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Abstract
This work presents a new approach to numerically solve the general linear two-point
boundary value problems with Dirichlet boundary conditions. Multilevel bases from
the anti-derivatives of the Daubechies wavelets are constructed in conjunction with
the augmentation method. The accuracy of numerical solutions can be improved by
increasing the number of basis levels, but the computational cost also increases
drastically. The multilevel augmentation method can be applied to reduce the
computational time by splitting the coefficient matrix into smaller submatrices. Then
the unknown coefficients in the higher level can be solved separately. The
convergent rate of this method is 2s, where 1≤ s ≤ p + 1, when the anti-derivatives of
the Daubechies wavelets order p are applied. Some numerical examples are also
presented to confirm our theoretical results.
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1 Introduction
Boundary value problems can be viewed as mathematical models in science and engineer-
ing. For real world applications, exact solutions are not available. Numerical methods are
required to solve numerically the models. The efficient methods provide approximate so-
lutions by choosing the appropriate subspaces of solution spaces and their suitable bases.
By applying suitable formulations, the linear model equation can be discretized to a linear
system. A more accurate approximation can be obtained by increasing the number of basis
functions. However, this leads to a larger discretized linear system. To save the computa-
tional cost, one can use the multilevel augmentation method. The resulting coefficient
matrix corresponding to the finer level of approximate spaces is obtained by augmenting
a matrix corresponding to a coarser level. Instead of solving the linear system at the finer
level, the coefficient matrix can be separated so that the smaller system at the coarser level
can be taken. Thus, the additional computational cost is proportional to the dimension of
the different space between the spaces of the finer level and the coarser level, not the di-
mension of the whole finer level. This method allows us to develop faster and accurate
algorithms for solving differential equations (see, e.g., [–], and []). These previous re-
searches considered the second kind of equations and constructed piecewise polynomials
as bases for the subspaces of the Sobolev spaces Hm

 (, ) consisting of elements satisfying
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the homogeneous boundary conditions

u(j)() = u(j)() = , for j = , , . . . , m – .

On the other hand, wavelets can be applied to discretize differential equations (see, e.g.,
[, ]). Related numerical methods with the applications of Haar and Legendre wavelets
for solving boundary value problem are proposed by Siraj-ul-Islam et al. [, ]. The ad-
vantage of wavelet basis is its capability to approximate solutions of differential equations.
The wavelet Galerkin method is one of the most powerful methods that can be used to
solve ordinary and partial differential equations (see, e.g., [–], and []). In addition,
the accuracy of the approximate solutions can easily be improved by merely increasing
the numbers of wavelet basis functions and the orders of wavelets. However, the wavelet
basis is not straightforwardly adjusted to satisfy general boundary conditions. In , Xu
and Shann introduced a different approach to handle the boundary conditions by using
the anti-derivatives of Daubechies wavelets []. These anti-derivatives form bases for the
finite-dimensional subspaces of Sobolev space H and are used to construct an algorithm
for approximating solutions.

In this work, we propose the method that combines the main advantages of wavelet bases
and multilevel augmentation together. That is, we apply the multilevel augmentation of
operators in conjunction with the anti-derivatives of Daubechies wavelets to approximate
linear differential equations in the case of Dirichlet boundary conditions. The originality
of this work is that we introduce the anti-derivatives of Daubechies wavelets for solving
linear boundary value problems (see []) and apply this basis type with the augmenta-
tion method proposed by Chen (see, e.g., [–] and []). By this concept, we obtain a new
approach to reduce the computational time for solving the linear system resulting from
discretizing a linear differential equation.

Given the interval Ω := (, R), we use the notation L(Ω) to denote the space of square
integrable functions on Ω with standard inner product (·, ·) defined by

(u, v) =
∫ R


u(x)v(x) dx

and the associated norm ‖ · ‖.
Let Hs(Ω) denote the standard Sobolev space with the norm ‖ · ‖s given by

‖v‖
s =

s∑
i=

∫ R



∣∣v(i)(x)
∣∣ dx.

According to the boundary condition, we work on the solution space

H
(Ω) =

{
v ∈ H(Ω) | v() = v(R) = 

}
,

equipped with the inner product

[u, v] =
∫ R


u′(x)v′(x) dx, for u, v ∈ H

(Ω),
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and its associated norm | · |. It is well known that the norm | · | is equivalent to the standard
norm ‖ · ‖ in this space.

Let p ∈ N. We will apply the multilevel augmentation method and anti-derivatives of
wavelets of order p to find numerical solutions of two-point boundary value problems
with Dirichlet boundary conditions.

Assume that there exists a unique weak solution u ∈ H
(Ω). To find numerical solutions,

we propose the following steps:
. The solution space H

(Ω) is decomposed into orthogonal direct sum of subspaces.
The anti-derivatives of the Daubechies wavelets are used to construct
finite-dimensional subspaces.

. For n ∈N, the multilevel method is applied to obtain the nth level solution by
solving a linear system with matrix coefficients related to the anti-derivatives of the
Daubechies wavelets.

. To obtain a solution at a higher level, namely (n + i)th level, the multilevel
augmentation method is applied. By the algorithm to be presented, the
computational time for solving the linear system is reduced since the dimension of
the matrix coefficient is smaller.

Finally, this work is organized as follows. Section  gives an introduction to the anti-
derivatives of the Daubechies wavelets and the finite-dimensional subspaces of the solu-
tion space H

(Ω). In Section , we describe the algorithm to find approximate solutions
using the multilevel augmentation method. The optimal error estimates for the approxi-
mate solutions are proven in Section , while some numerical examples are demonstrated
in Section . Conclusions and future work are discussed in Section .

2 Bases for subspaces of H1
0(Ω)

In this section, we will introduce the wavelets of order p and their anti-derivatives. These
functions form orthonormal bases for the finite-dimensional subspaces Sn of the solution
space H

(Ω). More details can be found in [] and [].
To define the Daubechies wavelets, we consider two functions: the scaling function φ(x)

and the wavelet function ψ(x). The scaling function is obtained from the dilation equation.
The wavelet function is defined from the scaling function. Details are described as follows.

Given a positive integer p, consider a sequence {ck}k∈Z satisfying

ck = , for k /∈ {, , , . . . , p – },
∑

k

ck = ,

∑
k

(–)kkmck = , for  ≤ m ≤ p – ,

∑
k

ckck–m = δm, for  – p ≤ m ≤ p – .

The scaling function φ(x) is the unique solution of the dilation equation

φ(x) =
p–∑
k=

ckφ(x – k),

where ck satisfy the above four properties.
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Figure 1 φ and ψ for p = 2.

Let

ψ̃(x) =
p–∑
k=

(–)kcp––kφ(x – k).

The wavelet function ψ(x) is defined by

ψ(x) = ψ̃(x – p + ).

The graphs of φ and ψ for p =  are shown in Figure .
Define

ψjk(x) =

⎧⎨
⎩

φ(x – k), j = –,√
jψ(jx – k), j ≥ .

The functions ψjk with j ≥ – and (j, k) ∈ Z × Z are called wavelets of order p. It is well
known that the set of wavelets forms an orthonormal basis for L(R).

For j ≥ –, define the index set Ij such that

k ∈ Ij ⇐⇒
⎧⎨
⎩

 – p ≤ k ≤ p – , j = –,

 – p ≤ k ≤ j(p – ) – , j ≥ .

{ψjk|Ω | j ≥ –, k ∈ Ij} is a frame of L(Ω). That is, the span{ψjk|Ω | j ≥ –, k ∈ Ij} consist-
ing of all linear expansions is equal to L(Ω).

Next, we define the anti-derivatives of wavelets satisfying the Dirichlet boundary con-
dition, namely,

Ψjk(x) =
∫ x


ψjk ds –

x
R

∫ R


ψjk ds, for  ≤ x ≤ R.

For n ∈N, we define a subspace Sn by

Sn = span{Ψjk | – ≤ j < n, k ∈ Ij}.

It is obvious that these subspaces are finite-dimensional subspaces of H
(Ω) and they are

nested, i.e., Sn ⊂ Sn+. Since {Ψjk | – ≤ j < n, k ∈ Ij} is a frame for Sn, it spans Sn but it
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Figure 2 Ψ00, Ψ10, Ψ11, Ψ20, Ψ21, Ψ22, Ψ23.

Figure 3 Ψ2,–1, . . . ,Ψ2,10.

need not be linearly independent. Xu and Shann [], introduced an index set Dj such
that {Ψjk | – ≤ j < n, k ∈ Dj} is a basis for Sn. The index set Dj is defined by

k ∈ Dj ⇐⇒
⎧⎨
⎩

 – p < k ≤ p – , j = –,

 – p ≤ k ≤ j(p – ) – p, j ≥ .

For p = , the basis functions {Ψjk |  ≤ j < n, k ∈ Dj} for Sn are the piecewise linear hier-
archical basis functions with uniform mesh size, h = –n. The graphs of Ψ,Ψ, . . . ,Ψ,
and Ψ are shown in Figure , while the graphs of Ψ,–, . . . ,Ψ, are shown in Figure .

It should be noted that the set

{Ψjk |  ≤ j < n, k ∈ Dj}

is an orthonormal basis for Sn with the inner product [·, ·] of the Sobolev space H
(Ω) but

it is not orthonormal in L(Ω) when equipped with the standard inner product (·, ·). Since
we require orthonormality in L(Ω) for our augmentation method, we apply the Gram-
Schmidt process to obtain an orthonormal basis for Sn with the standard inner product
(·, ·) in L(Ω). Thus, the set

{Ψ jk | – ≤ j < n, k ∈ Dj}

is defined as orthonormal basis for Sn in the present method.

3 Multilevel augmentation method algorithm
In this section, we describe the multilevel augmentation method for solving boundary
value problems.
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Let u ∈ H
(Ω) be the weak solution of a given differential equation. Suppose that the

variational form of the differential equation is

a(u, v) = (f , v), for all v ∈ H
(Ω). ()

Let the approximate solution un of the given equation be

un =
n∑

j=–

∑
k∈Dj

αjkΨ jk .

The main idea is to determine the coefficients αjk in such a way that un behaves as if it
were a weak solution on Sn, that is, un satisfies the linear system of equations,

a(un,Ψ lm) = (f ,Ψ lm), for all – ≤ l < n, m ∈ Dj,∑
–≤j<n

∑
k∈Dj

αjka(Ψ jk ,Ψ lm) = (f ,Ψ lm), for all – ≤ l < n, m ∈ Dj.

Let ι : (j, k) �→ i be the lexicographically enumerating function. That is,

ι(j, k) ≤ ι(l, m) if j ≤ l or j = l and k ≤ m.

We then obtain a linear system of the form Anun = fn, where An is the coefficient matrix,
un is the unknown column vector, and fn is the column vector defined by

An =
[
a(Ψ i,Ψ j) : i, j = , . . . , dim Sn

]
,

un = [αj : j = , . . . , dim Sn],

fn =
[
(f ,Ψ j) : j = , . . . , dim Sn

]
.

The approximate solution un obtained in this way is called the nth multilevel solution of ().
Next, we apply the augmentation method to approximate the next level solution, un+.

Suppose that un is already solved. That is, the matrix representation un of un satisfies the
equation Anun = fn. We augment the matrix An with submatrices Bn, Cn, and Dn where

Bn =
[
a(Ψ i,Ψ j) : i = , . . . , dim Sn, j = dim Sn + , . . . , dim Sn+

]
,

Cn =
[
a(Ψ i,Ψ j) : i = dim Sn + , . . . , dim Sn+, j = , . . . , dim Sn

]
,

Dn =
[
a(Ψ i,Ψ j) : i, j = dim Sn + , . . . , dim Sn+

]
.

The coefficient matrix An+ corresponding to the (n + )st level is identified as

An+ =

[
An Bn

Cn Dn

]
.

Instead of finding the full (n+)th level solution, un+, from An+un+ = fn+ of size dim Sn+,
we will approximate un+ by decomposition the coefficient matrix An+ into the sum of an
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upper triangular matrix and a lower triangular matrix:

An+ =

[
An Bn

Cn Dn

]
=

[
An Bn

 Dn

]
+

[
 

Cn 

]
.

If the matrices An and Dn are nonsingular, there exists a (unique) vector un, satisfying

[
An Bn

 Dn

]
un, +

[
 

Cn 

][
un



]
= fn+. ()

Let un, ∈ Sn+ be the corresponding element of un,. We call un, the (n + )st multilevel
augmentation solution of (). The index n refers to the initial level n, and  refer to a one
step method to compute un+ approximately. The linear system of dim Sn+ can be solved
by considering two linear systems. One is the size of dim Sn, and another is the size of
dim Sn+ – dim Sn = n(p – ).

In general, an approximation un,i+ for (n+ i+)st multilevel solution is defined by setting

un, = un.

Suppose that un,i is already solved. We augment the matrix An+i with submatrices Bn+i,
Cn+i, and Dn+i where

Bn+i =
[
a(Ψ i,Ψ j) : i = , . . . , dim Sn+i, j = (dim Sn+i) + , . . . , dim Sn+i+

]
,

Cn+i =
[
a(Ψ i,Ψ j) : i = (dim Sn+i) + , . . . , dim Sn+i+, j = , . . . , dim Sn+i

]
,

Dn+i =
[
a(Ψ i,Ψ j) : i, j = (dim Sn+i) + , . . . , dim Sn+i+

]
.

The coefficient matrix An+i+ corresponding to the (n + i + )st level is identified as

An+i+ =

[
An+i Bn+i

Cn+i Dn+i

]
.

We split the coefficient matrix An+i+ and solve for un,i+ ∈ Sn+i+ from the equation

[
An+i Bn+i

 Dn+i

]
un,i+ +

[
 

Cn+i 

][
un,i



]
= fn+i+. ()

This completes the multilevel augmentation algorithm.

4 Error analysis
In this section, we analyze the convergence of the multilevel augmentation method con-
junction with the anti-derivatives of the Daubechies wavelets. First, we consider the dis-
tance between the weak solution u of () and the nth multilevel solution un ∈ Sn obtained
by the wavelets of order p. Theorem . in [] stated that, for u ∈ H

(Ω) ∩ Hs(Ω), there
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exists a positive constant C such that

‖u – un‖ + –n‖u – un‖ ≤ C
(
–n)s‖u‖s,  ≤ s ≤ p + .

In particular, if we consider separately the distance between u and un with the standard
L norm ‖ · ‖, and the Sobolev norm ‖ · ‖, we obtain

‖u – un‖ ≤ C
(
–n)s‖u‖s,  ≤ s ≤ p + ,

‖u – un‖ ≤ C
(
–n)s–‖u‖s,  ≤ s ≤ p + .

The above estimations suggest that if we apply the wavelet of order p and u ∈ H
(Ω) ∩

Hs(Ω), then the errors measured by the standard norm, and the Sobolev norm in L, de-
crease by the factors of p+, and p, respectively, from n to n +  level.

Next, we consider the distance between the solution u and the (n + i)th multilevel aug-
mentation solution, un,i, of (). In the remaining section, we denote by A the operator
corresponding to the matrix A, and we denote by u the column matrix representing ele-
ment u.

For n ∈ N, if the inverse operators A–
n and D–

n exist, then the (n + )th multilevel aug-
mentation solution un,i exists. If there also exist an N ∈N, α > , and δ >  such that

∥∥A–
n

∥∥ ≤ α,
∥∥D–

n
∥∥ ≤ δ, for n ≥ N ,

and

lim
n→∞‖Bn‖ = lim

n→∞‖Cn‖ = ,

the error for our method can be estimated as in the following theorem.

Theorem  (Error for multilevel augmentation method) Let u ∈ H
(Ω) be the solution

of (). Suppose that there exist an N ∈ N, and positive constants α and δ such that for
n ≥ N the inverse operators A–

n , D–
n exist and

∥∥A–
n

∥∥ ≤ α,
∥∥D–

n
∥∥ ≤ δ,

and

lim
n→∞‖Bn‖ = lim

n→∞‖Cn‖ = .

If u ∈ H
(Ω) ∩ Hs(Ω), then there exist an M ∈ N and positive constant c such that, for

n ≥ M and i ∈N∪ {}, we have the estimate

‖u – un,i‖ ≤ c–(n+i)s‖u‖s,  ≤ s ≤ p + .

Proof By the hypotheses on A–
n and D–

n , we see that the (n + i)th multilevel augmentation
solution un+i and the (n + i)th multilevel augmentation solution un,i exist for all n ≥ N and
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i ∈ N∪ {}. By Theorem . in [], there exists a positive constant C such that

‖u – un+i‖ ≤ C
(
–(n+i)s)‖u‖s,  ≤ s ≤ p + . ()

For n ≥ N and i ∈ N, let Wn+i– be the orthogonal complement of Sn+i– in Sn+i. The ele-
ment un,i ∈ Sn+i can be uniquely written in the form

un,i = u
n,i– + v

n,i–,

where u
n,i– ∈ Sn+i–, and v

n,i– ∈ Wn+i–. Since the column matrix un,i of un,i satisfies the
equation

[
An+i– Bn+i–

 Dn+i–

]
un,i +

[
 

Cn+i– 

][
un,i–



]
= fn+i,

it also satisfies

An+iun,i = fn+i +

[
 

Cn+i– 

][
u

n,i– – un,i–



]
. ()

The (n + i)th multilevel solution un+i ∈ Sn+i satisfies the equation

An+iun+i = fn+i. ()

Subtracting () from (), we have

An+i(un,i – un+i) =

[
 

Cn+i– 

][
u

n,i– – un,i–



]
.

Since An+i is nonsingular, we have the equation

un,i – un+i = A–
n+i

[
 

Cn+i– 

][
u

n,i– – un,i–



]
.

Since limn→∞ ‖Bn‖ = limn→∞ ‖Cn‖ = , there exist an M ∈ N and c >  such that for n ≥ M
and i ∈N,

‖Cn+i–‖ ≤ –s

α

and

∥∥u
n,i– – un,i–

∥∥ ≤ c
(
–(n+i–))s‖u‖s,  ≤ s ≤ p + .

We have, for n ≥ M, i ∈N, and  ≤ s ≤ p + ,

‖un,i – un+i‖ ≤ ∥∥A–
n+i

∥∥‖Cn+i–‖
∥∥u

n,i– – un,i–
∥∥ ≤ c


(
–(n+i))s‖u‖s. ()
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From () and (), we conclude that

‖u – un,i‖ ≤ ‖u – un+i‖ + ‖un,i – un+i‖
≤ C

(
–(n+i)s)‖u‖s +

c

(
–(n+i)s)‖u‖s

≤
(

C +
c


)(
–(n+i)s)‖u‖s. �

The above theorem suggests that, if the solution u ∈ H
(Ω) ∩ Hs(Ω), and we apply the

multilevel augmentation method from level n + i –  to n + i by using the anti-derivatives
wavelets of order p, the errors measured in ‖ · ‖ decrease by a factor of p+. Thus the
behaviors of the decreasing error obtained by the multilevel, and the multilevel augmen-
tation methods, are in the same order.

5 Examples
In this section, we illustrate the efficiency of the multilevel augmentation method in con-
junction with the anti-derivatives of Daubechies wavelets of order p to find the numerical
solutions of the following boundary value problem:

–
(
q(x)u′)′ + r(x)u = f (x), for x ∈ (, R), ()

with the Dirichlet conditions

u() = u(R) = ,

where R = p – . It should be noted that the general interval (α,β) can be changed to (, R)
by the method of changing variables.

We assume that f ∈ L(Ω), the coefficients q and r are smooth in the closed interval
[, R] with q >  and r ≥ .

The variational form of () is

a(u, v) = (f , v), for all v ∈ H
(Ω), ()

where a(·, ·) is the bilinear form defined by

a(u, v) =
∫ R


qu′v′ + ruv dx. ()

Since A(·, ·) is continuous and coercive on H
(Ω), by the Lax-Milgram lemma, there exists

a unique weak solution u ∈ H
(Ω) for ().

Note that we can also apply the multilevel augmentation method in conjunction with the
anti-derivatives of the Daubechies wavelets order p for the cases with nonzero boundary
conditions. For example, we consider the boundary value problem

–
(
q(x)u′)′ + r(x)u = f (x), for x ∈ (α,β), ()
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with the boundary conditions

u(α) = c, u(β) = d.

We notice that the linear function

y(x) =
βc – αd
β – α

+
d – c
β – α

x

satisfies the boundary conditions, that is, y(α) = c and y(β) = d. Let u = y + w be the weak
solution of (). Since u(α) = c and u(β) = d, w(α) = w(β) = . The variational form of the
boundary value problem in this case is

a(w, v) =
∫ β

α

fv dx – a(y, v), for all v ∈ H
(α,β), ()

where a(·, ·) is the bilinear form

a(w, v) =
∫ β

α

qw′v′ + rwv dx. ()

Since a(·, ·) is continuous and coercive on H
(α,β), by the Lax-Milgram lemma, there ex-

ists a unique weak solution w ∈ H
(α,β) for ().

Example  For the first example, we consider the two-point boundary value problem

–
(
xu′)′ + xu = x – x – x + , for x ∈ (, ), ()

with boundary conditions u() = u() = .

The exact solution is u(x) = x – x. Here, we apply the Daubechies wavelets of order
p =  to solve the problem. Numerical results for each level (n) are shown in Table . The
column of ‖u – un‖ presents the numerical results obtained by the standard multilevel
method. When increasing the level of approximations, the norm of the L error decreases
by the factor of s where  ≤ s ≤ . The numerical results by the multilevel augmentation
method starting from the second and the third levels are shown in the ‖u – u,n–‖ and
‖u – u,n–‖ columns, respectively. At the same level n, the L errors are in the same order
as those of the standard multilevel method, except that its values are slightly greater. These
additional errors come from the augmentation part which can be seen from the proof of
Theorem . It can be seen further that the error from the augmentation method is getting
closer to the error from the standard multilevel method as n becomes large.

Example  Consider the boundary value problem

–
(
e–xu′)′ = πe–x(cos(πx) + π sin(πx)

)
, for x ∈ (, ), ()

with boundary conditions, u() = u() = .

The exact solution is u = sin(πx). Numerical results for p =  are shown in Table . The
column of ‖u – un‖ presents the numerical results obtained by the multilevel method.



Utudee and Maleewong Advances in Difference Equations  (2015) 2015:126 Page 12 of 14

Table 1 Example 1: Numerical results for p = 1

n dim Sn ‖u – un‖ ‖u – u1,n–1‖ ‖u – u2,n–2‖
2 3 8.0368e–001
3 7 5.6412e–001 5.7409e–001
4 15 3.7341e–001 3.9796e–001 4.0020e–001
5 31 2.2508e–001 2.7097e–001 2.6985e–001
6 63 1.4568e–001 1.7275e–001 1.7293e–001
7 127 8.8603e–002 1.1148e–001 1.1143e–001

Table 2 Example 2: Numerical results for p = 1

n dim Sn ‖u – un‖ ‖u – u1,n–1‖ ‖u – u2,n–2‖ ‖u – u3,n–3‖
2 3 1.6427
3 7 0.6045 0.6458
4 15 0.2424 0.2488 0.2494
5 31 0.1124 0.1162 0.1162 0.1170
6 63 0.0589 0.0607 0.0607 0.0606
7 127 0.0309 0.0325 0.0325 0.0325
8 255 0.0154 0.0161 0.0161 0.0161
9 511 0.0085 0.0087 0.0087 0.0087

Table 3 Example 2: Numerical results for p = 2

n dim Sn ‖u – un‖ ‖u – u1,n–1‖
0 4 1.6268
1 7 0.2097
2 13 0.0250 0.0341
3 25 0.0030 0.0041
4 49 0.0004 0.0005

The L error decreases by the factor of s where  ≤ s ≤  as expected, and this agrees
well with the theoretical results. The L errors obtained by the multilevel augmentation
method starting from levels , , and  are shown in the ‖u – u,n–‖, ‖u – u,n–‖, and
‖u – u,n–‖ columns, respectively. Their values are in the same order as the multilevel
method.

To apply the Daubechies wavelets of order p = , we change the interval [, ] to [, ].
So we obtain the following boundary value problem:

–
(
e–xu′)′ =

π


e–x

(
cos

(
π


x
)

+
π


sin

(
π


x
))

, for x ∈ (, ), ()

with conditions u() = u() = .
The exact solution of this problem is u(x) = sin( π

 x). Numerical results from the wavelet
basis of order p =  are shown in Table . The rate of L error convergence is faster than
that of the case p = . Here, the L error is four times smaller than that of the previous
error level. This agrees with the theoretical result that the L error should decrease by a
factor of s, where  ≤ s ≤ .

Example  Consider the boundary value problem with nonzero boundary conditions

u′′ – u′ = x – x + , for x ∈ (, ), ()

with boundary conditions, u() = –, u() = .
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Table 4 Example 3: Numerical results for p = 1

n dim Sn ‖u – un‖ ‖u – u1,n–1‖ ‖u – u2,n–2‖ ‖u – u3,n–3‖
2 3 0.4221
3 7 0.1993 0.2123
4 15 0.0994 0.1051 0.1049
5 31 0.0502 0.0561 0.0555 0.0555
6 63 0.0278 0.0303 0.0303 0.0302

Table 5 Example 3: Numerical results for p = 2

n dim Sn ‖u – un‖ ‖u – u1,n–1‖
0 4 3.3770
1 7 0.2888
2 13 0.0351 0.0378
3 25 0.0044 0.0047
4 49 0.0007 0.0008

The exact solution is u = – x

 + x + x + ex–e+
(e–) . Numerical results for p =  are shown

in Table . Column of ‖u – un‖ presents the numerical results obtained by the multilevel
method. The L error is twice smaller than that of the previous error level, and agrees
well with the theoretical results. The L errors obtained by the multilevel augmentation
method starting from levels , , , and  are shown in the ‖u – u,n–‖, ‖u – u,n–‖, and
‖u – u,n–‖ columns, respectively. Their values are in the same order as the multilevel
method.

Numerical results from the wavelet basis of order p =  are shown in Table . The rate of
L error convergence is faster than that of the case p = . Here, the L errors is eight times
smaller than that of the previous error level.

6 Conclusions
This present work is our attempt to apply the multilevel augmentation method using
the anti-derivatives of Daubechies wavelets for approximating two-point boundary value
problems with Dirichlet boundary conditions. This method is extended from the multi-
level augmentation method that uses polynomial wavelet basis. An error analysis has also
been presented. The rate of convergence is by a factor of s,  ≤ s ≤ p + , where p is the
Daubechies wavelet order. At the same level, the L error of the multilevel augmentation
method is greater than that of the multilevel method, but they are in the same order.

The difficulty of this approach is that the anti-derivatives of Daubechies wavelet cannot
be expressed in explicit form. One is required to solve the dilation equation to obtain a
wavelet basis in an implicit formula. Here, we have done this using a numerical approxima-
tion to obtain the basis function point by point. Also, it is not easy to extend this approach
to problems in higher dimension.

The advantage of this method is that we need not solve the full linear system. The un-
known coefficients from the previous level can be used to approximate additional un-
knowns in the next level. Thus, this method can reduce computational time and memory
for storing matrix coefficients. Furthermore, by applying the general anti-derivatives of
Daubechies wavelets, this method can be used to solve the boundary value problems with
Neumann and mixed boundary conditions. Numerical experiments on these problems are
in progress and will be reported elsewhere further.
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