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Abstract
In this paper, we consider the poly-Cauchy polynomials and numbers of the second
kind which were studied by Komatsu. We note that the poly-Cauchy polynomials of
the second kind are the special generalized Bernoulli polynomials of the second kind.
The purpose of this paper is to give various identities of the poly-Cauchy polynomials
of the second kind which are derived from umbral calculus.

1 Introduction
As is well known, the Bernoulli polynomials of the second kind are defined by the gener-
ating function to be

t
log ( + t)

( + t)x =
∞∑
n=

bn(x)
tn

n!
(see [, p.]). ()

When x = , bn = bn() are called the Bernoulli numbers of the second kind (see [, p.]).
Let Lifk(x) be the polylogarithm factorial function, which is defined by

Lifk(x) =
∞∑
n=

xm

m!(m + )k
(see [–]). ()

The poly-Cauchy polynomials of the second kind ĉ(k)n (x) (k ∈ Z, n ∈ Z≥) are defined by
the generating function to be

Lifk
(
– log ( + t)

)
( + t)x =

∞∑
n=

ĉ(k)n (x)
tn

n!
(see [, ]). ()

When x = , ĉ(k)n = ĉ(k)n () are called the poly-Cauchy numbers of the second kind, defined
by

∞∑
n=

ĉ(k)n
tn

n!
= Lifk

(
– log( + t)

)
. ()

In particular, if we take k = , then we have

Lif
(
– log ( + t)

)
( + t)x =

t
( + t) log ( + t)

( + t)x =
t( + t)x–

log ( + t)
. ()
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Thus, we note that

ĉ()n (x) = bn(x – ) = B(n)
n (x), ()

where B(α)
n (x) are the Bernoulli polynomials of order α (see []) as their numbers [, p.

and p.].
When x = , ĉ()n = ĉ()n () = bn(–) = B(n)

n , whereB(α)
n are the Bernoulli numbers of order α.

The falling factorial is defined by

(x)n = x(x – ) · · · (x – n + ) =
n∑
l=

S(n, l)xl, ()

where S(n, l) is the signed Stirling number of the first kind.
Form ∈ Z≥, it is well known that

(
log( + t)

)m =m!
∞∑
l=m

S(l,m)
tl

l!

=
∞∑
l=

S(l +m,m)
m!

(l +m)!
tl+m (see [, p.]). ()

For λ ∈ C with λ �= , the Frobenius-Euler polynomials of order r are defined by the gen-
erating function to be

(
 – λ

et – λ

)r

ext =
∞∑
n=

H (r)
n (x|λ) t

n

n!
(see [–]).

In this paper, we investigate the properties of the poly-Cauchy numbers and polynomials
of the second kind with umbral calculus viewpoint. The purpose of this paper is to give
various identities of the poly-Cauchy polynomials of the second kind which are derived
from umbral calculus.

2 Umbral calculus
Let C be the complex number field and let F be the set of all formal power series in the
variable t:

F =

{
f (t) =

∞∑
k=

ak
k!
tk

∣∣∣∣ak ∈C

}
. ()

Let P = C[x] and let P∗ be the vector space of all linear functionals on P. 〈L|p(x)〉 is the
action of the linear functional L on the polynomial p(x), and we recall that the vector space
operations on P

∗ are defined by 〈L +M|p(x)〉 = 〈L|p(x)〉 + 〈M|p(x)〉, 〈cL|p(x)〉 = c〈L|p(x)〉,
where c is a complex constant in C. For f (t) ∈ F , let us define the linear functional on P

by setting

〈
f (t)|xn〉 = an (n≥ ). ()
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Then, by () and (), we get

〈
tk|xn〉 = n!δn,k (n,k ≥ ), ()

where δn,k is Kronecker’s symbol.
For fL(t) =

∑∞
k=

〈L|xk〉
k! tk , we have 〈fL(t)|xn〉 = 〈L|xn〉. That is, L = fL(t). Themap L 	−→ fL(t)

is a vector space isomorphism from P
∗ onto F . Henceforth, F denotes both the algebra

of formal power series in t and the vector space of all linear functionals on P, and so an
element f (t) of F will be thought of as both a formal power series and a linear functional.
We call F the umbral algebra and the umbral calculus is the study of umbral algebra. The
order O(f (t)) of a power series f (t) ( �= ) is the smallest integer k for which the coefficient
of tk does not vanish. If O(f (t)) = , then f (t) is called a delta series; if O(f (t)) = , then
f (t) is called an invertible series (see [, , ]). For f (t), g(t) ∈ F with O(f (t)) =  and
O(g(t)) = , there exists a unique sequence sn(x) (deg sn(x) = n) such that 〈g(t)f (t)k|sn(x)〉 =
n!δn,k for n,k ≥ . The sequence sn(x) is called the Sheffer sequence for (g(t), f (t)) which is
denoted by sn(x) ∼ (g(t), f (t)) (see [, ]).
For f (t), g(t) ∈F and p(x) ∈ P, we have

〈
f (t)g(t)|p(x)〉 = 〈

f (t)|g(t)p(x)〉 = 〈
g(t)|f (t)p(x)〉, ()

and

f (t) =
∞∑
k=

〈
f (t)|xk 〉 tk

k!
, p(x) =

∞∑
k=

〈
tk|p(x)〉xk

k!
. ()

Thus, by (), we get

tkp(x) = p(k)(x) =
dkp(x)
dxk

, and eytp(x) = p(x + y). ()

Let us assume that sn(x)∼ (g(t), f (t)). Then the generating function of sn(x) is given by


g(f̄ (t))

exf̄ (t) =
∞∑
n=

sn(x)
tn

n!
, for all x ∈C, ()

where f̄ (t) is the compositional inverse of f (t) with f̄ (f (t)) = t (see [, ]).
For sn(x)∼ (g(t), f (t)), we have the following equation:

f (t)sn(x) = nsn–(x) (n≥ ), ()

sn(x) =
n∑
j=


j!
〈
g
(
f̄ (t)

)– f̄ (t)j|xn〉xj, ()

and

sn(x + y) =
n∑
j=

(
n
j

)
sj(x)pn–j(y), ()

where pn(x) = g(t)sn(x) (see [, p.]).
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Let us assume that pn(x) ∼ (, f (t)), qn(x) ∼ (, g(t)). Then the transfer formula is given
by

qn(x) = x
(
f (t)
g(t)

)n

x–pn(x) (n≥ ) (see [, p.]).

For sn(x)∼ (g(t), f (t)), rn(x)∼ (h(t), l(t)), let us assume that

sn(x) =
n∑

m=

Cn,mrn(x) (n≥ ). ()

Then we have

Cn,m =

m!

〈
h(f̄ (t))
g(f̄ (t))

l
(
f̄ (t)

)m∣∣∣xn〉 (see [, p.]). ()

3 Poly-Cauchy numbers and polynomials of the second kind
From (), we note that ĉ(k)n (x) is the Sheffer sequence for the pair(

g(t) =


Lifk(–t)
, f (t) = et – 

)
,

that is,

ĉ(k)n (x)∼
(


Lifk(–t)

, et – 
)
. ()

Because for f̄ (t) = log( + t), using the formula (), we get

Lifk
(
– log( + t)

)
( + t)x =

∞∑
n=

sn(x)
tn

n!

which is the generating function of ĉ(k)n (x) in ().
From (), we have


Lifk(–t)

ĉ(k)n (x) ∼ (
, et – 

)
, ()

and

(x)n =
n∑
l=

S(n, l)xl ∼
(
, et – 

)
. ()

By () and (), we get

ĉ(k)n (x) = Lifk(–t)(x)n =
n∑

m=

S(n,m)Lifk(–t)xm

=
n∑

m=

S(n,m)
m∑
a=

(–)a

a!(a + )k
taxm
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=
n∑

m=

m∑
a=

S(n,m)
(–)a

(m
a
)

(a + )k
xm–a

=
n∑

m=

m∑
j=

S(n,m)
(–)m–j(m

j
)

(m – j + )k
xj

=
n∑
j=

{ n∑
m=j

S(n,m)
(–)m–j(m

j
)

(m – j + )k

}
xj. ()

By () and (), we get

ĉ(k)n (x) =
n∑
j=


j!
〈
Lifk

(
– log ( + t)

)(
log ( + t)

)j|xn〉xj. ()

Now, we observe that

〈
Lifk

(
– log ( + t)

)(
log ( + t)

)j|xn〉
=

∞∑
m=

(–)m

m!(m + )k
〈(
log ( + t)

)m+j|xn〉

=
n–j∑
m=

(–)m

m!(m + )k

n–j–m∑
l=

S(l +m + j,m + j)
(l +m + j)!

(m + j)!
〈
tm+j+l|xn〉

=
n–j∑
m=

(–)m

m!(m + )k

n–m–j∑
l=

S(l +m + j,m + j)
(l +m + j)!

(m + j)!n!δn,l+m+j

=
n–j∑
m=

(–)m(m + j)!
m!(m + )k

S(n,m + j). ()

From () and (), we have

ĉ(k)n (x) =
n∑
j=


j!

n–j∑
m=

(–)m(m + j)!
m!(m + )k

S(n,m + j)xj =
n∑
j=

{ n–j∑
m=

(–)m
(m+j

m
)

(m + )k
S(n,m + j)

}
xj

=
n∑
j=

{ n∑
m=j

(–)m–j(m
j
)

(m – j + )k
S(n,m)

}
xj, ()

which is the same as the expression in (). From (), we note that


Lifk(–t)

ĉ(k)n (x) ∼ (
, et – 

)
, xn ∼ (, t). ()

For n≥ , by () and (), we get


Lifk(–t)

ĉ(k)n (x) = x
(

t
et – 

)n

x–xn = x
(

t
et – 

)n

xn–

= xB(n)
n–(x) =

n–∑
l=

(
n – 
l

)
B(n)
n––lx

l+. ()
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Thus, by (), we see that

ĉ(k)n (x) =
n–∑
l=

(
n – 
l

)
B(n)
n––l Lifk(–t)x

l+

=
n–∑
l=

l+∑
m=

(–)m
(
n – 
l

)(
l + 
m

)
B(n)
n––l

(m + )k
xl+–m

=
n–∑
l=

l+∑
j=

(–)l+–j
(
n – 
l

)(
l + 
j

)
B(n)
n––l

(l +  – j)k
xj

=
n–∑
l=

(–)l+
(
n – 
l

)
B(n)
n––l

(l + )k

+
n∑
j=

{ n–∑
l=j–

(–)l+–j
(
n – 
l

)(
l + 
j

)
B(n)
n––l

(l +  – j)k

}
xj. ()

Therefore, by () and (), we obtain the following theorem.

Theorem  For n ≥ , ≤ j ≤ n, we have

n∑
m=j

(–)m–j(m
j
)

(m – j + )k
S(n,m) =

n–∑
l=j–

(–)l+–j
(
n – 
l

)(
l + 
j

)
B(n)
n––l

(l +  – j)k
.

In addition, for n ≥ , we have

ĉ(k)n =
n∑

m=

S(n,m)
(–)m

(m + )k
=

n–∑
l=

(–)l+
(
n – 
l

)
B(n)
n––l

(l + )k
.

From (), we note that

ĉ(k)n (x + y) =
n∑
j=

(
n
j

)̂
c(k)j (x)pn–j(y), ()

where pn(y) = 
Lifk (–t)̂

c(k)n (y) ∼ (, et – ).
By () and (), we get

(y)n = pn(y) ∼
(
, et – 

)
. ()

Thus, from () and (), we have

ĉ(k)n (x + y) =
n∑
j=

(
n
j

)̂
c(k)j (x)(y)n–j. ()

By (), (), and (), we get

ĉ(k)n (x + ) – ĉ(k)n (x) =
(
et – 

)̂
c(k)n (x) = n̂c(k)n–(x).
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For sn(x)∼ (g(t), f (t)), the recurrence formula for sn(x) is given by

sn+(x) =
(
x –

g ′(t)
g(t)

)


f ′(t)
sn(x) (see []). ()

By () and (), we get

ĉ(k)n+(x) =
(
x –

Lif′k(–t)
Lifk(–t)

)
e–t̂c(k)n (x)

= x̂c(k)n (x – ) – e–t
Lif′k(–t)
Lifk(–t)

ĉ(k)n (x). ()

We observe that

Lif′k(–t)Lif
′
k(–t)

Lifk(–t)
ĉ(k)n (x) = Lif′k(–t)


Lifk(–t)

ĉ(k)n (x) = Lif′k(–t)(x)n

=
n∑
l=

S(n, l)Lif′k(–t)x
l

=
n∑
l=

S(n, l)
l∑

m=

(–)m
( l
m
)

(m + )k
xl–m

=
n∑
j=

{ n∑
l=j

(–)l–j
(l
j
)

(l – j + )k
S(n, l)

}
xj. ()

Therefore, by () and (), we obtain the following theorem.

Theorem  For n ≥ , we have

ĉ(k)n+(x) = x̂c(k)n (x – ) –
n∑
j=

{ n∑
l=j

S(n, l)
(–)l–j

(l – j + )k

(
l
j

)}
(x – )j.

From (), we note that

ĉ(k)n (y) =

〈 ∞∑
l=

ĉ(k)l (y)
tl

l!

∣∣∣∣xn
〉
=

〈
Lifk

(
– log ( + t)

)
( + t)y|xn〉

=
〈
Lifk

(
– log ( + t)

)
( + t)y|xxn–〉

=
〈
∂t

(
Lifk

(
– log ( + t)

)
( + t)y

)|xn–〉
=

〈
∂t

(
Lifk

(
– log ( + t)

))
( + t)y|xn–〉

+
〈
Lifk

(
– log ( + t)

)
∂t( + t)y|xn–〉

=
〈
∂t

(
Lifk

(
– log ( + t)

))
( + t)y|xn–〉 + ŷc(k)n–(y – ), ()

where ∂t f (t) = df (t)
dt .

Since tLif′k(t) = Lifk–(t) – Lifk(t), we get

Lif′k(t) =
Lifk–(t) – Lifk(t)

t
. ()

http://www.advancesindifferenceequations.com/content/2014/1/36
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By () and (), we see that

ĉ(k)n (y) = ŷc(k)n–(y – )

+
〈
Lifk–(– log( + t)) – Lifk(– log( + t))

( + t) log( + t)
( + t)y

∣∣∣xn–〉
= ŷc(k)n–(y – )

+
〈
Lifk–(– log( + t)) – Lifk(– log( + t))

t( + t)
( + t)y

∣∣∣ t
log( + t)

xn–
〉
. ()

From (), (), and (), we note that

ĉ(k)n (y) = ŷc(k)n–(y – ) +
n–∑
l=

B(l)
l ()
l!

(n – )l

×
〈
Lifk–(– log ( + t)) – Lifk(– log ( + t))

t
( + t)y–

∣∣∣xn–l–〉

= ŷc(k)n–(y – ) +
n–∑
l=

B(l)
l ()
l!

(n – )l

×
〈
Lifk–(– log ( + t)) – Lifk(– log ( + t))

t
( + t)y–

∣∣∣t xn–ln – l

〉

= ŷc(k)n–(y – ) +
n–∑
l=

(
n – 
l

)
B(l)
l ()
n – l

{̂
c(k–)n–l (y – ) – ĉ(k)n–l(y – )

}

= ŷc(k)n–(y – ) +

n

n–∑
l=

(
n
l

)
B(l)
l ()

{̂
c(k–)n–l (y – ) – ĉ(k)n–l(y – )

}
. ()

It is not difficult to show that ĉ(k) (y–) = ĉ(k–) (y–). Since ĉ(k) (y–) = ĉ(k–) (y–), by (),
we obtain the following theorem.

Theorem  For n ≥ , we have

ĉ(k)n (x) = xĉ(k)n–(x – ) +

n

n∑
l=

(
n
l

)
B(l)
l ()

{̂
c(k–)n–l (x – ) – ĉ(k)n–l(x – )

}
.

For n≥m ≥ , we compute

〈(
log ( + t)

)m
Lifk

(
– log ( + t)

)|xn〉
in two different ways.
On the one hand,

〈(
log ( + t)

)m
Lifk

(
– log ( + t)

)|xn〉
=

〈
Lifk

(
– log ( + t)

)∣∣∣∣ ∞∑
l=

m!
(l +m)!

S(l +m,m)tl+mxn
〉

http://www.advancesindifferenceequations.com/content/2014/1/36
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=
n–m∑
l=

m!
(l +m)!

S(l +m,m)(n)l+m
〈
Lifk

(
– log ( + t)

)|xn–l–m〉
=

n–m∑
l=

m!
(

n
l +m

)
S(l +m,m)ĉ(k)n–l–m. ()

On the other hand, we get

〈(
log ( + t)

)m
Lifk

(
– log ( + t)

)|xn〉
=

〈(
log ( + t)

)m
Lifk

(
– log ( + t)

)|xxn–〉
=

〈
∂t

((
log ( + t)

)m
Lifk

(
– log ( + t)

))|xn–〉. ()

Now, we observe that

∂t
((
log ( + t)

)m
Lifk

(
– log ( + t)

))
=m

(
log ( + t)

)m– 
 + t

Lifk
(
– log ( + t)

)
+

(
log ( + t)

)mLifk–(– log ( + t)) – Lifk(– log ( + t))
( + t) log ( + t)

=
(
log ( + t)

)m–( + t)–
{
mLifk

(
– log ( + t)

)
+ Lifk–

(
– log ( + t)

)
– Lifk

(
– log ( + t)

)}
. ()

By () and (), we get

〈(
log ( + t)

)m
Lifk

(
– log ( + t)

)|xn〉
=

n–m∑
l=

(m – )!
(l +m – )!

S(l +m – ,m – )

× {
(m – )

〈
Lifk

(
– log ( + t)

)
( + t)–|tl+m–xn–

〉
+

〈
Lifk–

(
– log ( + t)

)
( + t)–|tl+m–xn–

〉}
= (m – )

n–m∑
l=

(m – )!
(l +m – )!

S(l +m – ,m – )(n – )l+m–

× 〈
Lifk

(
– log ( + t)

)
( + t)–|xn–m–l〉

+
n–m∑
l=

(m – )!
(l +m – )!

S(l +m – ,m – )(n – )l+m–

× 〈
Lifk–

(
– log ( + t)

)
( + t)–|xn–m–l〉

=
n–m∑
l=

(m – )!
(

n – 
l +m – 

)
S(l +m – ,m – )

× {
(m – )̂c(k)n–l–m(–) + ĉ(k–)n–l–m(–)

}
. ()

Therefore, by () and (), we obtain the following theorem.

http://www.advancesindifferenceequations.com/content/2014/1/36
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Theorem  For n ≥m ≥ , we have

n–m∑
l=

m!
(

n
l +m

)
S(l +m,m)̂c(k)n–l–m

=
n–m∑
l=

(m – )!
(

n – 
l +m – 

)
S(l +m – ,m – )

× {
(m – )̂c(k)n–l–m(–) + ĉ(k–)n–l–m(–)

}
.

In particular, if we take m = , then we get

ĉ(k–)n (–) =
n–∑
l=

(–)ll!
(

n
l + 

)̂
c(k)n–l–.

Remark For sn(x)∼ (g(t), f (t)), it is known that

d
dx

sn(x) =
n–∑
l=

(
n
l

)〈
f̄ (t)|xn–l〉sl(x) (see [, p.]). ()

By () and (), we easily show that

d
dx

ĉ(k)n (x) = (–)nn!
n–∑
l=

(–)l–

(n – l)l!̂
c(k)l (x),

which is a special case of Proposition  in [].

Let us consider the following two Sheffer sequences:

ĉ(k)n (x)∼
(


Lifk(–t)

, et – 
)
, ()

and

B(r)
n (x)∼

((
et – 
t

)r

, t
)
.

Suppose that

ĉ(k)n (x) =
n∑

m=

Cn,mB(r)
m (x). ()

By (), we see that

Cn,m =

m!

〈 ( t
log (+t) )

r


Lifk (– log (+t))

(
log ( + t)

)m∣∣∣xn〉

=

m!

〈
Lifk

(
– log ( + t)

)( t
log ( + t)

)r(
log ( + t)

)m∣∣∣xn〉
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=

m!

n–m∑
l=

m!
(l +m)!

S(l +m,m)(n)l+m

×
〈
Lifk

(
– log ( + t)

)( t
log ( + t)

)r∣∣∣xn–l–m〉

=

m!

n–m∑
l=

m!
(l +m)!

S(l +m,m)(n)l+m
n–l–m∑
a=

B(a–r+)
a


a!

× 〈
Lifk

(
– log ( + t)

)|taxn–l–m〉
=

n–m∑
l=

(
n

l +m

)
S(l +m,m)

n–l–m∑
a=

B(a–r+)
a

(n – l –m)a
a!

× 〈
Lifk

(
– log ( + t)

)|xn–l–m–a〉
=

n–m∑
l=

n–l–m∑
a=

(
n

l +m

)(
n –m – l

a

)
S(l +m,m)B(a–r+)

a ()̂c(k)n–l–m–a. ()

Therefore, by () and (), we obtain the following theorem.

Theorem  For n ≥ , we have

ĉ(k)n (x) =
n∑

m=

{n–m∑
l=

n–m–l∑
a=

(
n

l +m

)(
n –m – l

a

)
S(l +m,m)B(a–r+)

a ()̂c(k)n–m–l–a

}
B(r)
m (x).

Remark The Narumi polynomials of order a are defined by the generating function to be

∞∑
k=

N (a)
k (x)
k!

tk =
(

t
log ( + t)

)–a

( + t)x (see [, p.]). ()

Indeed, N (k)
a (x) = B(k+a+)

k (x + ), N (a)
k (x)∼ (( et–t )a, et – ).

By () and (), we get

Cn,m =
n–m∑
l=

n–m–l∑
a=

(
n

l +m

)(
n – l –m

a

)
S(l +m,m)N (–r)

a ĉ(k)n–l–m–a. ()

From () and (), we have

ĉ(k)n (x) =
n∑

m=

{n–m∑
l=

n–m–l∑
a=

(
n

l +m

)(
n – l –m

a

)

× S(l +m,m)N (–r)
a ĉ(k)n–l–m–a

}
B(r)
m (x). ()
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By (), we easily show that

Cn,m =
n–m∑
l=

n–m–l∑
a=

∑
a+···+ar=a

(
n

l +m

)(
n – l –m

a

)(
a

a, . . . ,ar

)
× S(l +m,m)ba · · ·bar̂ c(k)n–m–l–a. ()

From () and (), we can derive the following equation:

ĉ(k)n (x) =
n∑

m=

{n–m∑
l=

n–m–l∑
a=

∑
a+···+ar=a

(
n

l +m

)(
n – l –m

a

)(
a

a, . . . ,ar

)

× S(l +m,m)

( r∏
i=

bai

)̂
c(k)n–m–l–a

}
B(r)
m (x). ()

For () and (), let

ĉ(k)n (x) =
n∑

m=

Cn,mH (r)
m (x|λ), ()

where, by (), we get

Cn,m =


m!( – λ)r
〈
Lifk

(
– log ( + t)

)
( + t – λ)r|(log ( + t)

)mxn〉
=


m!( – λ)r

n–m∑
l=

m!
(l +m)!

S(l +m,m)(n)l+m

× 〈
Lifk

(
– log ( + t)

)
( + t – λ)r|xn–l–m〉

. ()

We observe that

〈
Lifk

(
– log ( + t)

)
( + t – λ)r|xn–l–m〉

=
r∑

a=

(
r
a

)
( – λ)r–a

〈
Lifk

(
– log ( + t)

)|taxn–l–m〉
=

r∑
a=

(
r
a

)
( – λ)r–a(n –m – l)a

〈
Lifk

(
– log ( + t)

)|xn–l–m–a〉
=

r∑
a=

(
r
a

)
( – λ)r–a(n –m – l)âc(k)n–l–m–a. ()

Thus, by () and (), we get

Cn,m =
n–m∑
l=

r∑
a=

(
n

l +m

)(
r
a

)
(n –m – l)a( – λ)–aS(l +m,m)̂c(k)n–m–l–a. ()

Therefore, by () and (), we obtain the following theorem.
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Theorem  For n ≥ , we have

ĉ(k)n (x) =
n∑

m=

{n–m∑
l=

r∑
a=

(
n

l +m

)(
r
a

)
(n –m – l)a( – λ)–aS(l +m,m)

× ĉ(k)n–m–l–a

}
H (r)

m (x|λ).

For ĉ(k)n (x)∼ ( 
Lifk (–t)

, et – ), and (x)n ∼ (, et – ), let us assume that

ĉ(k)n (x) =
n∑

m=

Cn,m(x)m. ()

From (), we note that

Cn,m =

m!

〈
Lifk

(
– log ( + t)

)
tm|xn〉

=

m!

〈
Lifk

(
– log ( + t)

)|tmxn〉
=

(
n
m

)〈
Lifk

(
– log ( + t)

)|xn–m〉
=

(
n
m

)̂
c(k)n–m. ()

Therefore, by () and (), we obtain the following theorem.

Theorem  For n ≥ , we have

ĉ(k)n (x) =
n∑

m=

(
n
m

)̂
c(k)n–m(x)m.
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