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Abstract
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1 Introduction, definitions and notations
In the usual notations, let Bn(x) and En(x) denote, respectively, the classical Bernoulli and
Euler polynomials of degree n in x, defined by the generating functions

∞∑
n=

Bn(x)
tn

n!
=

t
et – 

ext , |t| < π

and

∞∑
n=

En(x)
tn

n!
=


et + 

ext , |t| < π .

Also, let

Bn := Bn() and En := En(),

where Bn and En are, respectively, the Bernoulli and Euler numbers of order n.
Carlitz first extended the classical Bernoulli polynomials and numbers, Euler polynomi-

als and numbers []. There are numerous recent investigations on this subject bymany au-
thors. Cheon [], Kurt [], Luo [], Luo and Srivastava [], Srivastava et al. [, ], Tremblay
et al. [], and Mahmudov [, ].
Throughout this paper, we always make use of the following notation: N denotes the set

of natural numbers and C denotes the set of complex numbers.
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The q-numbers and q-factorial are defined by

[a]q =
 – qa

 – q
, q �= , [n]q! = [n]q[n – ]q · · · []q[]q, n ∈N,a ∈C,

respectively, where []q! = , n ∈N, a ∈C. The q-polynomials coefficient is defined by

[
n
k

]
q

=
(q : q)n

(q : q)n–k(q : q)k
,

where (q : q)n = ( – q) · · · ( – qn)n.
The q-analogue of the function (x + y)nq is defined by

(x + y)nq =
n∑

k=

[
n
k

]
q

q
k(k–)

 xn–kyk .

The q-binomial formula is known as

(n : q)a = ( – a)nq =
n–∏
j=

(
 – qja

)
=

n∑
k=

[
n
k

]
q

q
k(k–)

 (–)kak .

The q-exponential functions are given by

eq(z) =
∞∑
n=

zn

[n]q!
=

∞∏
k=


( – ( – q)qkz)

,  < |q| < , |z| < 
| – q|

and

Eq(z) =
∞∑
n=

q
n(n–)


zn

[n]q!
=

∞∏
k=

(
 + ( – q)qkz

)
,  < |q| < , z ∈ C.

From these forms, we easily see that eq(z)Eq(–z) = .Moreover,Dqeq(z) = eq(z),DqEq(z) =
Eq(qz), where Dq is defined by

Dqf (z) =
f (qz) – f (z)

qz – z
,  < |q| < ,  �= z ∈C.

The above q-standard notation can be found in [].
Mahmudov defined and studied properties of the following generalized q-Bernoulli

polynomials B(α)
n,q(x, y) of order α and q-Euler polynomials E (α)

n,q (x, y) of order α as fol-
lows [].
Let q ∈ C, α ∈N and  < |q| < . The q-Bernoulli numbersB(α)

n,q and polynomialsB(α)
n,q(x, y)

in x, y of order α are defined by means of the generating functions

∞∑
n=

B(α)
n,q

tn

[n]q!
=

(
t

eq(t) – 

)α

, |t| < π , ()

∞∑
n=

B(α)
n,q(x, y)

tn

[n]q!
=

(
t

eq(t) – 

)α

eq(tx)Eq(ty), |t| < π . ()
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The q-Euler numbers E (α)
n,q and polynomials E (α)

n,q (x, y) in x, y of order α are defined bymeans
of the generating functions

∞∑
n=

E (α)
n,q

tn

[n]q!
=

(


eq(t) + 

)α

, |t| < π , ()

∞∑
n=

E (α)
n,q (x, y)

tn

[n]q!
=

(


eq(t) + 

)α

eq(tx)Eq(ty), |t| < π . ()

The q-Genocchi numbers G(α)
n,q and polynomials G(α)

n,q (x, y) in x, y of order α are defined
by means of the generating functions

∞∑
n=

G(α)
n,q

tn

[n]q!
=

(
t

eq(t) + 

)α

, |t| < π , ()

∞∑
n=

G(α)
n,q (x, y)

tn

[n]q!
=

(
t

eq(t) + 

)α

eq(tx)Eq(ty), |t| < π . ()

It is obvious that

B(α)
n,q = B(α)

n,q(, ), lim
q→–

B(α)
n,q(x, y) = B(α)

n (x + y), lim
q→–

B(α)
n,q = B(α)

n ,

E (α)
n,q = E (α)

n,q (, ), lim
q→–

E (α)
n,q (x, y) = E (α)

n (x + y), lim
q→–

E (α)
n,q = E (α)

n

and

G(α)
n,q = G(α)

n,q (, ), lim
q→–

G(α)
n,q (x, y) = G(α)

n (x + y), lim
q→–

G(α)
n,q = G(α)

n .

From (), () and (), it is easy to check that

B(α)
n,q(x, y) =

n∑
k=

[
n
k

]
q

Bn–k,q(x, )B(α–)
k,q (, y),

E (α)
n,q (x, y) =

n∑
k=

[
n
k

]
q

En–k,q(x, )E (α–)
k,q (, y)

and

G(α)
n,q (x, y) =

n∑
k=

[
n
k

]
q

Gn–k,q(x, )G(α–)
k,q (, y).

In this work, we give a different form of the analogue of the Srivastava-Pintér addition
theorem.
More precisely, we prove

Gn,q(x, y) = yGn–,q(x,qy) + xGn–,q(x, y)

+


[n]q

{
Gn,q(x, y) –




n∑
k=

[
n
k

]
q

Gk,q(x, y)Gn–k,q(, )

}
,
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n∑
k=

[
n
k

]
q

Gk,q(x, y) + Gn,q(x, y) = [n]q(x + y)n–q ,

G(α)
n,q (x, y)

=


[n + ]q

n+∑
k=

[
n + 
k

]
q

{ k∑
j=

[
k
j

]
q

G(α)
j,q (x, )m

j–k + G(α)
k,q (x, )

}
Gn+–k,q(,my)mk–n

=


[n + ]q

n+∑
k=

[
n + 
k

]
q

{ k∑
j=

[
k
j

]
q

G(α)
j,q (, y)m

j–k + G(α)
k+,q(, y)

}

× Gn+–k,q(mx, )mk–n,

G(α)
n,q (x, y)

=


[n + ]q

n+∑
k=

[
n + 
k

]
q

{ k∑
j=

[
k
j

]
q

G(α)
j,q (x, )m

j–n – G(α)
k,q (x, )

}
Bn+–k,q(,my)mk–n,

B(α)
n,q(x, y)

=



n+∑
r=

[
n + 
r

]
q


[n + ]q

( k∑
r=

[
k
r

]
q

B(α)
k,q(x, )m

k–r +B(α)
r,q (x, )

)

× Gn+–r,q(,my)mr–n.

2 Main theorems
Proposition. The generalized q-Bernoulli and q-Euler polynomials satisfy the following
relations:

n∑
k=

[
n
k

]
q

B(α)
k,q(x, )B

(–α)
n–k,q = xn, ()

n∑
k=

[
n
k

]
q

B(α)
k,q(, y)B

(–α)
n–k,q = q

n(n–)
 yn, ()

B(α)
n,q(x, y) =

n∑
l=

[
n
l

]
q

B(α)
n–l,q(, y)

l∑
k=

[
l
k

]
q

E (α)
k,q (x, )E

(–α)
l–k,q(, ), ()

E (α)
n,q (x, y) =

n∑
l=

[
n
l

]
q

E (α)
n–l,q(, y)

l∑
k=

[
l
k

]
q

E (α)
k,q (x, )B

(–α)
l–k,q(, ). ()

Proposition . For x, y, z ∈C, the following relations hold true:

G(α)
n,q (x + z, y) =

n∑
p=

[
n
p

]
q

G(α)
n–p,q(, y)

p∑
r=

[
p
r

]
q

xrzp–r , ()

n∑
k=

[
n
k

]
q

G(α)
k,q (x, y)G

(–α)
n–k,q(, ) =

n∑
k=

[
n
k

]
q

xkyn–kq
(n–k)(n–k–)

 = (x + y)nq . ()

Proof The proof of these propositions can be found from ()-(). �
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Theorem . The generalized q-Genocchi polynomials satisfy the following recurrence re-
lation:

Gn,q(x, y) = yGn–,q(x,qy) + xGn–,q(x, y)

+


[n]q

{
Gn,q(x, y) –




n∑
k=

[
n
k

]
q

Gk,q(x, y)Gn–k,q(, )

}
. ()

Proof In () for α = , we take the q-derivative of the generalized q-Genocchi polynomials
Gn,q(x, y) according to t. We note that

∞∑
n=

Dq,tGn,q(x, y)
tn

[n]q!
= Dq,t

{
t

eq(t) + 
eq(tx)Eq(yt)

}

=
eq(tx)Eq(yt)

eq(t) + 
+
yteq(tx)Eq(yt)

eq(t) + 
+
xteq(tx)Eq(yt)

eq(t) + 

–
teq(tx)Eq(yt)

eq(t) + 
eq(x)

eq(t) + 

and

∞∑
n=

Gn+,q(x, y)
tn

[n]q!
=

t

∞∑
n=

Gn,q(x, y)
tn

[n]q!
+ y

∞∑
n=

Gn,q(x,qy)
tn

[n]q!

+ x
∞∑
n=

Gn,q(x, y)
tn

[n]q!
–


t

∞∑
n=

Gn,q(x, y)
tn

[n]q!

∞∑
n=

Gn,q(, )
tn

[n]q!
.

If we take necessary operation, comparing the coefficients of tn
[n]q ! , we have (). �

Theorem . There is the following relation for the q-Genocchi polynomials:

n∑
k=

[
n
k

]
q

(
G(α)
k,q (x, ) + G(α)

k,q (x, –)
)
= [n]qG(α–)

n–,q (x, ). ()

Proof From () and eq(z)Eq(–z) = , we have

∞∑
n=

G(α)
n,q (x, )

tn

[n]q!
+

∞∑
n=

G(α)
n,q (x, –)

tn

[n]q!
=

(
t

eq(t) + 

)α

eq(tx)
(
 + Eq(–t)

)

and

∞∑
n=

(
G(α)
n,q (x, ) + G(α)

n,q (x, –)
) tn

[n]q!
= t

∞∑
n=

G(α–)
n,q (x, )

tn

[n]q!
.

Thus, we obtain

∞∑
n=

{ n∑
k=

[
n
k

]
q

(
G(α)
k,q (x, ) + G(α)

k,q (x, –)
)} tn

[n]q!
= 

∞∑
n=

[n]qG(α–)
n–,q (x, )

tn

[n]q!
.

From this last equality, we have (). �
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Theorem . There is the following identity for the q-Genocchi polynomials:

n∑
k=

[
n
k

]
q

Gk,q(x, y) + Gn,q(x, y) = [n]q(x + y)n–q . ()

Proof From eq(t)Eq(–t) = , we write as


Eq(–t) + 

=  –


eq(t) + 
,

teq(tx)Eq(yt)
Eq(–t) + 

= teq(tx)Eq(yt) – t
eq(tx)Eq(yt)
eq(t) + 

,

t
eq(t) + 

eq(tx)Eq(yt)eq(t) = teq(tx)Eq(ty) –
∞∑
n=

Gn,q(x, y)
tn

[n]q!
,

∞∑
n=

Gn,q(x, y)
tn

[n]q!

∞∑
n=

tn

[n]q!
= 

∞∑
n=

(x, y)nq
tn+

[n]q!
–

∞∑
n=

Gn,q(x, y)
tn

[n]q!
.

By using the Cauchy product, compression of the results, we have (). �

Theorem . There are the following relationships for the q-Genocchi polynomials:

G(α)
n,q (x, y) =


[n + ]q

n+∑
k=

[
n + 
k

]
q

{ k∑
j=

[
k
j

]
q

G(α)
j,q (x, )m

j–k + G(α)
k,q (x, )

}

× Gn+–k,q(,my)mk–n, ()

G(α)
n,q (x, y) =


[n + ]q

n+∑
k=

[
n + 
k

]
q

{ k∑
j=

[
k
j

]
q

G(α)
j,q (, y)m

j–k + G(α)
k+,q(, y)

}

× Gn+–k,q(mx, )mk–n. ()

Proof Proof of (), we write

∞∑
n=

G(α)
n,q (x, y)

tn

[n]q!
=

(
t

eq(t) + 

)α

eq(tx)Eq(ty)

=
(

t
eq(t) + 

)α

eq(tx)
eq( t

m ) + 
t
m

t
m

eq( t
m ) + 

=
m
t

{ ∞∑
n=

G(α)
n,q (x, )

tn

[n]q!

∞∑
n=

tn

mn[n]q!
+

∞∑
n=

G(α)
n,q (x, )

tn

[n]q!

}

×
∞∑
n=

Gn,q(,my)
tn

mn[n]q!

=
∞∑
n=

(


[n + ]q

n+∑
k=

[
n + 
k

]
q

{ k∑
j=

[
k
j

]
q

G(α)
j,q (x, )m

j–k + G(α)
k,q (x, )

}

× Gn+–k,q(,my)mk–n

)
tn

[n]q!
.
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Comparing the coefficients of tn
[n]q ! , we have (). The proof of () is similar to that

of (). �

3 Explicit relation between the q-Bernoulli polynomials and q-Genocchi
polynomials

In this section, we prove two interesting relations between the q-Bernoulli polynomials
B(α)
n,q(x, y) of order α and the q-Genocchi polynomials G(α)

n,q (x, y) of order α.

Theorem . There is the following relation between q-Genocchi polynomials and
q-Bernoulli polynomials

G(α)
n,q (x, y) =


[n + ]q

n+∑
k=

[
n + 
k

]
q

{ k∑
j=

[
k
j

]
q

G(α)
j,q (x, )m

j–n – G(α)
k,q (x, )

}

×Bn+–k,q(,my)mk–n. ()

Proof From (), we deduce that

∞∑
n=

G(α)
n,q (x, y)

tn

[n]q!
=

(
t

eq(t) + 

)α

eq(tx)Eq(ty)

=
m
t

{ ∞∑
n=

G(α)
n,q (x, )

tn

[n]q!

∞∑
n=

tn

mn[n]q!

∞∑
n=

Bn,q(,my)
tn

mn[n]q!

–
∞∑
n=

G(α)
n,q (x, )

tn

[n]q!

∞∑
n=

Bn,q(,my)
tn

mn[n]q!

}

=
m
t

{ ∞∑
n=

G(α)
n,q (x, )

tn

[n]q!

∞∑
n=

tn

mn[n]q!
–

∞∑
n=

G(α)
n,q (x, )

tn

[n]q!

}

×
∞∑
n=

Bn,q(,my)
tn

mn[n]q!

=
∞∑
n=

(


[n + ]q

n+∑
k=

[
n + 
k

]
q

{ k∑
j=

[
k
j

]
q

G(α)
j,q (x, )m

j–n – G(α)
k,q (x, )

}

×Bn+–k,q(,my)mk–n

)
tn

[n]q!
.

Comparing the coefficients of tn
[n]q ! , we have (). �

Theorem . There is the following relation between q-Bernoulli polynomials and
q-Genocchi polynomials:

B(α)
n,q(x, y) =




n+∑
r=

[
n + 
r

]
q


[n + ]q

( k∑
r=

[
k
r

]
q

B(α)
k,q(x, )m

k–r +B(α)
r,q (x, )

)

× Gn+–r,q(,my)mr–n. ()
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Proof From (), we obtain

∞∑
n=

B(α)
n,q(x, y)

tn

[n]q!
=

(
t

eq(t) – 

)α

eq(tx)Eq(ty)

=
m
t

{(
t

eq(t) – 

)α

eq(tx)eq
(

t
m

) t
m

eq( t
m ) + 

Eq

(
t
m
,my

)

+
(

t
eq(t) – 

)α

eq(tx)
t
m

eq( t
m ) + 

Eq

(
t
m
,my

)}

=
m
t

{ ∞∑
n=

B(α)
n,q(x, )

tn

[n]q!

∞∑
n=

tn

mn[n]q!
+

∞∑
n=

B(α)
n,q(x, )

tn

[n]q!

}

×
∞∑
n=

Gn,q(,my)
tn

mn[n]q!

=
m


∞∑
n=

n∑
r=

[
n
r

]
q

( k∑
r=

[
k
r

]
q

B(α)
k,q(x, )m

k–r +B(α)
r,q (x, )

)

× Gn–r,q(,my)mr–n 
[n]q

tn–

[n – ]q!

=
m


∞∑
n=

{



n+∑
r=

[
n + 
r

]
q


[n + ]q

×
( k∑

r=

[
k
r

]
q

B(α)
k,q(x, )m

k–r +B(α)
r,q (x, )

)

× Gn+–r,q(,my)mr–n

}
tn

[n]q!
.

Comparing the coefficients of tn
[n]q ! , we have (). �
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