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Abstract
The time scale calculus theory can be applicable to any field in which dynamic
processes are described by discrete- or continuous-time models. On the other hand,
many economic models are dynamic models. Therefore it is natural to relate those
two subjects. This work is intended to motivate the use of the calculus of variations
and optimal control problems on time scales in the study of economic models. We
show that a phenomenon known from the theory of behavioral economics may be
described and analyzed by dynamical systems on time scales.
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1 Introduction
The origins of the idea of time scales calculus date back to the late s when S Hilger in-
troduced this notion in his PhD thesis and showed how to unify discrete- and continuous-
time dynamical systems [, ]. With time this unification aspect has been supplemented
by the extension and generalization features. Currently, several researchers are getting in-
terested in the time scale calculus, contributing to its development and showing applica-
tions of the theory and methods in biology (see, e.g., [, ]), engineering (see, e.g., [–]),
physics (see, e.g., []), and economy (see, e.g., [–]).

The calculus of variations on time scales was introduced in  by M Bohner who used
the delta derivative and delta integral [], and it has since then been further developed
by several different authors in several different directions, e.g., [–]. Many classical re-
sults of calculus of variations as necessary or sufficient conditions of optimality have been
generalized to arbitrary time scale. The aim of the present work is to apply some of those
results to economic models and to show advantages of using time scales tools. We present
two economical models: a ‘cake-eating’ problem and a simple model of household con-
sumption. Both were already considered in the time scale literature, but here the use of
them is different from the previous works. We show that besides unification and general-
izations aspects the study of dynamical systems on time scales allows one to observe the
model behaviors which are different from those known in the classical economic theory
but rather coincide with facts of the behavioral economics. Models of the life cycle or, more
generally, almost all economic models assume the intertemporal choice model proposed
by Samuelson [] as it is not possible to analyze human decisions concerning consump-
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tion and saving without making certain assumptions as regards their time preferences.
The models presented in this paper are also based on this concept. However, we have to
remember that in many economic models a rationality of people is assumed, their comput-
ing skills, iron will and farsightedness, since such assumptions help to solve optimization
problems. Yet, the search for increasingly reliable modeling of reality and the desire to
use more and more advanced econometrical and statistical techniques force researchers
to adopt numerous premises about human behavior, particularly in terms of their time
preferences. Therefore, a crucial question arises: do the rules of behavior attributed to
individuals reliably reflect this behavior? Studies and tests to verify the accuracy of pre-
dictions based on currently dominant theories, i.e., on M Modigliani’s and M Friedman’s
hypotheses as well as on works that support them, indicate that the predictive power of
these models is often weak. In fact, the observed human behavior patterns seem to differ
from the conclusions drawn from the approach based on the model of a rational con-
sumer who optimizes their decisions across time. For instance, the results of the studies
by Shapiro and Slemrod [] or Parker [] show that the expected changes in income
affect the consumption rate in a short-term period. It means that people’s spending on
non-durable goods increases in line with the expected rise in income. Such phenomena
are rejected in all the life-cycle models, but they remain an integral part of the behavioral
models. Relations between temporal choice and behavior patterns can be observed during
experiments, but are not taken into account in classical models and approaches. The re-
sults obtained in this paper, i.e., the classical economic models developed on non-standard
time scales prove that the time scale analysis can explain the phenomena in this part of
the behavioral economics which deals with the intertemporal choices.

The paper is organized as follows. In the next section, we recall basic terminology related
to the time scale calculus. Section  provides a detailed exposition of the ‘cake-eating’
problem on time scales. In Section  we apply the results of time scales optimal control to
a simple model of household consumption. We end the paper with some conclusions in
Section .

2 Time scales
In this section we give a brief exposition of the time scale calculus. For a more complete
presentation we refer the reader to the books [, ].

A nonempty closed subset of R is called a time scale and it is denoted by T. Thus, R, Z,
and N, are trivial examples of time scales. Other examples of time scales are: [–, ] ∪N,
hZ := {hz|z ∈ Z} for some h > , qN := {qk|k ∈ N} for some q > , and the Cantor set. We
assume that a time scale T has the topology that it inherits from the real numbers with
the standard topology.

The mapping σ : T → T, defined by σ (t) = inf {s ∈ T : s > t} with inf∅ = supT (i.e.,
σ (M) = M if T has a maximum M) is called the forward jump operator. Accordingly, we
define the backward jump operator ρ : T→ T by ρ(t) = sup {s ∈ T : s < t} with sup∅ = infT

(i.e., ρ(m) = m if T has a minimum m). The following classification of points is used within
the theory: a point t ∈ T is called right-dense, right-scattered, left-dense and left-scattered
if σ (t) = t, σ (t) > t, ρ(t) = t, and ρ(t) < t, respectively. The functions μ,ν : T → [,∞) are
defined by μ(t) = σ (t) – t and ν(t) = t – ρ(t).

Example  If T = R, then σ (t) = ρ(t) = t and ν(t) = μ(t) = . If T = hZ, then σ (t) = t + h,
ρ(t) = t – h, and ν(t) = μ(t) = h.
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For two points a, b ∈ T, the time scales interval is defined by [a, b]T = {t ∈ T : a ≤ t ≤ b}.
We shall state the definition of differentiability on time scales. Throughout we will fre-

quently write f σ (t) = f (σ (t)).

Definition  We say that a function f : T → R is �-differentiable at t ∈ T
κ := {t ∈ T :

t non-maximal or left-dense} if there is a number f �(t) such that for all ε >  there exists
a neighborhood U of t (i.e., U = (t – δ, t + δ) ∩T for some δ > ) such that

∣
∣f σ (t) – f (s) – f �(t)

(

σ (t) – s
)∣
∣ ≤ ε

∣
∣σ (t) – s

∣
∣, for all s ∈ U .

We call f �(t) the �-derivative of f at t.

Example  If T = R, then f �(t) = f ′(t). If T = hZ, then f �(t) = f (t+h)–f (t)
h := �hf (t), where

�h is the usual forward difference operator.

Now we shall define �-integration on time scales.

Definition  A function f : T→R is called rd-continuous if it is continuous at right-dense
points and if the left-sided limit exists at left-dense points.

We denote the set of all rd-continuous functions by Crd or Crd(T), and the set of all
�-differentiable functions with rd-continuous derivative by C

rd or C
rd(T).

Definition  A function F : T→R is called a delta antiderivative of f : Tκ →R provided
F�(t) = f (t) for all t ∈ T

κ .

Theorem  (Theorem . in []) Every rd-continuous function has a delta antideriva-
tive.

Let f : Tκ → R be an rd-continuous function and let F : T →R be a delta antiderivative
of f . Then the �-integral is defined by

∫ r
s f (t)�t = F(r) – F(s) for all r, s ∈ T. It satisfies

∫ σ (t)

t
f (τ )�τ = μ(t)f (t), t ∈ T

κ .

Example  Let a, b ∈ T with a < b. If T = R, then
∫ b

a f (t)�t =
∫ b

a f (t) dt, where the inte-
gral on the right-hand side is the classical Riemann integral. If T = hZ, then

∫ b
a f (t)�t =

∑ b
h –
k= a

h
hf (kh).

In order to define the delta exponential function, first we introduce the concept of re-
gressivity.

Definition  A function p : Tκ → R is regressive provided  + μ(t)p(t) 
=  holds for all
t ∈ T

κ . We denote by R the set of all regressive and rd-continuous functions.

Theorem  (Theorem . in []) Suppose p ∈ R and fix t ∈ T. Then the initial value
problem (IVP)

y� = p(t)y, y(t) =  ()

has a unique solution on T.
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Definition  Let p ∈R and t ∈ T. The exponential function on time scales is defined by
the solution of the IVP () and is denoted by ep(·, t).

The reader can find several properties of the delta exponential function in []. We also
recommend this book as a source of material on dynamic equations on time scales via the
delta derivative.

3 The ‘cake-eating’ problem
We will first look at a simple problem which is commonly called the ‘cake-eating’ problem.
Let us first consider a model with the discrete time. Suppose that a consumer has a cake of
size f today. She/he only lives for T periods and the time is discrete. She/he can only either
consume or save (there is nothing else to eat and no possibility to borrow from anyone
else). The cake does not get spoiled. At each point in time, t = , , . . . , T ; the consumer
has to make a decision on the amount of consumption and saving. So, how would she/he
determine the optimal amount of cake consumption (saving) at each point in time? To
answer this question, we would need to know the properties of her/his preference, her/his
time discount factor, and initial/terminal conditions. Therefore, a discrete maximization
problem is

max
T

∑

t=

(


 + δ

)t–

u
(

c(t)
)

subject to

f (t) = f (t – ) – c(t), f () = f, f (T) ≥ ,

where c is a consumption function, δ ≥  is a discount rate. An individual who cares
equally about current and future consumption will have δ = . An individual who does
not care about future consumption will have δ = ∞. The utility function u(c(·)) captures
the trade off between consumption today and consumption in the future, and is thus ex-
ogenous and subjective. The function u is assumed to be at least C, well defined, strictly
increasing, and strictly concave; and limc→ u′(c) = ∞, limc→∞ u′(c) = . This means that
the consumer always would like to consume more but each additional unit consumed dur-
ing the same period generates less utility than the previous unit consumed within the same
period. We call this property of utility function the law of diminishing marginal utility
(LDMU). In other words, LDMU means that the first unit of consumption of a good or
service yields more utility than the second and subsequent units, with a continuing reduc-
tion for greater amounts. We can also consider the ‘cake-eating’ problem with continuous
time, that is, a maximization problem of the form

max
∫ T


e–δtu

(

c(t)
)

dt

subject to

c(t) = –f ′(t), f () = f, f (T) ≥ .
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The discrete-time and continuous-time versions of the ‘cake-eating’ problem are well
known and have been much studied in the literature in different contexts (see, e.g.,
[–]).

Let us now formulate the time scale ‘cake-eating’ problem.

The ‘cake-eating’ problem with the delta derivative

max
∫ T


e�δ(t, )u

(

cσ (t)
)

�t ()

subject to

c̃(t) = cσ (t) = –f �(t), f () = f, f (T) ≥ , ()

where (�z)(t) := –z(t)
+z(t)μ(t) . As δ ≥  and μ : T → [,∞), we have  + δμ(t) >  for all t.

Observe that this model includes the discrete- and continuous-time models as a special
cases. Problem ()-() is similar to those that have been studied in the literature (see, e.g.,
[, , ]), however, here the terminal condition is in the form f (T) ≥ . Below we shall
prove the theorem needed for our purposes, but in a more general case, that is, with the
Lagrangian depending explicitly on an unknown function.

Theorem  Let a, b ∈ T with a < b and ŷ ∈ C
rd([a, b]T) be a solution to the problem

maxJ�(y) =
∫ b

a
L
(

t, yσ (t), y�(t)
)

�t, y(a) = ya, y(b) ≥ ymin,

where L is rd-continuous in t for any admissible path y, and L(t, ·, ·) is a C function with
respect to the second and third variable uniformly in t. Then ŷ satisfies the Euler-Lagrange
equation

�

�t
Ly�

(

t, yσ (t), y�(t)
)

= Lyσ

(

t, yσ (t), y�(t)
)

, t ∈ [

a,ρ(b)
]

T
; ()

and the transversality conditions

Ly�

(

ρ(b), ŷσ
(

ρ(b)
)

, ŷ�
(

ρ(b)
))

+
∫ b

ρ(b)
Lyσ

(

t, ŷσ (t), ŷ�(t)
)

�t ≤ , ŷ(b) ≥ ymin,

(

ŷ(b) – ymin
)
(

Ly�

(

ρ(b), ŷσ
(

ρ(b)
)

, ŷ�
(

ρ(b)
))

()

+
∫ b

ρ(b)
Lyσ

(

t, ŷσ (t), ŷ�(t)
)

�t
)

= .

Proof We consider the value of J� at nearby functions y(t) = ŷ(t) + εη(t), where ε ∈R is a
small parameter, η ∈ C

rd([a, b]T) with η(a) = . Thus, J�(ŷ + εη) ≤ J�(ŷ) and the function
φ(ε) := J�(ŷ + εη) has an extremum at ε = . As y(b) ≥ ymin for ŷ(b) we can have ŷ(b) > ymin

or ŷ(b) = ymin. In the first case y(b) – ŷ(b) can take both signs. Therefore, by Theorem .
in [], we obtain

�

�t
Ly�

(

t, ŷσ (t), ŷ�(t)
)

= Lyσ

(

t, ŷσ (t), ŷ�(t)
)
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and the transversality condition in the form

Ly�

(

ρ(b), ŷσ
(

ρ(b)
)

, ŷ�
(

ρ(b)
))

+
∫ b

ρ(b)
Lyσ

(

t, ŷσ (t), ŷ�(t)
)

�t = . ()

In the second case, ŷ(b) = ymin, quantity y(b) – ŷ(b) is restricted to be nonnegative. As-
suming η(b) ≥ , y(b) – ŷ(b) ≥  would mean that ε ≥ . Hence, the first-order necessary
optimality condition φ′(ε)|ε= =  changes for φ′(ε)|ε= ≤ . This implies the condition

Ly�

(

ρ(b), ŷσ
(

ρ(b)
)

, ŷ�
(

ρ(b)
))

+
∫ b

ρ(b)
Lyσ

(

t, ŷσ (t), ŷ�(t)
)

�t ≤  ()

for ŷ(b) = ymin. Combining () and () we may write (). �

By Theorem  the necessary optimality conditions for problem ()-() are

[

e�δ(t, )u′(c̃(t)
)]� =  ()

and

u′(c̃
(

ρ(T)
)) ≤ , f (T) ≥ , u′(c̃

(

ρ(T)
))

f (T) = .

Taking the delta derivative in () and using the properties of the delta exponential function
we obtain

e�δ(t, )
 + μ(t)δ

[(

u′(c̃(t)
))� – δu′(c̃(t)

)]

= .

It means that

[u′(c̃(t))]�

u′(c̃(t))
= δ.

If T = R, then

δ =
[u′(c(t))]�

u′(c(t))
=

u′′(c(t))c′(t)
u′(c(t))

. ()

Equation () coincides with the one obtained for the continuous model. Now let us con-
sider the case when T is an isolated time scale (it means that all points are isolated). In this
case, by taking the delta derivative and rearranging terms we get

u′(c̃
(

σ (t)
))

=
(

 + δμ(t)
)

u′(c̃(t)
)

. ()

Putting σ (t) = t +  and μ(t) = , we observe that () coincides with the one known for
the discrete model. However, since in () we multiply a discount rate δ by μ(t), the time
scale model allows us to consider more general cases when the lengths of the periods of
consumption are different. The model implies that the marginal rate of substitution (MRS)
between this period t and the next period σ (t) is no longer a constant but MRSt,σ (t) =


+δμ(t) .
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Example  Consider the problem

max
∫ T


e�δ(t, ) ln

(

c̃(t)
)

�t ()

subject to

c̃(t) = –f �(t), f () = f, f (T) ≥ , ()

where u(c̃) = ln c̃. Then, by Theorem , necessary conditions for a solution are

c̃�(t) = –δc̃
(

σ (t)
)

, ()

f () = f, f (T) = . ()

Solving () (see Theorem . in []) we obtain

c̃(t) = ce�δ(t, ), c = c̃(). ()

On the other hand, combining c̃(t) = –f �(t) with () gives

f = f () =
∫ T


c̃(t)�t. ()

Substituting () into () we get c = f
∫ T

 e�δ (t,)�t
. Therefore,

c̃(t) =
f

∫ T
 e�δ(t, )�t

e�δ(t, ). ()

As the function under an integral sign in () is concave with respect c̃ for all t we see, by
Theorem . in [], that a function c̃ given by () is the optimal solution to problem ()-
(). Note that the use of time scales makes the solution to the problem more compact,
the optimal consumption path is described by the same expression.

Let us consider the periodic domain as a time scale: T = hZ∩ [, ], then we can rewrite
() in the form

c̃(t) =
δ

 + δh
f

 – ( 
+δh )


h

(


 + δh

) t
h

,

where we assume that  ∈ T. Setting, for example, δ = . and f =  we can find the
optimal path. Figure  shows consumption paths c on Z∩ [, ] and c on Z∩ [, ].

The next time scale is T = ({N} ∪ {}) ∩ [, ] that will allow us to demonstrate the
change in the model dynamics as the breaks between meals are getting longer. In this case
we have

c̃
(

k) =
c̃()
 + δ

k–
∏

s=


( + δs)

, k = , . . . , ,
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Figure 1 Consumption paths: c2 on 10Z∩ [0, 60],
c1 on Z∩ [0, 60].

Figure 2 Consumption paths c3 on ({2N0 } ∪ {0}) ∩ [0, 64] without scaling (left) and with scaling (right).

Figure 3 Consumption paths c4 on T1 without scaling (left) and with scaling (right).

where

c̃() =
f ()

 +
∑

k=
k
+δ

∏k–
s=


(+δs)

.

Setting δ = . and f =  we can find the optimal path (see Figure ).
The next time scale in which μ varies over time is T = {, , , , , , }. Choosing,

e.g., δ = . and f =  we solve ()-() recursively and obtain c̃() = ., c̃() = .,
c̃() = ., c̃() = ., c̃() = ., c̃() = .. Figure  shows a consumption path c
on T.

Conclusions:
• In the case of the time scales T = Z∩ [, ] and T = Z∩ [, ] the consumer

behavior meets the expectations. Figure  shows that the time paths of consumption
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Table 1 The percentage share of consumption in the time t in relation to the remaining
resources on 10Z∩ [0, 60]

t c̃(t)
60–

∑
τ∈[0,ρ(t)] c̃(τ ) 100 (%)

0 50.794
10 51.613
20 53.333
30 57.143
40 66.667
50 100

Table 2 The percentage share of consumption in the time t in relation to remaining resources
on ({2N0} ∪ {0}) ∩ [0, 64] (left) and on T1 (right)

t μ(t) c̃(t)
60–

∑
τ∈[0,ρ(t)] c̃(τ ) 100 (%)

1 1 9.348
2 2 17.187
4 4 29.649
8 8 46.827
16 16 67.742
32 0 100

t μ(t) c̃(t)
60–

∑
τ∈[0,ρ(t)] c̃(τ ) 100 (%)

0 2 9.9
2 8 36.718
10 5 17.767
15 15 84.034
40 25 89.245
55 0 100

have the same tendency. We can also observe that consumers eat small amounts when
they eat more often and they have large meals when they eat seldom. This observation
is also confirmed by the analysis of the percentage share of consumption in the time t
in relation to the remaining resources (Table ), which shows a small variation in time.

• In the case of the time scale ({N} ∪ {}) ∩ [, ], where the moment of consumption
is step by step increasingly far we can see an increase in the consumption level. We
observe a tendency to ‘accumulate’ food when it is known that a meal will be more
and more delayed. It is clearly demonstrated in Figure  (right) and in Table  (left).

• For the time scale T, in which consumption frequency varies over time the
‘accumulation’ described above can be seen even more clearly. Figure  (right) and
Table  (right) show a considerable growth in consumption in relation to the
remaining resources when the moment of the next meal is remote.

• The analysis of the model dynamics on the proposed time scales has allowed for the
observation of some theoretical findings known from the behavioral economics
[–], and which are impossible to observe when analyzing the model dynamics on
the traditional homogeneous time scales (that is, with μ ≡ const.).

Infinite horizon problems can also be modeled using time scales tools. The infinite hori-
zon ‘cake-eating’ problem with the delta derivative is

max
∫ +∞


e�δ(t, )u

(

c̃(t)
)

�t ()

subject to

c̃(t) = –f �(t), f () = f. ()

The necessary optimality conditions for this problem are split into two parts: the Euler-
Lagrange (), and a transversality condition at infinity. Under certain assumptions the
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transversality condition for infinite horizon variational problems on time scales was
proved in []. For problem ()-() the transversality condition is

lim
T→+∞ inf

T ′≥T
e�δ(t, )u′(c̃

(

T ′))f
(

T ′) = ,

provided that assumptions formulated in [] are satisfied.

4 The household problem
As a second example we consider the household problem. The discrete model is

max
T

∑

t=

(


 + δ

)t–

u
(

c(t)
)

subject to

a(t) = ( + r)a(t – ) + y(t) – c(t), a() = a, a(T) = aT ,

while the continuous model is

max
∫ T


e–δtu

(

c(t)
)

dt

subject to

a′(t) = ra(t) + y(t) – c(t), a() = a, a(T) = aT ,

where δ ≥  is the discount rate, and u is the utility function. In the budget constraint:
y(t) is the exogenous income at the time t, a(t) represents assets/debts that the individual
accumulates in a period t. Note that a could be positive or negative, the consumer can
either save for the future and borrow against the future at the exogenous interest rate r
in any period. Therefore, a can be interpreted as either an inheritance (a > ) or a debt
burden (a < ) passed down from a previous generation. aT can be interpreted as either
a bequest (aT > ) or a debt burden (aT < ) passed down the next generation.

The household problem with the delta derivative

max
∫ T


e�δ(t, )u

(

cσ (t)
)

�t ()

subject to

a�(t) =
r

 + rμ(t)
aσ (t) +


 + rμ(t)

yσ (t) –


 + rμ(t)
cσ (t),

a() = a, a(T) = aT .
()

Again, this model includes the discrete and continuous model as a special cases. We shall
use Theorem . in [] in order to write the necessary optimality conditions for problem
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()-(). In what follows we assume that σ is a �-differentiable function. Note that, in
particular, the differential calculus, the difference calculus, the h-calculus (T = hZ := {hz :
z ∈ Z}, for some h > ), and the q-calculus (T = qN := {qk : k ∈N}) satisfy this condition.

Theorem  [] Let (x̃, ũ) be a normal extremizer for the problem

L[x, u] =
∫ b

a
f
(

t, xσ (t), uσ (t)
)

�t

subject to

x�(t) = g
(

t, xσ (t), uσ (t)
)

,

x(a) = xa, x(b) = xb,

where L is rd-continuous in t, L(t, ·, ·), and g(t, ·, ·) are C functions with respect to the second
and third variable uniformly in t. Then there exists a function p̃ such that the triple (x̃, ũ, p̃)
satisfies the Hamiltonian system

x�(t) = Hpσ

(

t, xσ (t), uσ (t), pσ (t)
)

,
(

pσ (t)
)� = –Hxσ

(

t, xσ (t), uσ (t), pσ (t)
)

,

and the stationary condition

Huσ

(

t, xσ (t), uσ (t), pσ (t)
)

= ,

for all t ∈ [a,ρ(b)]T, where the Hamiltonian H(t, x, v, p) : [a,ρ(b)] ×R
 →R is defined by

H
(

t, xσ , uσ , pσ
)

= f
(

t, xσ , uσ
)

+ pσ g
(

t, xσ , uσ
)

.

For problem ()-() the Hamiltonian is

H
(

t, aσ , yσ , cσ , pσ
)

= e�δu
(

cσ
)

+ pσ

(
r

 + rμ
aσ +


 + rμ

yσ –


 + rμ
cσ

)

and the necessary optimality conditions are

a�(t) =
r

 + rμ(t)
aσ (t) +


 + rμ(t)

yσ (t) –


 + rμ(t)
cσ (t), ()

(

pσ (t)
)� = –

r
 + rμ(t)

pσ (t), ()

e�δ(t, )u′(cσ (t)
)

–


 + rμ(t)
pσ (t) = . ()

Combining () with (), by the product rule and properties of the delta exponential
function, we derive the Euler-Lagrange equation for problem ()-()

[

u′(cσ (t)
)]� =

δ – r – rμ�(t)
 + rμσ (t)

u′(cσ (t)
)

, ()
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where we assume that μ is delta differentiable. Consider the case when T = R. Then μ(t) =
 for all t and the delta derivative is the usual derivative with respect to t. Therefore, ()
gives the Euler-Lagrange equation for the continuous model

u′′(c(t)
)

c′(t) = (δ – r)u′(c(t)
)

.

In the case whenT = Zwe have μ(t) =  for all t and the delta derivative is the usual forward
difference operator. Hence, () can be rewritten as

u′(c(t + )
)

=
δ + 
 + r

u′(c(t + )
)

,

which is the same expression as we could obtain for the discrete model using the Bellman
equation. It follows that the time scales models unify discrete and continuous models in
a more general framework. Moreover, () demonstrates another potential use of time
scales models: when μ varies over time, the growth rate of marginal utility fluctuates.
Hence, we see that generally the growth rate of marginal utility is not a constant as in the
continuous or discrete time setting.

Using () and () we derive

u′(cσ (t)
)

=
C

 + rμ(t)
e�r(t, )
e�δ(t, )

=
C

 + rμ(t)
er�δ(t, ), ()

where C is a constant. Combining (), () with initial and terminal conditions we can
find the time paths of consumption and assets.

In [] the authors developed a technique for a dynamic optimization problem in which
the objective function and constraints can be on different time scales. Such a technique
can also be used here. Suppose consumption c(t) takes place on some time scaleTc, income
y(t) arrives on a time scale Ty, and assets/debts accrue on Ta. We define T = Tc ∪Ty ∪Ta,
and

m(t) = max{τ ≤ t : τ ∈ Tc},

r(t) =

{

r, t ∈ Ta,
, otherwise,

i(t) =

{

, t ∈ Ty,
, otherwise.

Then problem ()-() takes the form

max
∫ T


e�δ

(

m(t), 
)

u
(

cσ
(

m(t)
))

�t ()

subject to

a�(t) =
r(t)

 + r(t)μ(t)
aσ (t) +

i(t)
 + rμ(t)

yσ (t) –


 + r(t)μ(t)
cσ

(

m(t)
)

,

a() = a, a(T) = aT .
()
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Therefore,
(i) if Ty = ∅, then the budget constraint is

a�(t) =
r(t)

 + r(t)μ(t)
aσ (t) –


 + r(t)μ(t)

cσ
(

m(t)
)

;

(ii) if Ty = ∅ and Ta = ∅, then model ()-() coincides with the delta ‘cake-eating’
problem ()-().

Clearly, we can use Theorem  to derive necessary optimality conditions for problem ()-
().

Example  Consider the problem

max
∫ T


e�δ

(

m(t), 
)

ln
(

cσ
(

m(t)
))

�t

subject to

a�(t) =
r(t)

 + r(t)μ(t)
aσ (t) +

i(t)
 + rμ(t)

yσ (t) –


 + r(t)μ(t)
cσ

(

m(t)
)

,

a() = , a(T) = ,

with δ = . on T = Tc ∪Ty ∪Ta, where Tc = Z∩ [, ], Ty = ∅, and Ta = Z∩ [, ]. The
adopted time scales can illustrate a situation when over a year a consumer lives off their
savings (a() = , y = ) and interests (we will consider r = . and r = .) which
he/she receives every three months.

This example demonstrates a phenomenon described by such researchers as J Parker,
MD Shapiro, and J Slemrod [, ], who observed that the expected changes in income
influence the rate of short-term consumption, i.e., that spending increases when we expect
revenue. This phenomenon can be clearly seen (Figure  and Table ) in the time t = ,
t = , and t =  when consumption increases significantly. In the periods of time when a
consumer does not expect any extra income, their consumption goes down (t = , t = ).

The change in the interest rate from . to . does not affect the above mentioned
behavior, but it indicates the higher propensity to save (see Table ). After increasing r,
the dynamics of consumer spending is the same as for r = .. However, a greater rate of
interest makes the consumer try to save more money for the last period.

Figure 4 Assets a and consumption c, in Example 5, with r = 0.03 (left), r = 0.05 (right).
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Table 3 Consumption c(t), in Example 5, with r = 0.03, r = 0.05

t c(t) with r = 0.03 c(t) with r = 0.05

0 0 0
2 7.905 7.905
4 6.785 6.917
6 13.077 13.834
8 23.975 25.362
10 20.578 22.192
12 39.66 44.384

5 Conclusions
Dynamic optimization in economics appeared in the s with the work of Hotelling and
Ramsey (see, e.g., [, ]). There are three major approaches to dynamic optimization
problems: dynamic programming, calculus of variations, and optimal control theory. In
this paper we have examined the last two approaches but in the more general framework,
using the time scale theory. Economists model time as continuous or discrete. The time
scale theory allows us to handle discrete and continuous models as being two pieces of the
same framework. Moreover, as was shown in this paper the time scale approach enhances
economic modeling by the possibility of working with more complex time domains. This
possibility allows one to illustrate and confirm the theories dealing with preferences con-
cerning the time and intermediate choices, which were discussed before in the neoclassical
economic theory [] and the behavioral economics [–].
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