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Abstract
The space of Boehmians is constructed using an algebraic approach that utilizes
convolution and approximate identities or delta sequences. A proper subspace can
be identified with the space of distributions. In this paper, we first construct a suitable
Boehmian space on which the Sumudu transform can be defined and the function
space S can be embedded. In addition to this, our definition extends the Sumudu
transform to more general spaces and the definition remains consistent for S
elements. We also discuss the operational properties of the Sumudu transform on
Boehmians and finally end with certain theorems for continuity conditions of the
extended Sumudu transform and its inverse with respect to δ- and �-convergence.
MSC: Primary 54C40; 14E20; secondary 46E25; 20C20
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1 Introduction
The Sumudu transform of one variable function f (x) is introduced as a new integral trans-
form by Watugala in [] and is given by

Sf (t)(y) =

y

∫
R+

f (t) exp
(
–t
y

)
dt, y ∈ (–τ, τ)

over the set of functions

A =
{
f (t) : ∃M, τ, τ > ,

∣∣f (t)∣∣ <Me
t
τj , t ∈ (–)j × (,∞)

}
,

where f (t) is a function that can be expressed as a convergent series [, ]. The Sumudu
transform was applied to solve the ordinary differential equations in control engineering
problems; see [].
The Sumudu transform of the convolution product of f and u is given by

S(f � u)(y) = yf s(y)us(y),

where f s and us are the Sumudu transforms of f and u, respectively.
Some of the properties were established by Weerakoon in [, ]. In [], further funda-

mental properties of this transform were also established by Asiru. Similarly, this trans-
form was applied to a one-dimensional neutron transport equation in [] by Kadem.
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In [], the Sumudu transform was extended to the distributions and some of their prop-
erties were also studied. Recently, this transform has been applied to solve the system of
differential equations; see Kılıçman et al. in [].
Note that a very interesting fact about Sumudu transform is that the original func-

tion and its Sumudu transform have the same Taylor coefficients except the factor n; see
Zhang []. Similarly, the Sumudu transform sends combinations C(m,n) into permuta-
tions P(m,n), and hence it will be useful in the discrete systems.
The following are the general properties of the Sumudu transform which are auxiliary

from the substitution method and the properties of integral operators.
(i) If k and k are non-negative integers and S and S are the corresponding Sumudu

transforms of f and f, respectively, then

S(kf + kf)(y) = kS(y) + kS(y).

(ii) Sf (kt)(y) = S(ky), k ∈ R+.
(iii) limt→ f (t) = limu→ S(y) = f (), where S(y) is the Sumudu transform of f .

More properties of the Sumudu transforms a long with a some of applications were given
in [] and [].

2 Boehmian space
Boehmians were first constructed as a generalization of regularMikusinski operators [].
Theminimal structure necessary for the construction of Boehmians consists of the follow-
ing elements:

(i) a nonempty set A;
(ii) a commutative semigroup (B,∗);
(iii) an operation � :A×B→ A such that for each x ∈A and s, s,∈ B,

x� (s ∗ s) = (x� s)� s;
(iv) a collection � ⊂ BN such that

(a) If x, y ∈A, (sn) ∈ �, x� sn = y� sn for all n, then x = y;
(b) If (sn), (tn) ∈ �, then (sn ∗ tn) ∈ �.

Elements of � are called delta sequences. Consider

Q =
{
(xn, sn) : xn ∈ A, (sn) ∈ �,xn � sm = xm � sn,∀m,n ∈N

}
.

Now if (xn, sn), (yn, tn) ∈Q, xn � tm = ym � sn, ∀m,n ∈N, then we say (xn, sn) ∼ (yn, tn). The
relation∼ is an equivalence relation inQ. The space of equivalence classes inQ is denoted
by β . Elements of β are called Boehmians.
We note that between A and β there is a canonical embedding expressed as x → x�sn

sn .
The operation� can also be extended to β ×A by xn

sn � t = xn�t
sn . The relationship between

the notion of convergence and the product � is given by:
(i) If fn → f as n→ ∞ in A and φ ∈ B is any fixed element, then fn � φ → f � φ in A

(as n→ ∞);
(ii) If fn → f as n→ ∞ in A and (δn) ∈ �, then fn � δn → f in A (as n → ∞).

The operation� can be extended to β ×B as follows: If [ fnsn ] ∈ β and φ ∈ B, then [ fnsn ]�φ =
[ fn�φ

sn ]. In β , there are two types of convergence as follows.
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() A sequence (hn) in β is said to be δ-convergent to h in β , denoted by hn
δ→ h, if there

exists (sn) ∈ � such that (hn � sn), (h� sn) ∈A, ∀k,n ∈ N, and (hn � sk) → (h� sk)
as n→ ∞ in A for every k ∈N.

() A sequence (hn) in β is said to be �-convergent to h in β , denoted by hn
�→ h, if there

exists a (sn) ∈ � such that (hn – h)� sn ∈A, ∀n ∈ N, and (hn – h)� sn →  as
n → ∞ in A.

For further discussion, see [–].

3 The Boehmian spaceH(Y)
Denote by S+(R) and D+(R) the space of all rapidly decreasing functions over R+ (R+ =
(,∞)) and the space of all test functions of compact support, respectively. Inwhat follows,
we obtain preliminary results required to construct the Boehmian spaceH(Y), where Y =
(S+,D+,�+).

Lemma .
() If u,u ∈D+(R), then u � u ∈D+(R).
() If f, f ∈ S+(R) and u ∈D+(R), then (f + f) � u = f � u + f � u.
() u � u = u � u, ∀u,u ∈D+(R).
() If f ∈ S+, u,u ∈D+(R), then (f � u) � u = f � (u � u).

Proofs are analogous to those of classical cases and details are omitted.

Definition . A sequence (sn) of functions from D+(R) is said to be in �+ if and only if

�
+

∫
R+

sn(x)dx = ;

�
+

∫
R+

∣∣sn(x)∣∣dx≤ M, M is a positive integer;

�
+ supp sn(x)⊂ (, εn), εn →  as n → ∞.

This means that (sn) shrinks to zero as n→ ∞. Each member of �+ is called a delta se-
quence or an approximate identity or, sometimes, a summability kernel. Delta sequences,
in general, appear in many branches of mathematics, but probably the most important
applications are those in the theory of generalized functions. The basic use of delta se-
quences is the regularization of generalized functions, and further, they can be used to
define the convolution product and the product of generalized functions.

Lemma . If (sn), (tn) ∈ �+, then supp(sn � tn) ⊂ supp sn + supp tn.

Lemma . If u,u ∈D+(R), then so is u � u and

∫
R+

|u � u| ≤
∫
R+

|u| ·
∫
R+

|u|.

Theorem . Let f, f ∈ S+(R) and (sn) ∈ �+ such that f � sn = f � sn, n = , , , . . . , then
f = f in S+(R).
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Proof We show that f � sn = f in S+(R). Let K be a compact set containing the supp sn for
every n ∈N. Using �

+, we write

∣∣xkDm(f � sn – f)(x)
∣∣ ≤

∫
K

∣∣sn(t)∣∣∣∣xkDm(
f(x – t) – f(x)

)∣∣dt. (.)

The mapping t → f t , where f t (x) = f(x– t), is uniformly continuous fromR+ → R+. From
the hypothesis that supp sn →  as n → ∞ (by �

+), we choose r >  such that supp sn ⊆
[, r] for large n and t < r. This implies

∣∣f(x – t) – f(x)
∣∣ = ∣∣f t – f

∣∣ < εn

M
. (.)

Hence using �
+ and (.), (.) becomes

∣∣xkDm(f � sn – f)(x)
∣∣ < εn →  as n→ ∞.

Thus f � sn → f in S+(R). Similarly, we show that f � sn → f. This completes the proof of
the theorem. �

Theorem . If limn→∞ fn = f in S+(R) and u ∈D+(R), then

lim
n→∞ fn � u = f � u.

Proof In view of the hypothesis of the theorem, we write

∣∣xkDm(fn � u – f � u)(x)
∣∣ = ∣∣xk(Dm(fn – f ) � u

)
(x)

∣∣. (.)

The last equation follows from the fact that []

Dmf � u =Dmf � u = f �Dmu.

Hence, for each u ∈D+(R), we have

∣∣xkDm(fn � u – f � u)(x)
∣∣ ≤

∫
K
xk

∣∣Dm(fn – f )(x – t)
∣∣∣∣u(t)∣∣dt

≤ Mγk(fn – f ) for some constantM

→  as n → ∞.

The proof of the theorem is completed. �

Theorem . If limn→∞ fn = f in S+(R) and (sn) ∈ �+, then limn→∞ fn � sn = f .

Proof In view of the analysis employed for Theorem ., we get

lim
n→∞ fn � sn = fn → f as n → ∞.

http://www.advancesindifferenceequations.com/content/2013/1/77
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Hence

lim
n→∞ fn � sn = f as n→ ∞.

This completes the proof. The Boehmian space H(Y) is therefore constructed. �

The canonical embedding between S+(R) and H(Y) is expressed as x → [ x�snsn ]. The ex-
tension of � to H(Y)× S+ is given by [ xnsn ] � t = [ xn�t

sn ]. Convergence in H(Y) is defined in a
natural way:

δ-convergence: A sequence (hn) in H(Y) is said to be δ-convergent to h in H(Y), denoted
by hn

δ→ h, if there exists a delta sequence (sn) such that (hn � sn), (h� sn) ∈ S+(R), ∀k,n ∈N,
and (hn � sk)→ (h � sk) as n→ ∞ in S+(R) for every k ∈N.

�+-convergence: A sequence (hn) in H(Y) is said to be �+-convergent to h in H(Y), de-
noted by hn

�→ h, if there exists a (sn) ∈ �+ such that (hn – h) � sn ∈ S+(R), ∀n ∈ N , and
(hn – h) � sn →  as n→ ∞ in S+(R).

Theorem . The mapping f → [ f �snsn ] is a continuous embedding of S+(R) into H(Y).

Proof Themapping is one-to-one. For detailed proof, let [ f�snsn ] = [ f�tntn ], then (f � sn)� tm =
(f � tm) � sn. Then since (sn), (tn) ∈ �+, f � (sm � tn) = f � (tn � sm) = f � (sm � tn). Using
Theorem ., we get f = f. To show the mapping is continuous, let fn →  as n → ∞ in
S+(R). Then we show that

[
fn � sm
sm

]
δ→  as n → ∞.

From Theorem ., [ fn�sm
sm ] � sm = fn � sm →  as n → ∞. This completes the proof of the

theorem. �

Theorem . Let f ∈ S+(R) and u ∈D+(R), then

S(f � u)(y) = yf s(y)us(y).

4 The Boehmian spaceH(Ys)
We describe another Boehmian space as follows. Let S+(R) be the space of rapidly de-
creasing functions []. Define

Ds
+(R) =

{
us : for all u ∈D+(R)

}
, (.)

where us denotes the Sumudu transform of u. We also define f • us by

(
f • us)(y) = yf (y)us(y). (.)

Lemma . Let f ∈ S+(R) and us ∈Ds
+(R), then f • us ∈ S+(R).

http://www.advancesindifferenceequations.com/content/2013/1/77
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Proof If f ∈ S+(R) and us ∈Ds
+(R), then using the topology ofS+(R) and Leibnitz’ theorem,

we get

∣∣xkDm
x
(
f • us)(x)∣∣ ≤

∣∣∣∣∣xk
m∑
j=

Dm–j(xf (x))Djus(x)

∣∣∣∣∣

≤
m∑
j=

∣∣xkDm–j(xf (x))∣∣∣∣Djus(x)
∣∣

=
m∑
j=

∣∣xkDm–jf(x)
∣∣
∣∣∣∣
∫
K
u(t)Dj

x
e– t

x

x
dt

∣∣∣∣,

where f(x) = xf (x) ∈ S+(R) and K is a compact subset containing the suppu(t). Hence

∣∣xkDm
x
(
f • us)(x)∣∣ ≤ Mγk,m–j(f) < ∞

for some positive constantM. This completes the proof of the lemma. �

Lemma . The mapping

S+ ×Ds
+ → S+,(

f ,us
) → f • us

satisfies the following properties:
() If us,us ∈Ds

+(R), then us • us ∈Ds
+(R).

() If f, f ∈ S+(R), us ∈ Ds
+(R), then (f + f) • us = f • us + f • us.

() For us,us ∈ Ds
+(R), us • us = us • us.

() For f ∈ S+(R), us,us ∈ Ds
+(R), then (f • us) • us = f • (us • us).

Proof The proof of the above lemma is straightforward. Detailed proof is as follows.
Proof of (). Let u,u ∈ D+(R), then u � u ∈ D+(R). Hence (u � u)s ∈ Ds

+(R) by (.).
Theorem . implies us • us ∈Ds

+(R).
Proof of () is obvious.
Proof of (). We have

(
us • us

)
(x) = xus(x)u

s
(x)

= xus(x)u
s
(x)

=
(
us • us

)
(x).

Hence us • us = us • us.
Proof of (). Let f ∈ S+(R), us,us ∈Ds

+(R), then

((
f • us

) • us
)
(x) = x

(
f • us

)
(x)us

= xxf (x)us(x)u
s
(x)

= xf (x)xus(x)u
s
(x)

http://www.advancesindifferenceequations.com/content/2013/1/77
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= xf (x)
(
us • us

)
(x)

= f • (
us • us

)
(x),

that is,

(
f • us

) • us = f • (
us • us

)
.

This completes the proof of the theorem. �

Denote by �s
+ the set of all Sumudu transforms of delta sequences from �+. That is,

�s
+ =

{(
ssn

)
: (sn) ∈ �+,∀n ∈N

}
. (.)

Lemma. Let f, f ∈ S+(R), (ssn) ∈ �s
+ be such that f • ssn = f • ssn, ∀n, then f = f in S+(R).

Proof Let f, f ∈ S+(R) and (ssn) ∈ �s
+. Since f • ssn = f • ssn, (.) implies xf(x)ssn(x) =

xf(x)ssn(x). Hence f(x) = f(x) for all x. The proof is completed. �

Lemma . For each (sn), (tn) ∈ �+, (ssn • tsn) ∈ �s
+.

Proof Since (sn), (tn) ∈ �+, sn � tn ∈ �+ for all n. Hence, from Theorem ., we get S(sn �

tn)(x) = xssn(x)tsn(x) = ssn • tsn ∈ �s
+ for every n. This completes the proof of the lemma. �

By aid of Lemma .. and Lemma ., �s
+ can be regarded as a delta sequence.

Lemma . Let fn → f in S+(R), us ∈Ds
+(R), then fn • us → f • us in S+(R).

Proof It is clear that us is bounded in Ds
+(R). Further,

(
fn • us)(x) → xf (x)us(x)

→ (
fn • us)(x).

Hence (fn • us) → f • us. �

Lemma . Let fn → f in S+(R), (ssn) ∈ �s
+, then fn • ssn → f in S+(R).

Proof Let (sn) ∈ �+, then ssn(x)→ 
x uniformly on compact subsets of R+. Hence

∣∣xkDm
x
(
fn • ssn – f

)
(x)

∣∣ =
∣∣xkDm

x
(
xfn(x)ssn(x) – f (x)

)∣∣
→ ∣∣xkDm

x (fn – f )(x)
∣∣

as n→ ∞. Thus |xkDm
x (fn • ssn – f )(x)| →  as n→ ∞. This yields fn • ssn → f in the topol-

ogy of S+(R). The proof is therefore completed. The space H(Ys) can be regarded as a
Boehmian space, where Ys = (S+,Ds

+,�s
+). �

http://www.advancesindifferenceequations.com/content/2013/1/77


Al-Omari and Kılıçman Advances in Difference Equations 2013, 2013:77 Page 8 of 10
http://www.advancesindifferenceequations.com/content/2013/1/77

Lemma . The mapping

f →
[
f • ssn
ssn

]
(.)

is a continuous embedding of S+(R) into H(Ys).

Proof For f ∈ S+(R), ssn ∈ �s
+,

f •ssn
ssn

is a quotient of sequences in the sense that (f • ssn)• ssm =

f •(ssm•ssn).We show that themap (.) is one-to-one. Let [ f•s
s
n

ssn
] = [ f•t

s
n

tsn
], then (f•ssn)•tsm =

(f • tsm) • ssn,m,n ∈N. Using Lemma . and Lemma ., we conclude f = f. �

To establish the continuity of (.), let fn →  as n → ∞ in S+(R). Then fn • ssn →  as
n→ ∞ by Lemma ., and hence

[
fn • ssn
ssn

]
→ 

as n→ ∞ in H(Ys). This completes the proof of the lemma.

5 The Sumudu transform of Boehmians
Let β = [ fnsn ] ∈H(Y), then we define the Sumudu transform of β by the relation

βs
 =

[
f sn
ssn

]
in H

(
Ys). (.)

Theorem . βs
 :H(Y)→H(Ys) is well defined.

Proof Let β = β ∈ H(Y), where β = [ fnsn ], β = [ gntn ]. Then the concept of quotients yields
fn � tm = gm � sn. Employing Theorem ., we get xf sn (x)tsm(x) = xgsm(x)ssn(x), i.e., f sn • tsm =
gsm • ssn. Equivalently, f sn

ssn
∼ gsn

tsn
. Thus βs

 = βs
. This completes the proof of the theorem. �

Theorem . βs :H(Y)→H(Ys) is continuous with respect to δ-convergence.

Proof Let βn →  in H(Y), then by [], βn = [ fn,ksk ] and fn,k →  as n → ∞ in S+(R). Ap-
plying the Sumudu transform to both sides yields f sn,k →  as n→ ∞. Hence

βs
n =

[ f sn,k
ssk

]
→ 

as n→ ∞ in H(Ys). This proves the theorem. �

Theorem . βs :H(Y) →H(Ys) is a one-to-one mapping.

Proof Assume βs
 = [ f

s
n
ssn
] = [ g

s
n
tsn
] = βs

, then f sn • tsm = gsm • ssn. Hence

(fn � tm)s = (gm � sn)s.

Since the Sumudu transform is one-to-one, we get fn � tm = gm � sn. Thus

fn
sn

∼ gn
tn
.

http://www.advancesindifferenceequations.com/content/2013/1/77
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Hence
[
fn
sn

]
= β =

[
gn
tn

]
= β.

This completes the proof of the theorem. �

Theorem . Let β,β ∈H(Y), then
() (β + β)s = βs

 + βs
;

() (kβ)s = kβs, λ ∈C.

Proof is immediate from the definitions.

Theorem . βs :H(Y) →H(Ys) is continuous with respect to �+-convergence.

Proof Let βn
�→ β in H(Y) as n→ ∞. Then there exist fn ∈ S+(R) and (sn) ∈ �+ such that

(βn – β) � sn = [ fn�sk
sk

] and fn →  as n→ ∞. Employing Eq. (.), we get

S
(
(βn – β) � sn

)
=

[
S(fn � sk)

ssk

]
.

Hence, we have S((βn – β) � sn) = [ yf
s
nssk
ssk

] →  as n→ ∞ in H(Ys). Therefore

S
(
(βn – β) � sn

)
= y

(
βs
n – βs)ssn

→  as n→ ∞.

Hence, βs
n

�→ βs as n→ ∞. �

Theorem . βs :H(Y) →H(Ys) is onto.

Proof Let [ f
s
n
ssn
] ∈H(Ys) be arbitrary, then f sn • ssm = f sm • ssn for everym,n ∈N. Then fn � sm =

fm � sn. That is, fn
sn is the corresponding quotient of sequences of f sn

ssn
. Thus [ fnsn ] ∈ H(Y) is

such that S[ fnsn ] = [ f
s
n
ssn
] in H(Ys). This completes the proof of the lemma.

Let βs = [ f
s
n
ssn
] ∈H(Ys), then we define the inverse Sumudu transform of βs by

βs– =
[
fn
sn

]

in the space H(Y). �

Theorem . Let [ f
s
n
ssn
] ∈ H(Ys) and u ∈ D+(R), us ∈Ds

+(R)

β

([
fn
sn

]
� u

)
=

[
f sn
ssn

]
• u and βs–

([
f sn
ssn

]
• us

)
=

[
fn
sn

]
� u.

Proof is immediate from the definitions.

http://www.advancesindifferenceequations.com/content/2013/1/77
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