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Abstract
By using fixed point results on cones, we study the existence of solutions for the
singular nonlinear fractional boundary value problem

cDαu(t) = f (t,u(t),u′(t), cDβu(t)),

u(0) = au(1), u′(0) = b cDβu(1), u′′(0) = u′′′(0) = u(n–1)(0) = 0,

where n ≥ 3 is an integer, α ∈ (n – 1,n), 0 < β < 1, 0 < a < 1, 0 < b <�(2 – β), f is an
Lq-Caratheodory function, q > 1

α–1 and f (t, x, y, z) may be singular at value 0 in one
dimension of its space variables x, y, z. Here, cD stands for the Caputo fractional
derivative.

Keywords: boundary value problem; fixed point; fractional differential equation;
Green function; regularization; singular

1 Introduction
Fractional differential equations (see, for example, [–] and references therein) started
to play an important role in several branches of science and engineering. There are some
works about existence of solutions for the nonlinearmixed problems of singular fractional
boundary value problem (see, for example, [–] and []). Also, there are differentmeth-
ods for solving distinct fractional differential equations (see, for example, [–] and []).
By using fixed point results on cones, we focus on the existence of positive solutions for
a nonlinear mixed problem of singular fractional boundary value problem. For the con-
venience of the reader, we present some necessary definitions from fractional calculus
theory (see, for example, []). The Caputo derivative of fractional order α for a function
f : [,∞) →R is defined by

cDαf (t) =


�(n – α)

∫ t


(t – s)n–α–f (n)(s)ds

(
n –  < α < n,n = [α] + 

)
.

Let q ≥ . As you know, Lq[, ] denotes the space of functions, whose qth powers of mod-
ulus are integrable on [, ], equipped with the norm ‖x‖q = (

∫ 
 |x(t)|q dt) q . We consider

the sup norm

‖x‖ = sup
{∣∣x(t)∣∣ : t ∈ [, ]

}
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on the space C[, ]. Also, AC[, ] is the set of absolutely continuous functions on [, ].
Let B be a subset ofR. A function f : [, ]×B→R is called an Lq-Caratheodory function
whenever the real-valued function f (·,x, y, z) on [, ] is measurable for all (x, y, z) ∈ B, the
function f (t, ·, ·, ·) : B → R is continuous for almost all t ∈ (, ], and for each compact
set U ⊂ B, there exists a function ϕu ∈ Lq[, ] such that |f (t,x, y, z)| ≤ ϕu(t) for almost all
t ∈ [, ] and (x, y, z) ∈U . Consider the nonlinear fractional boundary value problem

cDαu(t) = f
(
t,u(t),u′(t), cDβu(t)

)
,

u() = au(), u′() = b cDβu(), u′′() = u′′′() = u(n–)() = ,
(∗)

where n≥  is an integer, α ∈ (n–,n),  < β < ,  < a < ,  < b < �(–β) and q > 
α– .We

say that the function u : [, ] → R is a positive solution for the problem whenever u > 
on [, ], cDαu is a function in Lq[, ], and u satisfies the boundary conditions almost
everywhere on [, ]. In this paper, we suppose that f is an Lq-Caratheodory function on
[, ]×B, where B = (,∞)× (,∞)× (,∞), there exists a positive constantm such that
m ≤ f (t,x, y, z) for almost all t ∈ [, ] and (x, y, z) ∈ B, f satisfies the estimate

f (t,x, y, z) ≤ h(x) + r
(|y|) + k

(|z|) + γ (t)w
(
x, |y|, |z|),

where h, r,k ∈ C(,∞) are positive and non-increasing, γ ∈ Lq[, ] and w ∈ C([,∞) ×
[,∞) × [,∞)) are positive, w is non-decreasing in all its variables,

∫ 
 h

q(sα)ds < ∞,∫ 
 r

q(sα–)ds <∞,
∫ 
 k

q(sα–β)ds <∞, and limx �→∞ w(x,x,x)
x = . Since we suppose that prob-

lem (∗) is singular, that is, f (t,x, y, z) may be singular at the value  of its space variables x,
y, z, we use regularization and sequential techniques for the existence of positive solutions
of the problem. In this way, for each natural number n define the function fn by

fn(t,x, y, z) = f
(
t,χ+

n (x),χ
+
n (y),χ

+
n (z)

)

for all t ∈ [, ] and (x, y, z) ∈ R
, where

χ+
n (u) =

⎧⎨
⎩
u, u≥ 

n ,

n , u < 

n .

It is easy to see that each fn is an Lq-Caratheodory function on [, ]×R
,m ≤ fn(t,x, y, z),

fn(t,x, y, z) ≤ h
(

n

)
+ r

(

n

)
+ k

(

n

)
+ γ (t)w

(
 + x,  + |y|,  + |z|)

and

fn(t,x, y, z) ≤ h(x) + r
(|y|) + k

(|z|) + γ (t)w
(
 + x,  + |y|,  + |z|)

for almost all t ∈ [, ] and all (x, y, z) ∈ B. In , Agarwal et al. proved the following
result.
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Lemma . [] Let ρ ∈ Lq[, ] and  ≤ t < t ≤ . Then we have | ∫ t
 (t – s)α–ρ(s)ds| ≤

( tdd )
/p‖ρ‖q for all t ∈ [, ] and

∣∣∣∣
∫ t


(t – s)α–ρ(s)ds –

∫ t


(t – s)α–ρ(s)ds

∣∣∣∣
≤

(
td + (t – t)d – td

d

)/p

‖ρ‖q +
(
(t – t)d

d

)/p

‖ρ‖q,

where d = (α – )p + .

2 Main results
Now, we are ready to investigate the problem in regular and singular cases. First, we give
the following result.

Lemma . Let y ∈ C[, ]. Then the boundary value problem

cDαu(t) = y(t)
(
t ∈ (, )

)
,

u() = au(), u′() = b cDβu(), u′′() = u′′′() = u(n–)() = 

is equivalent to the fractional integral equation u(t) =
∫ 
 G(t, s)y(s)ds, where

G(t, s) =
(t – s)α–

�(α)

+
a�(α – β)(�( – β) – b)( – s)α– + b�(α)�( – β)(a + t – at)( – s)α–β–

( – a)�(α)�(α – β)(�( – β) – b)

whenever ≤ s ≤ t ≤  and

G(t, s) =
a�(α – β)(�( – β) – b)( – s)α– + b�(α)�( – β)(a + t – at)( – s)α–β–

( – a)�(α)�(α – β)(�( – β) – b)

whenever ≤ t ≤ s ≤ .

Proof From cDαu(t) = y(t) and the boundary conditions, we obtain

u(t) = Iαy(t) + u() + u′()t +
u′′()
!

t + · · · + u(n–)()
(n – )!

tn–

=


�(α)

∫ t


(t – s)α–y(s)ds + u() + u′()t.

By properties of the Caputo derivative, we get

cDβu(t) = Iα–βy(t) + cDβ
(
u() + u′()t

)

=


�(α – β)

∫ t


(t – s)α–β–y(s)ds +

u′()t–β

�( – β)
.
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Thus, u() = 
�(α)

∫ 
 ( – s)α–y(s)ds + u() + u′() and

cDβu() =


�(α – β)

∫ 


( – s)α–β–y(s)ds +

u′()
�( – β)

.

By using the boundary conditions u() = au() and u′() = b cDβu(), we get u() =
a( 

�(α)
∫ 
 ( – s)α–y(s)ds + u() + u′()) and

u′() = b
(


�(α – β)

∫ 


( – s)α–β–y(s)ds +

u′()
�( – β)

)
.

Hence, u′() = b�(–β)
�(α–β)(�(–β)–b)

∫ 
 ( – s)α–β–y(s)ds and

u() =
a

( – a)�(α)

∫ 


( – s)α–y(s)ds

+
ab�( – β)

( – a)�(α – β)(�( – β) – b)

∫ 


( – s)α–β–y(s)ds.

Thus,

u(t) =


�(α)

∫ t


(t – s)α–y(s)ds + u() + u′()t

=
∫ t



(
(t – s)α–

�(α)
+

a�(α – β)(�( – β) – b)( – s)α–

( – a)�(α)�(α – β)(�( – β) – b)

+
b�(α)�( – β)(a + t – at)( – s)α–β–

( – a)�(α)�(α – β)(�( – β) – b)

)
y(s)ds

+
∫ 

t

(
a�(α – β)(�( – β) – b)( – s)α–

( – a)�(α)�(α – β)(�( – β) – b)

+
b�(α)�( – β)(a + t – at)( – s)α–β–

( – a)�(α)�(α – β)(�( – β) – b)

)
y(s)ds

=
∫ 


G(t, s)y(s)ds.

This completes the proof. �

Put k = �(α–β)(�(–β)–b)+b�(α)�(–β)
(–a)�(α)�(α–β)(�(–β)–b) and k = ab�(–β)

(–a)�(α–β)(�(–β)–b) . It is easy to check that the
Green function G in the last result belongs to C([, ] × [, ]), G(t, s) >  for all (t, s) ∈
[, )× [, ),

G(t, s)≤ k( – s)α–β– ≤  and G(t, s)≥ k( – s)α–β–

for all (t, s) ∈ [, ] × [, ]. Consider the Banach space X = C[, ] with the norm ‖x‖∗ =
max{‖x‖,‖x′‖} and the cone

P =
{
x ∈ X : x(t)≥  and x′(t) ≥  for all t ∈ [, ]

}
.

http://www.advancesindifferenceequations.com/content/2013/1/359


Baleanu et al. Advances in Difference Equations 2013, 2013:359 Page 5 of 12
http://www.advancesindifferenceequations.com/content/2013/1/359

For each natural number n, define the operator Qn on P by

(Qnx)(t) =
∫ 


G(t, s)fn

(
s,u(s),u′(s), cDβu(s)

)
ds.

Now, we prove that Qn is a completely continuous operator (see []).

Lemma . The operator Qn is a completely continuous operator.

Proof Let x ∈ P. Then, cDβx ∈ C[, ] and cDβx ≥ . Now, define ρ(t) = fn(t,u(t),u′(t),
cDβu(t)) for almost all t ∈ [, ]. Then ρ ∈ Lq[, ] and ρ(t)≥m for almost all t ∈ [, ]. By
using the properties of fractional integral Iα , it is easy to see thatQnx ∈ C[, ], (Qnx)(t)≥ 
and

(Qnx)′(t) =


�(α – )

∫ t


(t – s)α–ρ(s)ds

for all t ∈ [, ]. This implies that (Qnx)′ ∈ C[, ] and (Qnx)′ ≥  on [, ]. Consequently,
Qn maps P into P. In order to prove thatQn is a continuous operator, let xm be a convergent
sequence in P and limm�→∞ xm = x. Thus, limm�→∞ x(j)m (t) = x(j)(t) uniformly on [, ] for
j = , . Since

cDβx(t) =


�( – β)
d
dt

∫ t


(t – s)–β

(
x(s) – x()

)
ds

=


�( – β)

∫ t


(t – s)–βx′(s)ds,

we get |cDβxm(t) – cDβx(t)| ≤ ‖x′
m–x′‖

�(–β)
∫ t
 (t – s)–β ds ≤ ‖xm–x‖∗

�(β) and limm�→∞ cDβxm(t) =
cDβx(t) uniformly on [, ]. Also, we have |cDβxm(t)| ≤ x′

m
�(β) on [, ], and so ‖cDβxm‖ ≤

‖x′
m‖

�(β) . Now, put

ρm(t) = fn
(
t,xm(t),x′

m(t),
cDβxm(t)

)
and ρ(t) = fn

(
t,x(t),x′(t), cDβx(t)

)
.

Then, it is easy to see that limm�→∞ ρm(t) = ρ(t) for almost all t ∈ [, ], and there exists
β ∈ Lq[, ] such that  ≤ ρm(t) ≤ β(t) for almost all t ∈ [, ] and all m ≥ . Since fn is an
Lq-Caratheodory function, {xm} is bounded in C[, ], and {cDβxm} is bounded in C[, ].
Therefore, limm�→∞(Qnxm)(t) = (Qnx)(t) uniformly on [, ]. Since {ρm} is Lq-convergent
on [, ],

lim
m�→∞(Qnxm)′(t) =


�(α – )

lim
m�→∞

∫ t


(t – s)α–ρm(s)ds = (Qnx)′(t)

uniformly on [, ]. Hence,Qn is a continuous operator. Now, we have to show that for each
bounded sequence {xm} in P, the sequence {Qnxm} is relatively compact in C[, ]. Choose
a positive constant k such that ‖xm‖ ≤ k and ‖x′

m‖ ≤ k for all m. Note that ‖cDβxm‖ ≤
k

�(β) and | ∫ t
 (t – s)α–ρm(s)ds| ≤ (

∫ t
 (t – s)(α–)p ds)


p (

∫ t
 |ρm(s)|qds)


q ≤ ( tdd )


p ‖ρm‖q for all

m, where d = (α – )p + . But we have

 ≤ (Qnxm)(t) =
∫ 


G(t, s)ρm(s)ds≤

∫ 


G(t, s)β(s)ds≤ ‖β‖

�(α)

http://www.advancesindifferenceequations.com/content/2013/1/359
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and

 ≤ (Qnxm)′(t) =


�(α – )

∫ t


(t – s)α–ρm(s)ds

≤ 
�(α – )

∫ t


(t – s)α–β(s)ds≤ 

�(α – )

(


(α – )p + 

) 
p
‖β‖q

for all t ∈ [, ] andm. This implies that {Qnxm} is bounded in C[, ]. Also, we have

∣∣(Qnxm)′(t) – (Qnxm)′(t)
∣∣

=


�(α – )

∣∣∣∣
∫ t


(t – s)α–ρm(s)ds –

∫ t


(t – s)α–ρm(s)ds

∣∣∣∣

≤ ‖ρm‖q
�(α – )

((
td + (t – t)d – td

d

) 
p
+

(
(t – t)d

d

) 
p
)

≤ ‖β‖q
�(α – )

((
td + (t – t)d – td

d

) 
p
+

(
(t – t)d

d

) 
p
)

for all  ≤ t ≤ t ≤ , where d = (α – )p+ . Hence, {(Qnxm)′} is equicontinuous on [, ].
Thus, {Qnxm} is relatively compact in C[, ] by the Arzela-Ascoli theorem. Hence, Qn is
a completely continuous operator. �

We need the following result (see [] and []).

Lemma . [] Let Y be a Banach space, P a cone in Y and 	 and 	 bounded open
balls in Y centered at the origin with 	̄ ⊂ 	. Suppose that T : P ∩ (	̄\	) → P is a
completely continuous operator such that ‖Tx‖ ≥ ‖x‖ for all x ∈ P ∩ ∂	 and ‖Tx‖ ≤ ‖x‖
for all x ∈ P ∩ ∂	. Then T has a fixed point in P ∩ (	̄\	).

Theorem . For each natural number n, problem (∗) has a solution un ∈ P such that
un ≥ mk

α–β
, u′

n(t) ≥ mtα–
�(α) and cDβun(t)≥ mtα–β

�(α–β+) for all t ∈ [, ].

Proof Let n ≥ . It is sufficient to show that Qn has a fixed point un in P with the desired
conditions. In this way, note that

(Qnx)(t) =
∫ 


G(t, s)fn

(
s,x(s),x′(s), cDβx(s)

)
ds

≥m
∫ 


G(t, s)ds≥m

∫ 


k( – s)α–β– ds =

mk
α – β

,

and so ‖Qnx‖∗ ≥ ‖Qn(x)‖ ≥ mk
α–β

. Put 	 = {x ∈ X : ‖x‖∗ < mk
α–β

}. Then ‖Qnx‖∗ ≥ ‖x‖∗ for
all x ∈ P ∩ ∂	. If vn = h( n ) + r( n ) + k( n ), then

∣∣(Qnx)(t)
∣∣ ≤

∣∣∣∣
∫ 


G(t, s)fn

(
s,u(s),u′(s), cDβu(s)

)
ds

∣∣∣∣
≤

∫ 



∣∣G(t, s)∣∣(vn + γ (s)w
(
 +

∣∣x(s)∣∣,  + ∣∣x′(s)
∣∣,  + ∣∣cDβx(s)

∣∣))ds
≤ k

(
vn +w

(
 + ‖x‖,  + ∥∥x′∥∥,  + ∥∥cDβx

∥∥)‖γ ‖
)

http://www.advancesindifferenceequations.com/content/2013/1/359
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and

∣∣(Qnx)′(t)
∣∣

=
∣∣∣∣ 
�(α – )

∫ t


(t – s)α–fn

(
s,x(s),x′(s), cDβx(s)

)
ds

∣∣∣∣
≤ 

�(α – )

∫ t


(t – s)α–

(
vn + γ (s)w

(
 +

∣∣x(s)∣∣,  + ∣∣x′(s)
∣∣,  + ∣∣cDβx(s)

∣∣))ds

≤ 
�(α – )

(
vntα–

α – 
+w

(
 + ‖x‖,  + ∥∥x′∥∥,  + ∥∥cDβx

∥∥)∫ t


(t – s)α–γ (s)ds

)

for all x ∈ P and t ∈ [, ], becausew is non-decreasing in all its variables. Since ‖x‖ ≤ ‖x‖∗,
‖x′‖ ≤ ‖x‖∗, ‖cDβx‖ ≤ ‖x′‖

�(β) ≤ ‖x‖∗
�(β) and

∫ t


(t – s)α–γ (s)ds≤

(

d

)/p

‖γ ‖q,

where d = (α – )p + , we have

∥∥Qn(x)
∥∥ ≤ k

(
vn +w

(
 + ‖x‖∗,  + ‖x‖∗,  +

‖x‖∗
�(β)

)
‖γ ‖

)

and

∥∥(Qnx)′
∥∥

≤ 
�(α – )

(
vn

α – 
+w

(
 + ‖x‖∗,  + ‖x‖∗,  +

‖x‖∗
�(β)

)
(/d)/p‖γ ‖q

)
.

Hence, ‖Qnx‖∗ ≤M( vn
α– +Nw( + ‖x‖∗,  + ‖x‖∗,  + ‖x‖∗

�(β) )), whereN =max{‖γ ‖, (/d)/p ×
‖γ ‖q} andM =max{ 

�(α–) ,k}. Since

lim
v�→∞


v
w( + v,  + v,  + v) = ,

there exists a positive constant L such that

M
(

vn
α – 

+Nw
(
 + v,  + v,

v
�(β)

))
< v

for all v ≥ L. Thus, ‖Qnx‖∗ < ‖x‖∗ for all x ∈ P with ‖x‖∗ ≥ L. Put 	 = {x ∈ X : ‖x‖∗ < L}.
Then ‖Qnx‖∗ < ‖x‖∗ for all x ∈ P ∩ ∂	. By using last result, Qn has a fixed point un in
P ∩ (	̄\	). But un = (Qnun)(t) ≥ mk

α–β
and

(Qnx)′(t) =


�(α – )

∫ t


(t – s)α–fn

(
s,x(s),x′(s), cDβx(s)

)
ds

≥ m
�(α – )

∫ t


(t – s)α– ds =

mtα–

�(α)

http://www.advancesindifferenceequations.com/content/2013/1/359
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for all t ∈ [, ] and x ∈ P. Since
∫ t
 (t – s)–βsα– ds = �(α)�(–β)

�(α–β+) t
α–β ,

cDβun(t) =


�( – β)

∫ t


(t – s)–βu′

n(s)ds

≥ m
�(α)�( – β)

∫ t


(t – s)–βsα– ds =

mtα–β

�(α – β + )

for all t ∈ [, ]. This completes the proof. �

Now, we give our last result.

Theorem . Problem (∗) has a solution u such that u(t) ≥ mk
α–β

, u′(t) ≥ mtα–
�(α) and

cDβu(t) ≥ mtα–β

�(α–β+) for all t ∈ [, ].

Proof By using Theorem ., one gets that for each natural number n, problem (∗) has a
solution un ∈ P with the desired conditions. Thus, h(un(t)) ≤ h(mk

α–β
), r(|u′

n(t)|) ≤ r(mtα–
�(α) )

and k(|cDβun(t)|) ≤ k( mtα–β

�(α–β+) ) for all t ∈ [, ] and n. Also, we have ‖cDβun‖ ≤ ‖u′
n‖

�(β) . Sup-
pose that

S(t) = h
(

mk
α – β

)
+ r

(
mtα–

�(α)

)
+ k

(
mtα–β

�(α – β + )

)
.

Then

m ≤ fn
(
t,un(t),u′

n(t),
cDβun(t)

)
≤ S(t) + γ (t)w

(
 + ‖un‖,  +

∥∥u′
n
∥∥,  + ∥∥cDβun

∥∥)

≤ S(t) + γ (t)w
(
 + ‖un‖∗,  +

∥∥u′
n
∥∥∗,  +

‖un‖∗
�(β)

)

for almost all t ∈ [, ] and n. Since ≤G(t, s) ≤ k, we get

 ≤ un(t)

=
∫ 


G(t, s)fn

(
s,un(s),u′

n(s),
cDβun(s)

)
ds

≤ k
(∫ 


S(s)ds +w

(
 + ‖un‖∗,  + ‖un‖∗,  +

‖un‖∗
�(β)

)
‖γ ‖

)

and

 ≤ u′
n(t)

≤ 
�(α – )

(∫ t


(t – s)α–S(s)ds

+w
(
 + ‖un‖∗,  + ‖un‖∗,  +

‖un‖∗
�(β)

)∫ t


(t – s)α–γ (s)ds

)
.
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We show that
∫ t
 (t – s)α–S(s)ds is bounded on [, ]. Let d = (α – )p + . Note that

∫ 


(t – s)α–h

(
mk
α – β

)
ds

= h
(

mk
α – β

)∫ 


(t – s)α– ds =


α – 

h
(

mk
α – β

)
=: η <∞,

∫ t


(t – s)α–r

(
msα–

�(α)

)
ds

=
(

d

)/p(
�(α)
m

) 
(α–)q

(∫ ( m
�(α) )


α–


rq

(
sα–

)
ds

)/q

=: η < ∞

and

∫ t


(t – s)α–k

(
msα–β

�(α – β + )

)
ds

=
(

d

)/p(
�(α – β + )

m

) 
(α–β)q

(∫ ( m
�(α–β+) )


α–β


kq

(
sα–β

)
ds

)/q

=: η <∞.

Thus,
∫ t
 (t – s)α–S(s)ds≤ η for all t ∈ [, ], where η = η + η + η. Also, we have

∫ 


S(s)ds

≤ 
α – 

h
(

mk
α – β

)
+

(
�(α)
m

) 
α–

∫ ( m
�(α) )


α–


r
(
sα–

)
ds

+
(

�(α – β + )
m

) 
α–β

∫ ( m
�(α–β+) )


α–β


k
(
sα–β

)
ds < ∞.

Since

‖un‖ = k
(∫ 


S(s)ds +w

(
 + ‖un‖∗,  + ‖un‖∗,  +

‖un‖∗
�(β)

)
‖γ ‖

)

and

∥∥u′
n
∥∥ ≤ 

�(α – )

(
η +w

(
 + ‖un‖∗,  + ‖un‖∗,  +

‖un‖∗
�(β)

)(

d

)/p

‖γ ‖q
)
,

we get ‖un‖∗ ≤ M(� + Kw( + ‖un‖∗,  + ‖un‖∗,  + ‖un‖∗
�(β) )) for all n, where � = max{η,∫ 

 S(s)ds}, K = max{‖γ ‖, ( d )/p‖γ ‖q} and also M = max{k, 
�(α–) }. On the other hand,

there exists a positive constant L such that M(� + Kw( + v,  + v,  + v
�(β) )) < v for all

v ≥ L, and so ‖un‖∗ < L for all n. Thus, for almost all t ∈ [, ] and all n, we have
fn(t,un(t),u′

n(t), cDβun(t))≤ R(t), where

R(t) = S(t) + γ (t)w
(
 + L,  + L,  +

L
�(β)

)
.
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Note that R ∈ Lq[, ]. We show that {u′
n} is equicontinuous on [, ]. Let ρn(t) =

fn(t,un(t),u′
n(t), cDβun(t)) and  ≤ t < t ≤ T . Then

∣∣u′
n(t) – u′

n(t)
∣∣

=


�(α – )

∣∣∣∣
∫ t


(t – s)α–ρn(s)ds –

∫ t


(t – s)α–ρn(s)ds

∣∣∣∣
≤ 

�(α – )

(∫ t



(
(t – s)α– – (t – s)α–

)
ρn(s)ds +

∫ t

t
(t – s)α–ρn(s)ds

)

≤ 
�(α – )

(∫ t



(
(t – s)α– – (t – s)α–

)
R(s)ds +

∫ t

t
(t – s)α–R(s)ds

)
,

and so

∣∣u′
n(t) – u′

n(t)
∣∣

≤ ‖R‖q
�(α – )

((
td + (t – t)d – td

d

)/p

+
(
(t – t)d

d

)/p)
.

Hence, {u′
n} is equicontinuous on [, ]. Since {un} is a bounded sequence in C[, ], by

using the Arzela-Ascoli theorem, without loss of generality, we can assume that {un} is
convergent inC[, ]. Let limn�→∞ un = u. Then, it is easy to see that cDβun(t) = 

�(α–)
∫ t
 (t–

s)–βu′
n(s)ds, and cDβun(t) uniformly converges to 

�(α–)
∫ t
 (t – s)–βu′(s)ds on [, ]. Thus,

cDβun converges to cDβu in C[, ]. Hence,

lim
n�→∞ fn

(
t,un(t),u′

n(t),
cDβun(t)

)
= f

(
t,u(t),u′(t), cDβu(t)

)

for almost all t ∈ [, ]. Since R ∈ Lq[, ], by using the dominated convergence theorem
on the relation

un(t) =
∫ 


G(t, s)fn

(
s,un(s),u′

n(s),
cDβun(s)

)
ds,

we get u(t) =
∫ 
 G(t, s)f (s,u(s),u

′(s), cDβu(s)) for all t ∈ [, ]. This completes the proof.
�

2.1 Examples for the problem
Example . Let ρ,ρ ∈ Lq[, ], ρ(t) ≥m >  for almost all t in [, ]. Suppose that

f (t,x, y, z) = ρ(t) +


x 
 – λ

+

y 

+


z 

+

∣∣ρ(t)
∣∣(x 

 + y

 + z



)

on [, ] × B, λ = (au())  , h(x) = 

x

 –λ

whenever x 
 – λ ≥  and h(x) =  whenever x 

 –

λ < , r(x) = 

x


, k(x) = 

x


, w(x, y, z) = (x 

 + y 
 + z 

 + ) and γ (t) = ρ(t) + |ρ(t)|. Then
Theorem . guarantees that problem (∗) has a positive solution.
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Example . Consider the nonlinear mixed problem of singular fractional boundary
value problem

cD

 u(t) = t +  +


u(t)  – ρ

+


u′(t) 
+


( cD 

 u(t)) 

+ 
(
u(t)


 + u′(t)


 +

(cD 
 u(t)

) 
 + 

)

via boundary value conditions u() = 
u(), u

′() = 
 (

cD 
 )u() and u′′() = u′′′() = · · · =

u(n–)() = , where ρ = ((  )u())

 . Let

f
(
t,u(t),u′(t), cD



)
= t +  +


u(t)  – ρ

+


u′(t) 
+


( cD 

 u(t)) 

+ 
(
u(t)


 + u′(t)


 +

(cD 
 u(t)

) 
 + 

)
.

Then themap f is singular at t = , and f satisfies the desired conditions, where h(x) = 

x

 –ρ

whenever x 
 – ρ ≥  and h(x) =  whenever x 

 – ρ < , r(x) = 

x


, k(x) = 

x


, w(x, y, z) =

x 
 + y 

 + z 
 + , ρ(t) = t +  >  =m, ρ(t) =  and γ (t) = ρ(t) + |ρ(t)|. Then Theorem .

guarantees that this problem has a positive solution.

3 Conclusions
One of the most interesting branches is obtaining solutions of singular fractional differ-
ential via boundary value problems. Having these things in mind, we study the existence
of solutions for a singular nonlinear fractional boundary value problem. Two illustrative
examples illustrate the applicability of the proposed method. It seems that the obtained
results could be extended to more general functional spaces. Finally, note that all calcula-
tions in proofs of the results depend on the definition of the fractional derivative.
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