) = (u(t),u(t)) ∈ X, there exist tMi , tmi ∈ [κ ,κ +ω]∩T, i = , , such that

ui
(
tMi

)
= max

t∈[κ ,κ+ω]∩T
ui(t),

ui
(
tmi

)
= min

t∈[κ ,κ+ω]∩T
ui(t), i = , .

By Lemma ., it is easy to see that

u�
i
(
tMi

) ≤ , u�
i
(
tmi

) ≥ , i = , .

From this and (.), (.), we obtain that

 ≥
[
k(tM ) + ( – λ)c(tM )eu(tM )

k(tM ) + c(tM )eu(tM )

]

×
[
a(tM )
k(tM )

–
a(tM )eθu(tM )

k(tM )
–

λa(tM )eθu(tM )

k(tM )

]
–
H(tM )
eu(tM )

, (.)

 ≥
[
k(tM ) + ( – λ)c(tM )eu(tM )

k(tM ) + c(tM )eu(tM )

]

×
[
a(tM )
k(tM )

+
λa(tM )eθu(tM )

k(tM )
–
a(tM )eθu(tM )

k(tM )

]
–
H(tM )
eu(tM )

(.)

and

 ≤
[
k(tm ) + ( – λ)c(tm )eu(t

m
 )

k(tm ) + c(tm )eu(t
m
 )

]

×
[
a(tm )
k(tm )

–
a(tm )eθu(tm )

k(tm )
–

λa(tm )eθu(tm )

k(tm )

]
–
H(tm )
eu(tm ) , (.)

 ≤
[
k(tm ) + ( – λ)c(tm )eu(t

m
 )

k(tm ) + c(tm )eu(t
m
 )

]

×
[
a(tm )
k(tm )

+
λa(tm )eθu(tm )

k(tm )
–
a(tm )eθu(tm )

k(tm )

]
–
H(tm )
eu(tm ) . (.)

http://www.advancesindifferenceequations.com/content/2013/1/278
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Claim A

u
(
tM

)
<N :=

ln( a
a

)u

θ
+ ω

(
a
k

)u

,

u
(
tM

)
<N :=

ln[( a
a

)u + ( aa
)ueθN ]

θ
+ ω

(
a
k

)u

+ ω
(
a
k

)u

eθN .

From (.), we obtain that

∫ κ+ω

κ

[
k(t) + ( – λ)c(t)eu(t)

k(t) + c(t)eu(t)

]
a(t)
k(t)

�t

=
∫ κ+ω

κ

[
k(t) + ( – λ)c(t)eu(t)

k(t) + c(t)eu(t)

][
a(t)eθu(t)

k(t)
+

λa(t)eθu(t)

k(t)

]
�t

+
∫ κ+ω

κ

H(t)
eu(t)

�t.

Therefore, we have

∫ κ+ω

κ

∣∣u�
 (t)

∣∣�t

<
∫ κ+ω

κ

[
k(t) + ( – λ)c(t)eu(t)

k(t) + c(t)eu(t)

][
a(t)
k(t)

+
a(t)eθu(t)

k(t)
+

λa(t)eθu(t)

k(t)

]
�t

+
∫ κ+ω

κ

H(t)
eu(t)

�t

= 
∫ κ+ω

κ

[
k(t) + ( – λ)c(t)eu(t)

k(t) + c(t)eu(t)

]
a(t)
k(t)

�t

< 
∫ κ+ω

κ

a(t)
k(t)

�t ≤ ω
(
a
k

)u

. (.)

By (.), we have

a(tm )eθu(tm )

k(tm )
<
a(tm )
k(tm )

,

which implies

eθu(tm ) <
a(tm )
a(tm )

≤
(
a
a

)u

.

Therefore, we have

u
(
tm

)
<
ln( a

a
)u

θ
. (.)

From (.), (.) and Lemma ., we have

u
(
tM

) ≤ u
(
tm

)
+

∫ κ+ω

κ

∣∣u�
 (t)

∣∣�t <
ln( a

a
)u

θ
+ ω

(
a
k

)u

:=N. (.)

http://www.advancesindifferenceequations.com/content/2013/1/278
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From (.), we obtain that

∫ κ+ω

κ

[
k(t) + ( – λ)c(t)eu(t)

k(t) + c(t)eu(t)

][
a(t)
k(t)

+
λa(t)eθu(t)

k(t)

]
�t

=
∫ κ+ω

κ

[
k(t) + ( – λ)c(t)eu(t)

k(t) + c(t)eu(t)

]
a(t)eθu(t)

k(t)
�t +

∫ κ+ω

κ

H(t)
eu(t)

�t.

Therefore, we have
∫ κ+ω

κ

∣∣u�
 (t)

∣∣�t

<
∫ κ+ω

κ

[
k(t) + ( – λ)c(t)eu(t)

k(t) + c(t)eu(t)

][
a(t)
k(t)

+
λa(t)eθu(t)

k(t)
+
a(t)eθu(t)

k(t)

]
�t

+
∫ κ+ω

κ

H(t)
eu(t)

�t

= 
∫ κ+ω

κ

[
k(t) + ( – λ)c(t)eu(t)

k(t) + c(t)eu(t)

][
a(t)
k(t)

+
λa(t)eθu(t)

k(t)

]
�t

< 
∫ κ+ω

κ

[
a(t)
k(t)

+
λa(t)eθu(t)

k(t)

]
�t.

From this and (.), we have

∫ κ+ω

κ

∣∣u�
 (t)

∣∣�t < ω
(
a
k

)u

+ ω
(
a
k

)u

eθN . (.)

By (.), we have

a(tm )eθu(tm )

k(tm )
<
a(tm )
k(tm )

+
λa(tm )eθu(tm )

k(tm )
,

which implies

eθu(tm ) <
a(tm )
a(tm )

+
a(tm )
a(tm )

eθN ≤
(
a
a

)u

+
(
a
a

)u

eθN .

Therefore, we have

u
(
tm

)
<
ln[( a

a
)u + ( aa

)ueθN ]
θ

. (.)

From (.), (.) and Lemma ., we have

u
(
tM

) ≤ u
(
tm

)
+

∫ κ+ω

κ

∣∣u�
 (t)

∣∣�t

<
ln[( a

a
)u + ( aa

)ueθN ]
θ

+ ω
(
a
k

)u

+ ω
(
a
k

)u

eθN :=N. (.)

Claim B

ln l–i < ui
(
tmi

)
< ln l+i , i = , .

http://www.advancesindifferenceequations.com/content/2013/1/278
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From (.) and noticing that

k(tm )
k(tm ) + c(tm )eu(t

m
 ) <

k(tm ) + ( – λ)c(tm )eu(t
m
 )

k(tm ) + c(tm )eu(t
m
 ) < ,

we have

 <
(
a
k

)u

–
a(tm )

k(tm ) + c(tm )eu(t
m
 ) e

θu(tm ) –
Hl



eu(tm ) .

Therefore, by (.), we have

 <
(
a
k

)u

–
( ak )

l

 + ( ck )
u[( a

a
)u]


θ

eθu(tm ) –
Hl



eu(tm ) .

From assertion () of Lemma . and the above inequality, we have

ln l– < u
(
tm

)
< ln l+ . (.)

Similarly, from (.) and noticing that

k(tm )
k(tm ) + c(tm )eu(t

m
 ) <

k(tm ) + ( – λ)c(tm )eu(t
m
 )

k(tm ) + c(tm )eu(t
m
 ) < ,

we have

 <
(
a
k

)u

+
(
a
k

)u

eθN –
a(tm )

k(tm ) + c(tm )eu(t
m
 ) e

θu(tm ) –
Hl



eu(tm ) .

Therefore, by (.), we have

 <
(
a
k

)u

+
(
a
k

)u

eθN –
( ak )

l

 + ( ck )
u[( a

a
)u + ( aa

)ueθN ]

θ

eθu(tm ) –
Hl



eu(tm ) .

From assertion () of Lemma . and the above inequality, we have

ln l– < u
(
tm

)
< ln l+ . (.)

Claim C

ui
(
tMi

)
> lnu+i or ui

(
tMi

)
< lnu–i , i = , .

From (.), (H) and noticing that

k(tM )
k(tM ) + c(tM )eu(tM )

<
k(tM ) + ( – λ)c(tM )eu(tM )

k(tM ) + c(tM )eu(tM )
< ,

http://www.advancesindifferenceequations.com/content/2013/1/278
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we have

 >
k(tM )

k(tM ) + c(tM )eu(tM )

[(
a
k

)l

–
(
a
k

)u

eθN

]
–

(
a
k

)u

eθu(tM ) –
Hu



eu(tM )
.

Therefore, we have

 >


 + ( ck )
ueN

[(
a
k

)l

–
(
a
k

)u

eθN

]
–

(
a
k

)u

eθu(tM ) –
Hu



eu(tM )
. (.)

From assertion () of Lemma . and (.), we have

u
(
tM

)
> lnu+ or u

(
tM

)
< lnu– . (.)

By a similar argument, it follows from (.) that

 >
( ak )

l

 + ( ck )
ueN

–
(
a
k

)u

eθu(tM ) –
Hu



eu(tM )
. (.)

From assertion () of Lemma . and (.), we have

u
(
tM

)
> lnu+ or u

(
tM

)
< lnu– . (.)

It follows from (.), (.), (.) and assertions ()-() of Lemma . that

u
(
tM

) ∈ (
ln l– , lnu

–

) ∪ (

lnu+ ,N
)
, (.)

u
(
tm

) ∈ (
ln l– , ln l

+

)
. (.)

It follows from (.), (.), (.) and assertions ()-() of Lemma . that

u
(
tM

) ∈ (
ln l– , lnu

–

) ∪ (

lnu+ ,N
)
, (.)

u
(
tm

) ∈ (
ln l– , ln l

+

)
. (.)

Clearly, l±i , u
±
i (i = , ) are independent of λ. Now, let us consider QN(u, ) with u =

(u,u)T ∈R
. Note that

QN(u, ) =

(
( ak ) – ( ak )e

θu – H̄
eu

( ak ) – ( ak )e
θu – H̄

eu

)
.

Therefore, it follows from assertion () of Lemma . that QN(u, ) =  has four distinct
solutions:

ũ =
(
lnx+ , lnx

+

)T , ũ =

(
lnx+ , lnx

–

)T , (.)

ũ =
(
lnx– , lnx

+

)T , ũ =

(
lnx– , lnx

–

)T . (.)

http://www.advancesindifferenceequations.com/content/2013/1/278
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Let


 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
u = (u,u)T ∈ X

∣∣∣∣∣∣∣∣∣

maxt∈Iω u(t) ∈ (lnu+ ,max{ln l+ ,N}),
mint∈Iω u(t) ∈ (ln l– , ln l+ ),
maxt∈Iω u(t) ∈ (lnu+ ,max{ln l+ ,N}),
mint∈Iω u(t) ∈ (ln l– , ln l+ )

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
,


 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
u = (u,u)T ∈ X

∣∣∣∣∣∣∣∣∣

maxt∈Iω u(t) ∈ (lnu+ ,max{ln l+ ,N}),
mint∈Iω u(t) ∈ (ln l– , ln l+ ),
maxt∈Iω u(t) ∈ (ln l– , lnu– ),
mint∈Iω u(t) ∈ (ln l– , ln l+ )

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
,


 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
u = (u,u)T ∈ X

∣∣∣∣∣∣∣∣∣

maxt∈Iω u(t) ∈ (ln l– , lnu– ),
mint∈Iω u(t) ∈ (ln l– , ln l+ ),
maxt∈Iω u(t) ∈ (lnu+ ,max{ln l+ ,N}),
mint∈Iω u(t) ∈ (ln l– , ln l+ )

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
,


 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
u = (u,u)T ∈ X

∣∣∣∣∣∣∣∣∣

maxt∈Iω u(t) ∈ (ln l– , lnu– ),
mint∈Iω u(t) ∈ (ln l– , ln l+ ),
maxt∈Iω u(t) ∈ (ln l– , lnu– ),
mint∈Iω u(t) ∈ (ln l– , ln l+ )

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
.

Then 
, 
, 
, 
 are bounded open subsets of X. It follows from assertion () of
Lemma ., (.) and (.) that ũi ∈ 
i (i = , , , ). From assertion () of Lemma .,
(.)-(.), it is easy to see that 
̄i ∩ 
̄j = ∅ (i, j = , , , , i �= j) and 
i satisfies (a) in
Lemma . for i = , , , . Moreover, QN(u, ) �=  for u ∈ ∂
i ∩KerL. By assertion () of
Lemma ., a direct computation gives

deg
{
JQN(·, ),
 ∩KerL, 

}
= ,

deg
{
JQN(·, ),
 ∩KerL, 

}
= –,

deg
{
JQN(·, ),
 ∩KerL, 

}
= –,

deg
{
JQN(·, ),
 ∩KerL, 

}
= .

Here, J is taken as the identity mapping since ImQ = KerL. So far we have proved that

i satisfies all the assumptions in Lemma .. Hence, (.) has at least four ω-periodic
solutions (ui(t),ui(t))T (i = , , , ) with (ui,ui)T ∈ domL∩ 
̄i. Obviously, (ui(t),ui(t))T

(i = , , , ) are different. �

Example . In system (.), take

ω = , T = {,.} ∪ [, ], T = {t + k|t ∈ T,k ∈ Z},

where Z is the integer set. Clearly, the time scale T is ω-periodic, i.e., t ∈ T implies
t +ω ∈ T. In this case, we have

κ =min
{
[, +∞)∩T

}
= , Iω = [κ ,κ +ω]∩T = T = {,.} ∪ [, ].
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Take

θ = θ = ., H(t) =
 + sin(π t)
,

, H(t) =
 + sin(π t)
,

,

k(t) = 
(
 + sin(π t)

)
, k(t) = 

(
 + sin(π t)

)
,

a(t) =
[
 + sin(π t)

], a(t) =
[ + sin(π t)]


,

a(t) =
[ + sin(π t)]

( + .e.)e(.+.e.)
,

a(t) =
[
 + sin(π t)

], a(t) =
[ + sin(π t)]


, a(t) =

[ + sin(π t)]


,

c(t) =
 + sin(π t)

e.
, c(t) =

 + sin(π t)
[ + .e.]e(.+.e.)

.

Then

Hu
 =


,

, Hu
 =


,

,

(
a
k

)l

=



,

(
a
k

)u

=



,
(
a
k

)l

=


,
,

(
a
k

)u

=


,
,

(
a
k

)u

=


( + .e.)e(.+.e.)
,

(
a
k

)l

=



,
(
a
k

)u

=



,
(
a
k

)l

=


,
,

(
a
k

)u

=



,

(
a
k

)u

=


,
,

(
a
a

)u

= ,
(
a
a

)u

= ,
(
a
a

)u

=



,

(
c
k

)u

=


e.
,

(
c
k

)u

=


[ + .e.]e(.+.e.)
,

N =  ln  + ., N =  ln
[
 + .e.

]
+ . + .e..

Therefore, we have


 + ( ck )

ueN

[(
a
k

)l

–
(
a
k

)u

eθN

]
=




,
( ak )

l

 + ( ck )
ueN

=



,

( + θ)
[(

a
k

)u] 
+θ

[
Hu


θ

] θ
+θ

= .×
(


,

) 
 ×

(


,

) 

=

.
,

,

( + θ)
[(

a
k

)u] 
+θ

[
Hu


θ

] θ
+θ

= .×
(




) 
 ×

(




) 

=


,

.

Hence, all the conditions in Theorem . are satisfied. By Theorem ., system (.) has at
least four -periodic solutions.
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