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Abstract
In the present paper, we consider a Cauchy problem for a linear second order in time
abstract differential equation with pure delay. In the absence of delay, this problem,
known as the harmonic oscillator, has a two-dimensional eigenspace so that the
solution of the homogeneous problem can be written as a linear combination of
these two eigenfunctions. As opposed to that, in the presence even of a small delay,
the spectrum is infinite and a finite sum representation is not possible. Using a special
function referred to as the delay exponential function, we give an explicit solution
representation for the Cauchy problem associated with the linear oscillator with pure
delay. Finally, the solution asymptotics as the delay parameter goes to zero is studied.
In contrast to earlier works, no positivity conditions are imposed.
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1 Introduction
Let X be a (real or complex) Banach space and let x(t) ∈ X describe the state of a physical
system at time t ≥ . With a(t) = ẍ(t) denoting the acceleration of system, Newton’s second
law of motion states that

F(t) = Ma(t) for t ≥ , ()

where M : D(M) ⊂ X → X is a linear, continuously invertible, accretive operator repre-
senting the ‘mass’ of the system. When being displaced from its equilibrium situated in
the origin, the system is affected by a restoring force F(t). In classical mechanics, this force
is postulated to be proportional to the instantaneous displacement, i.e.,

F(t) = Kx(t) for t ≥  ()

for some closed, linear operator K : D(K) ⊂ X → X. When M–K is a bounded linear op-
erator, plugging Equation () into (), we arrive at the classical harmonic oscillator model

ẍ(t) = M–Kx(t) for t ≥ . ()
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Assuming now that the restoring force is proportional to the value of the system at some
past time t – τ , Equation () is replaced with the relation

F(t) = Kx(t – τ ) for t ≥ , ()

where τ >  is a time delay. Plugging Equation () into () leads then to the linear harmonic
oscillator equation with pure delay written as

ẍ(t) = M–Kx(t – τ ) for t ≥ . ()

Problems similar to Equation () also arise when modeling systems with distributed pa-
rameters such as general wave phenomena (cf. []).

Equations similar to () are often referred to as delay or retarded differential equations.
After being transformed to a first order in time system on a Banach space X, a general
equation with constant delay can be written as

u̇(t) = H
(
t, u(t), ut

)
for t > , u() = u, u = ϕ. ()

Here, τ >  is a fixed delay parameter, ut := u(t + ·) ∈ L(–τ , ; X), t ≥ , denotes the his-
tory variable, H is an X-valued operator defined on a subset of [,∞) × X × L(–τ , ; X)
and u ∈ X, ϕ ∈ L(–τ , ; X) are appropriate initial data. Equations of type () have been
intensively studied in the literature. We refer the reader to the monographs by Els’gol’ts
and Norkin [] and Hale and Lunel [] for a detailed treatment of Equation () in finite-
dimensional spaces X. In contrast to this, results on Equation () in infinite-dimensional
spaces X are less numerous. A good overview can be found in the monograph of Bátkai
and Piazzera [].

Khusainov et al. considered in [] Equation () in R
n with

H
(
t, u(t), ut

)
= Au(t) + Au(t – τ ) +

(
u(t) ⊗ b

)
u(t)

+
(
u(t) ⊗ b

)
u(t – τ ) +

(
u(t – τ ) ⊗ b

)
u(t – τ )

for symmetric matrices A, A ∈ R
n×n and column vectors b, b, b ∈ R

n and proposed a
rational Lyapunov function to study the asymptotic stability of solutions to this system.

In their work [], Khusainov et al. studied a modal, or spectrum, control problem for a
linear delay equation on R

n reading as

ẋ(t) = Ax(t) + bu(t) for t >  ()

with a feedback control u(t) =
∑m

j= cT
j x(t – jτ ) for some delay time τ >  and parameter

vectors cj ∈R
n. For canonical systems, they developed a method to compute the unknown

parameters such that the closed-loop system possesses the spectrum prescribed before-
hand. Under appropriate ‘concordance’ conditions, they were able to carry over their con-
siderations for a rather broad class of non-canonical systems.

In the infinite-dimensional situation, a rather general particular case of () with
H(t, v,ψ) = Av + F(ψ), where A generates a C-semigroup (S(t))t≥ on X and F is a non-
linear operator on L(–τ , ; X), was studied by Travies and Webb in their work []. Under
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appropriate assumptions on F , they proved the integral equation corresponding to the
weak formulation of the delay equation given by

u(t) = S(t)ϕ() +
∫ t


S(t – s)F(us) ds for t > 

to possess a unique solution in H
loc(,∞; X).

Di Blasio et al. addressed in [] a similar problem

u̇(t) = (A + B)u(t) + Lu(t – r) + Lut for t > , u() = u, u = ϕ, ()

where A generates a holomorphic C-semigroup on a Hilbert space H , B is a perturbation
of A and L, L are appropriate linear operators. If u and ϕ possess a certain regularity,
they proved the existence of a unique strong solution in H

loc(,∞; X)∩L
loc(,∞; D(A)) by

analyzing the C-semigroup inducing the semiflow t 	→ (u(t), ut). These results were elab-
orated on by Di Blasio et al. in [] leading to a generalization for the case of weighted and
interpolation spaces and including a description of the associated infinitesimal generator.
Finally, the general Lp-case for p ∈ (,∞) was investigated by Di Blasio in [].

Diblík et al. [] studied Equation () for the case that A and B are ×-second order and
first order commuting differential operators, respectively, in a bounded interval (, l) of R
and L ≡ , L ≡ . Additionally, they allowed for non-homogeneous Dirichlet boundary
conditions. For this parabolic system, they proved the existence of solution in a class of
classically differentiable functions both with respect to time and space under appropriate
regularity conditions.

Recently, in their work [], Khusainov et al. proposed an explicit L-solution theory for
a non-homogeneous initial-boundary value problem for an isotropic heat equation with
constant delay

ut(t, x) = ∂i
(
aij(x)∂ju(t, x)

)
+ bi(x)∂iu(t, x) + c(x)u(t, x)

+ ∂i
(
ãij(x)∂ju(t – τ , x)

)
+ b̃i(x)∂iu(t – τ , x) + c̃(x)u(t – τ , x)

+ f (t, x) for (t, x) ∈ (,∞) × �,

u(t, x) = γ (t, x) for (t, x) ∈ (,∞) × ∂�,

u(, x) = u(x) for x ∈ �,

u(t, x) = ϕ(t, x) for (t, x) ∈ (–τ , ) × �,

where � ⊂R
d is a regular bounded domain and the coefficient functions are appropriate.

Conditions assuring for exponential stability were also given.
Over the past decade, hyperbolic partial differential equations have attracted a con-

siderable amount of attention, too. In [], Nicaise and Pignotti studied a homogeneous
isotropic wave equation with an internal feedback with and without delay reading as

∂ttu(t, x) – �u(t, x) + a∂tu(t, x) + a∂tu(t – τ , x) =  for (t, x) ∈ (,∞) × �,

u(t, x) =  for (t, x) ∈ (,∞) × �,

∂u
∂ν

(t, x) =  for (t, x) ∈ (,∞) × �
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under the usual initial conditions where �,� ⊂ ∂� are relatively open in ∂� with �̄ ∩
�̄ = ∅ and ν denotes the outer unit normal vector of a smooth bounded domain � ⊂R

d .
They showed the problem to possess a unique global classical solution and proved the
latter to be exponentially stable if a > a >  or instable, otherwise. These results have
been carried over by Nicaise and Pignotti [] and Nicaise et al. [] to the case of time-
varying internally distributed or boundary delays.

In [], Khusainov et al. considered a non-homogeneous initial-boundary value problem
for a one-dimensional wave equation with constant coefficients and a single constant delay

∂ttu(t, x) = a∂xxu(t – τ , x) + b∂xu(t – τ , x) + cu(t – τ , x)

+ f (t, x) for (t, x) ∈ (, T) × (, l),

u(t, x) = γ (t, x) for (t, x) ∈ (, T) × {, },
u(, x) = u(x) for x ∈ (, ),

u(t, x) = ϕ(t, x) for t ∈ (–τ , ), x ∈ (, ).

Under appropriate regularity and compatibility assumptions, they proved the problem to
possess a unique C-solution for any finite T > . Their proof was based on extrapolation
methods for C-semigroups and an explicit solution representation formula.

Recently, Khusainov and Pokojovy presented in [] a Hilbert-space treatment of the
initial-boundary value problem for the equations of thermoelasticity with pure delay

∂ttu(x, t) – a∂xxu(x, t – τ ) + b∂xθ (x, t – τ ) = f (x, t) for x ∈ �, t > ,

∂tθ (x, t) – c∂xxθ (x, t – τ ) + d∂txu(x, t – τ ) = g(x, t) for x ∈ �, t > ,

u(, t) = u(l, t) = , ∂xθ (, t) = ∂xθ (l, t) =  for t > ,

u(x, ) = u(x), u(x, t) = u(x, t) for x ∈ �, t ∈ (–τ , ),

∂tu(x, ) = u(x), ∂tu(x, t) = u(x, t) for x ∈ �, t ∈ (–τ , ),

θ (x, ) = θ(x), θ (x, t) = θ(x, t) for x ∈ �, t ∈ (–τ , ).

Their proof exploited extrapolation techniques for strongly continuous semigroups and
an explicit solution representation formula.

In the present paper, we give a Banach space solution theory for Equation () subject to
appropriate initial conditions. Our approach is solely based on the step method and does
not incorporate any semigroup techniques. In contrast to earlier works by Khusainov et al.
[, , ], we only require the invertibility and not the negativity of M–K in Equation ().
In this sense, our framework is different from that employed by Diblík et al. in [, ], as
they required the coefficient matrices to be negative definite. It should though be pointed
out that their solution theory accounted for two and more delays, whereas we consider a
single delay.

First, we briefly outline some seminal results on second order abstract Cauchy prob-
lems. Next, in our main section, we prove the existence and uniqueness of solutions to the
Cauchy problem for the delay equation () as well as their continuous dependence on the
data. Next, we give an explicit solution representation formula in a closed form based on
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the delayed exponential function introduced by Khusainov and Shuklin in []. Finally, we
prove the solution of the delay equation to converge to the solution of the original second
order abstract differential equation as the delay parameter τ goes to zero.

2 Classical harmonic oscillator
For the sake of completeness, we briefly discuss the initial value problem for the harmonic
oscillator being a second order in time abstract differential equation

ẍ(t) – �x(t) = f (t) for t ≥  ()

subject to the initial conditions

x() = x ∈ D(�), ẋ() = x ∈ X. ()

Here, we assume the linear operator � : D(�) ⊂ X → X to be continuously invertible and
generate a C-group (et�)t∈R ⊂ L(X) on a (real or complex) Banach space X with L(X)
denoting the space of bounded, linear operators on X equipped with the norm ‖A‖L(X) :=
sup{‖Ax‖X : x ∈ X,‖x‖X ≤ }. A more rigorous treatment of this problem can be found in
[], Section ..

The general solution to the homogeneous equation is known to read as

xh(t) = e�tc + e–�tc for t ≥ 

with some c, c ∈ D(�). Vectors c, c can be computed using the initial conditions from
Equation () leading to a system of linear operator equations

c + c = x, �c – �c = x.

The latter is uniquely solved by

c =


�–(�x + x), c =



�–(�x – x).

Thus, the unique solution of the homogeneous equation with the initial conditions () is
given by

xh(t) =


�–e�t(�x + x) +



�–e–�t(�x – x) for t ≥  ()

or, equivalently,

xh(t) =


(
e�t + e–�t)x +



�–(e�t – e–�t)x for t ≥ . ()

A particular solution to the non-homogeneous equation with zero initial conditions will
be determined in the Cauchy form

xp(t) =
∫ t


K(t, s)f (s) ds for t ≥ . ()

We refer the reader to Chapter  in [] for the definition of Bochner integrals for X-valued
functions. In Equation (), the function K ∈ C([,∞) × [,∞), L(X)) is the Cauchy ker-
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nel, i.e., for any fixed s ≥ , the function K(·, s) is the solution of the homogeneous problem
satisfying the initial conditions

K(t, s)|t=s = L(X), ∂tK(t, s)|t=s = idX .

Using the ansatz

K(t, s) = e�tc(s) + e–�tc(s) for t, s ≥ 

for some c, c ∈ C([,∞), L(X)) and taking into account the initial conditions, we arrive
at

K(t, s)|t=s = e�sc(s) + e–�sc(s) = L(X),

∂tK(t, s)|t=s = �e�sc(s) – �e–�sc(s) = idX .

Solving this system with generalized Cramer’s rule, we obtain, for s ≥ ,

c(s) =

(

detL(X)

(
e�s e–�s

�e�s –�e–�s

))–

detL(X)

(
L(X) e–�s

idX –�e–�s

)

=


�–e–�s,

c(s) =

(

detL(X)

(
e�s e–�s

�e�s –�e–�s

))–

detL(X)

(
e�s L(X)

�e�s idX

)

=


�–e�s.

Thus, the Cauchy kernel is given by

K(t, s) =


�–(e�(t–s) – e–�(t–s)) for t, s ≥ ,

whereas the particular solution satisfying zero initial conditions reads as

xp(t) =


�–

∫ t



(
e�(t–s) – e–�(t–s))f (s) ds for t ≥ .

Hence, for x ∈ D(�), x ∈ X and f ∈ L
loc(,∞; X), the unique mild solution x ∈

W ,
loc(,∞; X) to the Cauchy problem ()-() can be written as

x(t) =


(
e�t + e–�t)x +



�–(e�t – e–�t)x

+


�–

∫ t



(
e�(t–s) – e–�(t–s))f (s) ds for t ≥ . ()

If the data additionally satisfy x ∈ D(�), x ∈ D(�) and f ∈ W ,
loc(,∞; X) ∪ C([,∞),

D(�)), then the mild solution x given in Equation () is a classical solution satisfying
x ∈ C([,∞), X) ∩ C([,∞), D(�)) ∩ C([,∞), D(�)).

3 The linear oscillator with pure delay
In this section, we consider a Cauchy problem for the linear oscillator with a single pure
delay

ẍ(t) – �x(t – τ ) = f (t) for t ≥  ()
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subject to the initial condition

x(t) = ϕ(t) for t ∈ [–τ , ]. ()

Here, X is a Banach space, � ∈ L(X) is a bounded, linear operator and ϕ ∈ C([–τ , ], X),
f ∈ L

loc(,∞; X) are given functions. In contrast to the previous section, the boundedness
of � is indispensable here. Indeed, Dreher et al. proved in [] that Equations ()-() are
ill-posed even if X is a Hilbert space and � possesses a sequence of eigenvalues (λn)n∈N ⊂
R with λn → ∞ or λn → –∞ as n → ∞. The necessity for � being bounded has also been
pointed out by Rodrigues et al. in [] when treating a linear heat equation with pure delay.

Definition  A function x ∈ C([–τ ,∞), X) ∩ C([–τ , ], X) ∩ C([,∞), X) satisfying
Equations ()-() pointwise is called a classical solution to the Cauchy problem ()-().

A mild formulation of ()-() is given by

ẋ(t) = ẋ() + �
∫ t


x(s – τ ) ds +

∫ t


f (s) ds for t ≥ , ()

x(t) = ϕ(t) for t ∈ [–τ , ]. ()

Definition  A function x ∈ C([–τ ,∞), X) satisfying Equations ()-() is called a mild
solution to the Cauchy problem ()-().

By the virtue of fundamental theorem of calculus, any mild solution x to ()-() with
x ∈ C([–τ ,∞), X) ∩ C([–τ , ], X) ∩ C([,∞), X) is also a classical solution. Obvi-
ously, for the problem ()-() to possess a classical solution, one necessarily requires
ϕ ∈ C([–τ , ], X).

In the following subsection, we want to study the existence and uniqueness of mild and
classical solutions to the Cauchy problem ()-() as well as their continuous dependence
on the data.

3.1 Existence and uniqueness
Rather than using the semigroup approach (cf. [], Chapter ), we decided to use the more
straightforward step method here reducing ()-() to a difference equation on the func-
tional vector space Ĉ

τ (N, X) defined as follows.

Definition  Let X be a Banach space, τ >  and s ∈ N. We introduce the metric vector
space

Ĉs
τ (N, X) := l∞loc

(
N, Cs([–τ , ], X

))

:=
{

x = (xn)n∈N

∣∣
∣ xn ∈ Cs([–τ , ], X

)
for n ∈N,

dj

dtj xn(–τ ) =
dj

dtj xn–() for j = , . . . , s – , n ∈N

}
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equipped with the distance function

dĈs
τ (N,X)(x, y) :=

∑

n∈N

–n maxk=,...,n ‖xk – yk‖Cs([–τ ,],X)

 + maxk=,...,n ‖xk – yk‖Cs([–τ ,],X)
for x, y ∈ Ĉs

τ (N, X).

Obviously, Ĉs
τ (N, X) is a complete metric space which is isometrically isomorphic to

the metric space Cs
τ ([–τ ,∞), X) := Cs([–τ ,∞), X) equipped with the distance

dCs
τ ([,∞),X)(x, y) :=

∑

n∈N

–n ‖x – y‖Cs([–τ ,τn],X)

 + ‖x – y‖Cs([–τ ,τn],X)
for x, y ∈ Cs([–τ ,∞), X

)
.

For any x : [–τ ,∞) → X, we define for n ∈N the nth segment of x via

xn := x(nτ + s) for s ∈ [–τ , ].

By induction, x is a mild solution of ()-() if and only if (xn)n∈N ∈ Ĉ
τ (N, X) solves

ẋn(s) = ẋn–() + �
∫ s

–τ

xn–(σ ) dσ

+
∫ nτ+s

(n–)τ
f (σ ) dσ for s ∈ [–τ , ] and n ∈N, ()

x(s) = ϕ(s) for s ∈ [–τ , ].

Theorem  Equation () has a unique solution (xn)n∈N ∈ Ĉ
τ (N, X). Moreover, x con-

tinuously depends on the data in sense of the estimate

‖xn‖C([–τ ,],X) ≤ κn(‖ϕ‖C([–τ ,],X) + ‖f ‖L(,τn;X)
)

for any n ∈ N

with κ :=  + τ ( + τ )( + ‖�‖
L(X)).

Proof By the virtue of fundamental theorem of calculus, Equation () is satisfied if and
only if

xn(s) = xn–() + (s + τ )ẋn–() + �
∫ s

–τ

∫ σ

–τ

xn–(ξ ) dξ dσ

+
∫ s

–τ

∫ nτ+σ

(n–)τ
f (ξ ) dξ dσ for s ∈ [–τ , ], n ∈N, ()

xn(–τ ) = xn–(), ẋn(–τ ) = ẋn–() for n ∈N, ()

x(s) = ϕ(s) for s ∈ [–τ , ]. ()

By induction, we can easily show that for any n ∈ N there exists a unique local solu-
tion (x, x, . . . , xn) ∈ (C([–τ , ], X))n+ to ()-() up to the index n. Here, we used the
Sobolev embedding theorem stating

W ,(, T ; X) ↪→ C([, T], X
)

for any T > .
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Further, we can estimate

‖xn‖C([–τ ,],X) ≤ (
 + τ + τ ‖�‖

L(X)
)‖xn–‖C([–τ ,],X) + τ‖f ‖L((n–)τ ,nτ ;X). ()

Similarly, Equation () yields

‖ẋn‖C([–τ ,],X) ≤ (
 + τ‖�‖

L(X)
)‖xn–‖C([–τ ,],X) + ‖f ‖L((n–)τ ,nτ ;X). ()

Equations () and () imply together

‖xn‖C([–τ ,],X) ≤ κ
(‖ϕ‖C([–τ ,],X) + ‖f ‖L((n–)τ ,nτ :X)

)
.

By induction, we then get, for any n ∈N,

‖xn‖C([–τ ,],X) ≤ κn(‖ϕ‖C([–τ ,],X) + ‖f ‖L(,τn,X)
)
,

which finishes the proof. �

Letting x(t) := xk(t – kτ ) for t ≥  and k := � t
τ

� ∈ N, we obtain the unique mild solu-
tion x of Equations ()-().

Corollary  Equations ()-() possess a unique mild solution x satisfying, for any T :=
nτ , n ∈N,

‖x‖C([–τ ,T],X) ≤ κn(‖ϕ‖C([–τ ,T],X) + ‖f ‖L(,T ;X)
)

for any n ∈N

with κ :=  + ( + τ )( + ‖�‖
L(X)).

Theorem  Under an additional condition that ϕ ∈ C([–τ , ], X) as well as f ∈
C([,∞), X), the unique mild solution given in Corollary  is a classical solution.

Proof Differentiating Equation () with respect to t, using the assumptions and the fact
that x ∈ C([–τ ,∞), X), we deduce that x|[–τ ,] ≡ ϕ ∈ C([–τ , ], X) and

ẍ = �x(· – τ ) + f ∈ C([,∞), X
)
.

Hence, x ∈ C([–τ ,∞), X)∩C([–τ , ], X)∩C([,∞), X) and is thus a classical solution
of Equations ()-(). �

3.2 Explicit representation of solutions
Following Khusainov and Shuklin [] and Khusainov et al. [], we define for t ∈ R the
operator-valued delayed exponential function

expτ (t;�) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L(X), –∞ < t < –τ ,
idX , –τ ≤ t < ,
idX + � t

! ,  ≤ t < τ ,
idX + � t

! + � (t–τ )

! , τ ≤ t < τ ,
. . . , . . . ,
idX + � t

! + � (t–τ )

! + · · · + �k (t–(k–)τ )k

k! , (k – )τ ≤ t < kτ ,
. . . , . . . .

()
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Throughout this section, we additionally assume that � : X → X is an isomorphism
from the Banach space X onto itself.

Theorem  The delayed exponential function expτ (·;�) lies in C([–τ ,∞), X) ∩ C([,
∞), X) ∩ C([τ ,∞), X) and solves the Cauchy problem

ẍ(t) – �x(t – τ ) = X for t ≥ τ , ()

x(t) = ϕ(t) for t ∈ [–τ , τ ], ()

where

ϕ(t) =

{
idX , –τ ≤ t < ,
idX + �t,  ≤ t ≤ τ .

Proof To prove the smoothness of x, we first note that x is an operator-valued polyno-
mial and thus analytic on each of the intervals [(k – )τ , kτ ] for k ∈ Z. By the definition of
expτ (·;�), we further find

dj

dtj x(kτ – ) =
dj

dtj x(kτ + ) for j = , . . . , k, k ∈N.

Hence, x ∈ C([–τ ,∞), X) ∩ C([,∞), X) ∩ C([τ ,∞), X).
For k ∈N, k ≥ , we have

x(t) = idX + �
t
!

+ � (t – τ )

!
+ � (t – τ )

!

+ � (t – τ )

!
+ · · · + �k (t – (k – )τ )k

k!
.

For t ≥ τ , differentiation yields

ẋ(t) = � + � t – τ

!
+ � (t – τ )

!
+ � (t – τ )

!
+ · · · + �k (t – (k – )τ )k–

(k – )!

= �

(
idX + �

t – τ

!
+ � (t – τ )

!
+ � (t – τ )

!
+ · · · + �k– (t – (k – )τ )k–

(k – )!

)

= � expτ (t – τ ;�) = �x(t – τ )

and, therefore,

ẍ(t) = � + � t – τ

!
+ � (t – τ )

!
+ · · · + �k (t – (k – )τ )k–

(k – )!

= �
(

idX + �
t – τ

!
+ � (t – τ )

!
+ · · · + �k– (t – (k – )τ )k–

(k – )!

)

= � expτ (t – τ ;�) = �x(t – τ ).

Hence, x satisfies Equation (). Finally, by definition of expτ (·;�), x satisfies Equation (),
too. �
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Corollary  The delayed exponential function expτ (·; –�) lies in C([–τ ,∞), X) ∩ C([,
∞), X) ∩ C([τ ,∞), X) and solves the Cauchy problem ()-() with the initial data

ϕ(t) =

{
idX , –τ ≤ t < ,
idX – �t,  ≤ t ≤ τ .

We define the functions

x
τ (t;�) :=



(
expτ (t;�) + expτ (t; –�)

)
for t ≥ –τ ,

x
τ (t;�) :=



�–(expτ (t;�) – expτ (t; –�)

)
for t ≥ –τ .

()

As we already pointed out in the introduction section, in contrast to earlier works by
Khusainov et al. [, , ], only the invertibility and not the negativity of � is necessary
for our purposes.

From Equation (), we explicitly obtain

x
τ (t;�) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

idX , –∞ < t < τ ,
idX + � (t–τ )

! , τ ≤ t < τ ,
idX + � (t–τ )

! + � (t–τ )

! , τ ≤ t < τ ,
. . . , . . . ,
idX + � (t–τ )

! + · · · + �k (t–(k–)τ )k

(k)! , (k – )τ ≤ t < (k + )τ

and

x
τ (t;�) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L(X), –∞ < t < ,
idX

t
! ,  ≤ t < τ ,

idX
t
! + � (t–τ )

! , τ ≤ t < τ ,
idX

t
! + � (t–τ )

! + � (t–τ )

! , τ ≤ t < τ ,
. . . , . . . ,
idX

t
! + � (t–τ )

! + · · · + �k (t–(k)τ )k+

(k+)! , kτ ≤ t < (k + )τ .

Obviously, x
τ and x

τ are even functions with respect to �. Figures  and  display the
functions x

τ (·;�) and x
τ (·;�) for various values of τ and �.

Theorem  The functions x
τ (·;�), x

τ (·;�) have the following regularity properties:
x

τ (·;�), x
τ (·;�) ∈ C([–τ ,∞), X) ∩ C([–τ , ], X) ∩ C([τ ,∞), X). Further, x

τ (·;�) and
x

τ (·;�) are solutions to the Cauchy problem ()-() with the initial data ϕ(t) = idX ,
–τ ≤ t ≤ τ , and ϕ(t) = L(X), –τ ≤ t ≤ τ , respectively.

First, assuming f ≡ X , Equations ()-() reduce to

ẍ(t) – �x(t – τ ) =  for t ≥ , ()

x(t) = ϕ(t) for t ∈ [–τ , ]. ()
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Figure 1 Plot of x1
τ (·;�) function.

Figure 2 Plot of x2
τ (·;�) function.

Theorem  Let ϕ ∈ C([–τ , ], X). Then the unique classical solution x to the Cauchy
problem ()-() is given by

x(t) = x
τ (t + τ ;�)ϕ(–τ ) + x

τ (t + τ ;�)ϕ̇(–τ )

+
∫ 

–τ

x
τ (t – s;�)ϕ̈(s) ds.

Proof To solve Equations ()-(), we use the ansatz

x(t) = x
τ (t + τ ;�)c + x

τ (t + τ ;�)c

+
∫ 

–τ

x
τ (t – s;�)c̈(s) ds ()

for some c, c ∈ X and c ∈ C([–τ , ], X).
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Plugging the ansatz from Equation () into Equation (), we obtain, for t ≥ ,

d

dt

(
x

τ (t + τ ;�)c + x
τ (t + τ ;�)c +

∫ 

–τ

x
τ (t – s;�)c̈(s) ds

)

– �
(

x
τ

(
(t + τ ) – τ ;�

)
c + x

τ

(
(t + τ ) – τ ;�

)
c

+
∫ 

–τ

x
τ

(
(t – τ ) – s;�

)
c̈(s) ds

)
= 

or, equivalently,

(
d

dt x
τ (t + τ ;�) – �x

τ

(
(t + τ ) – τ ;�

))
c

+
(

d

dt x
τ (t + τ ;�) – �x

τ

(
(t + τ ) – τ ;�

))
c

+
∫ 

–τ

(
d

dt x
τ (t – s;�) – �x

τ

(
(t – τ ) – s;�

)
)

c̈(s) ds ≡ X .

Since x
τ (·;�) and x

τ (·;�) solve the homogeneous equation, all three coefficients at c, c

and c̈ vanish implying that the function x in Equation () is a solution of Equation ().
Now, we show that selecting c := ϕ(–τ ), c := ϕ̇(–τ ) and c := ϕ, the function x in Equa-

tion () satisfies the initial condition (). Letting, for t ∈ [–τ , ],

[Iϕ](t) :=
∫ 

–τ

x
τ (t – s;�)ϕ̈(s) ds

and performing a change of variables σ := t – s, we find

[Iϕ](t) = –
∫ t

t+τ

x
τ (σ ;�)ϕ̈(t – σ ) dσ =

∫ t+τ

t
x

τ (σ ;�)ϕ̈(t – σ ) dσ .

Exploiting the fact that x
τ vanishes on [–τ , ], we get

[Iϕ](t) =
∫ t+τ


x

τ (σ ;�)ϕ̈(t – σ ) dσ .

Integrating by parts, we further get

[Iϕ](t) =
∫ t+τ


x

τ (σ ;�)ϕ̈(t – σ ) dσ

= –
∫ t+τ


x

τ (σ ;�)
d
dt

(
ϕ̇(t – σ )

)
dσ

= –x
τ (σ ;�)ϕ̇(t – σ )|σ=t+τ

σ= +
∫ t+τ


ẋ

τ (σ ;�)ϕ̇(t – σ ) dσ .

Now, taking into account

x
τ (t;�) = tidX ,  ≤ t ≤ τ , ()
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we obtain

[Iϕ](t) = –x
τ (t + τ ;�)ϕ̇(–τ ) +

∫ t+τ


ẋ

τ (σ ;�)ϕ̇(t – σ ) dσ .

Again, using Equation () and

x
τ (t;�) = idX , –τ ≤ t ≤ τ ,

we compute

[Iϕ](t) = –x
τ (t + τ ;�)ϕ̇(–τ ) +

∫ t+τ


ϕ̇(t – σ ) dσ

= –x
τ (t + τ ;�)ϕ̇(–τ ) – ϕ(t – σ )|σ=t+τ

σ=

= –x
τ (t + τ ;�)ϕ̇(–τ ) – x

τ (t + τ ;�)ϕ(–τ ) + ϕ(t).

Hence, for t ∈ [–τ , ], we have

x(t) = x
τ (t + τ ;�)ϕ(–τ ) + x

τ (t + τ ;�)ϕ̇(–τ ) +
∫ 

–τ

x
τ (t – s;�)ϕ̈(s) ds = ϕ(t)

as claimed. �

Next, we consider Equations ()-() for the trivial initial data, i.e.,

ẍ(t) – �x(t – τ ) = f (t) for t ≥ , ()

x(t) =  for t ∈ [–τ , ]. ()

Theorem  Let f ∈ C([,∞), X). The unique classical solution x to the Cauchy problem
()-() is given by

x(t) =
∫ t


x

τ (t – s;�)f (s) ds.

Proof To find an explicit solution representation, we use the ansatz

x(t) =
∫ t


x

τ (t – s;�)c(s) ds for t ≥ τ

for some function c ∈ C([,∞), X). Differentiating this expression with respect to t and
exploiting the initial conditions for x

τ (·;�), we get

ẋ(t) =
∫ t


ẋ

τ (t – s;�)c(s) ds + x
τ (t – s;�)c(s)|s=t

=
∫ t


ẋ

τ (t – s;�)c(s) ds + x
τ ()c(t)

=
∫ t


ẋ

τ (t – s;�)c(s) ds.
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Differentiating again, we find

ẍ(t) =
∫ t


ẍ

τ (t – s;�)c(s) ds + ẋ
τ (t – s;�)c(s)|s=t

=
∫ t


ẍ

τ (t – s;�)c(s) ds + ẋ
τ (+;�)c(t)

=
∫ t


ẍ

τ (t – s;�)c(s) ds + c(t).

Plugging this into Equation () and recalling that x
τ (·;�) is a solution of the homogeneous

equation, we get

c(t) +
∫ t



(
ẍ

τ (t – s;�) – �x
τ (t – τ – s;�)

)
c(s) ds = f (t)

and therefore c ≡ f . �

As a consequence from Theorems  and , we obtain using the linearity property of
Equations ()-() the following.

Theorem  Let ϕ ∈ C([–τ , ], X) and f ∈ C([,∞), X). The unique classical solution
to Equations ()-() is given by

x(t) = x
τ (t + τ ;�)ϕ(–τ ) + x

τ (t + τ ;�)ϕ̇(–τ ) +
∫ 

–τ

x
τ (t – s;�)ϕ̈(s) ds

+

{
, t ∈ [–τ , ),
∫ t

 x
τ (t – s;�)f (s) ds, t ≥ 

for t ∈ [–τ ,∞).

Finally, after a partial integration, we get the following.

Theorem  Let ϕ ∈ C([–τ , ], X) and f ∈ L
loc(,∞; X). The unique mild solution to

Equations ()-() is given by

x(t) = x
τ (t + τ ;�)ϕ(–τ ) + x

τ (t;�)ϕ̇() –
∫ 

–τ

ẋ
τ (t – s;�)ϕ̇(s) ds

+

{
, t ∈ [–τ , ),
∫ t

 x
τ (t – s;�)f (s) ds, t ≥ 

for t ∈ [–τ ,∞).

Proof Approximating ϕ in C([–τ , ], X) with (ϕn)n∈N ⊂ C([–τ , ], X) and f in L
loc(,

∞; X) with (fn)n∈N ⊂ C([,∞), X), applying Theorem  to solve the Cauchy problem
()-() for the right-hand side f and the initial data ϕn, performing a partial integration
for the integral involving ϕ̈n and passing to the limit as n → ∞, the claim follows. �
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3.3 Asymptotic behavior as τ → 0
Again, we assume X to be a Banach space and prove the following generalization of Lem-
ma  in [].

Lemma  Let � ∈ L(X), T > , τ >  and let

α :=  +  exp
(
τ‖�‖L(X)

)

Then, for any τ ∈ (, τ],

∥
∥expτ (t – τ ;�) – exp(�t)

∥
∥

L(X) ≤ τ‖�‖L(X) exp
(
α(T + τ)‖�‖L(X)

)
for t ∈ [, T].

Proof First, we want to exploit the mathematical induction to show, for any k ∈N,

∥∥expτ (t – τ ;�) – exp(t�)
∥∥

L(X) ≤ τ‖�‖L(X) exp
(
αkτ‖�‖L(X)

)
()

for t ∈ [(k – )τ , kτ ]. Let τ ∈ (, τ]. For t ∈ [, τ ], the claim easily follows from the mean
value theorem for Bochner integration since

∥∥expτ (t – τ ;�) – exp(�t)
∥∥

L(X)

=
∥∥exp(�t) – idX

∥∥
L(X) ≤ τ‖�‖L(X) exp

(
τ‖�‖L(X)

)

≤ τ‖�‖L(X) exp
(
ατ‖�‖L(X)

)
,

where we used the fact α ≥ . Assuming now that inequality () is valid up to some k ∈N,
we use the fundamental theorem of calculus to estimate, for t ∈ [kτ , (k + )τ ],

∥
∥expτ (t – τ ;�) – exp(t�)

∥
∥

L(X)

=
∥∥∥
∥expτ

(
(k – )τ ;�

)
– exp(kτ�) +

∫ t

kτ

d
ds

(
expτ (s – τ ;�) – exp(s�)

)
ds

∥∥∥
∥

L(X)

≤ ∥
∥expτ

(
(k – )τ ;�

)
– exp(kτ�)

∥
∥

L(X)

+
∫ t

kτ

∥∥∥
∥

d
ds

(
expτ (s – τ ;�) – exp(s�)

)
∥∥∥
∥

L(X)
ds

≤ τ‖�‖L(X) exp
(
αkτ‖�‖L(X)

)

+
∫ (k+)τ

kτ

∥∥
∥∥

d
ds

expτ (s – τ ;�) –
d
ds

exp(s�)
∥∥
∥∥

L(X)
ds

≤ τ‖�‖L(X) exp
(
αkτ‖�‖L(X)

)

+ ‖�‖L(X)

∫ (k+)τ

kτ

∥∥expτ (s – τ ;�) – exp(s�)
∥∥

L(X) ds

≤ τ‖�‖L(X) exp
(
αkτ‖�‖L(X)

)

+ ‖�‖L(X)

∫ (k+)τ

kτ

∥
∥expτ (s – τ ;�) – exp

(
(s – τ )�

)∥∥
L(X) ds
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+ ‖�‖L(X)

∫ (k+)τ

kτ

∥∥exp(s�) – exp
(
(s – τ )�

)∥∥
L(X) ds

≤ τ‖�‖L(X) exp
(
αkτ‖�‖L(X)

)

+ ‖�‖L(X)

∫ kτ

(k–)τ

∥∥expτ (s – τ ;�) – exp(s�)
∥∥

L(X) ds

+ ‖�‖L(X)

∫ (k+)τ

kτ

∫ s

s–τ

∥∥
∥∥

d
dσ

exp(σ�)
∥∥
∥∥

L(X)
dσ ds

≤ τ‖�‖L(X) exp
(
αkτ‖�‖L(X)

)
+ τ ‖�‖

L(X) exp
(
αkτ‖�‖L(X)

)

+ τ ‖�‖
L(X) exp

(
(k + )τ‖�‖L(X)

)

≤ τ‖�‖L(X) exp
(
αkτ‖�‖L(X)

)(
 + τ‖�‖L(X) + τ‖�‖L(X) exp

(
τ‖�‖L(X)

))

≤ τ‖�‖L(X) exp
(
αkτ‖�‖L(X)

)(
 + τ‖�‖L(X) exp

(
τ‖�‖L(X)

))

≤ τ‖�‖L(X) exp
(
αkτ‖�‖L(X)

)
exp

(
τ‖�‖L(X) exp

(
τ‖�‖L(X)

))

≤ τ‖�‖L(X) exp
(
α(k + )τ‖�‖L(X)

)
.

By induction, we obtain, for any k ∈ N,

∥
∥expτ (t – τ ;�) – exp(t�)

∥
∥

L(X) ≤ τ‖�‖L(X) exp
(
αkτ‖�‖L(X)

)
()

for t ∈ ((k – )τ , kτ ]. Now, taking into account that for any t ∈ [, T], τ ∈ (, τ] and k ∈ N

such that t ∈ [(k – )τ , kτ ], we have kτ ≤ T + τ. This together with () yields the claim.
�

Corollary  Let the assumptions of Lemma  be satisfied and let γ ≥ . Then, for t ∈
[, T] and τ ∈ (, τ], we have

∥∥expτ (t + γ ;�) – e�t∥∥
L(X) ≤ (γ + τ )‖�‖L(X) exp

(
α(T + γ + τ)‖�‖L(X)

)
.

Proof Lemma  and the mean value theorem for Bochner integration yield

∥
∥expτ (t + γ ;�) – e�t∥∥

L(X)

≤ ∥∥expτ (t + γ ;�) – e�(t+γ +τ )∥∥
L(X) +

∥∥e�(t+γ +τ ) – e�t∥∥
L(X)

≤ τ‖�‖L(X) exp
(
α(T + γ + τ)‖�‖L(X)

)

+ (γ + τ )‖�‖L(X) exp
(
(T + γ + τ )‖�‖L(X)

)

≤ (γ + τ )‖�‖L(X) exp
(
α(T + γ + τ)‖�‖L(X)

)

as we claimed. �

Let T > , τ > , x, x ∈ X and f ∈ L
loc(,∞; X) be fixed and let x̄ ∈ C([,∞), X) denote

the unique mild solution to the Cauchy problem ()-() from the section on classical
harmonic oscillator.
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Theorem  Let τ > . For any τ ∈ (, τ), let x(·; τ ) denote the unique mild solution of
()-() for the initial data ϕ(·; τ ) ∈ C([–τ , ], X). Then we have

∥
∥x(·; τ ) – x̄

∥
∥

C([,T],X) ≤ β
(∥∥ϕ(–τ ; τ ) – x

∥
∥

X +
∥
∥ϕ̇(; τ ) – x

∥
∥

X

)

+ βτ
(∥∥ϕ(·; τ )

∥∥
C([–τ ,],X) + ‖f ‖L(,T ;X)

)

with β(T) := ( + ‖�‖L(X))( + ‖�–‖L(X)) exp(α(T + τ)‖�‖L(X)).

Proof Using the explicit representation of the mild solution x̄ and x(·; τ ), respectively, we
can estimate

∥∥x(t; τ ) – x̄(t)
∥∥

X ≤ I,(t) + I,(t) + I,(t) for t ∈ [, T]

with

I,(t) :=
∥
∥∥∥x

τ (t + τ ;�)ϕ(–τ ; τ ) –


(
e�t + e–�t)x

∥
∥∥∥

X

+
∥
∥∥
∥x

τ (t;�)ϕ̇(; τ ) +


�–(e�t – e–�t)x

∥
∥∥
∥

X
,

I,(t) :=
∫ t



∥∥
∥∥x

τ (t – s;�) –


�–(e�(t–s) – e–�(t–s))

∥∥
∥∥

L(X)

∥
∥f (s)

∥
∥

X ds,

I,(t) :=
∫ 

–τ

∥
∥ẋ

τ (t – s;�)
∥
∥

L(X)

∥
∥ϕ̇(s; τ )

∥
∥

X ds.

Corollary  yields
∥
∥∥
∥x

τ (t + τ ;�) –


(
e�t + e–�t)

∥
∥∥
∥

L(X)
≤ βτ ,

∥
∥∥
∥x

τ (t;�) –


�–(e�t – e–�t)

∥
∥∥
∥

L(X)
≤ βτ

and, therefore,

I,(t) ≤ βτ
(∥∥ϕ(–τ ; τ )

∥
∥

X +
∥
∥ϕ̇(; τ )

∥
∥

X

)
+ β

(∥∥ϕ(–τ ; τ ) – x
∥
∥

X +
∥
∥ϕ̇(; τ ) – x

∥
∥

X

)

≤ βτ‖ϕ‖C([–τ ,],X) + β
(∥∥ϕ(–τ ; τ ) – x

∥∥
X +

∥∥ϕ̇(; τ ) – x
∥∥

X

)
.

Similarly,

I,(t) ≤ βτ‖f ‖L(,T ;X) and I,(t) ≤ βτ‖ϕ‖C([,T],X).

Hence, the claim follows. �

Corollary  Under conditions of Theorem , we additionally have

∥∥x(·; τ ) – x̄
∥∥

C([,T],X)

≤ 
(
 + β(T)

)(
 + δ(T)

)
( + T)

(∥∥ϕ(–τ ; τ ) – x
∥
∥

X +
∥
∥ϕ̇(; τ ) – x

∥
∥

X

+ τ
(∥∥ϕ(·; τ )

∥∥
C([–τ ,],X) + ‖f ‖L(,T ;X) + ‖x‖X + ‖x‖X

))

with δ(T) := ‖�‖
L(X)( + ‖�–‖L(X))e‖�‖L(X)T .
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Proof Integrating Equation () and using Equation () as well as exploiting Equations
()-() yields

∥∥ẋ(t; τ ) – ˙̄x(t)
∥∥

X ≤ ∥∥ϕ̇(; τ ) – x
∥∥

X +
∫ t



∥∥�x(s – τ ; τ ) – �x̄(s)
∥∥

X ds

≤ I,(t) + I,(t) + I,(t) for t ∈ [, T]

with

I,(t) :=
∥∥ϕ̇(; τ ) – x

∥∥
X , I, := ‖�‖

L(X)

∫ 

–τ

∥∥ϕ(s) – x̄(s + τ )
∥∥

X ds,

I,(t) := ‖�‖
L(X)

∫ t

τ

∥∥x(s – τ ; τ ) – x̄(s)
∥∥

X ds.

Taking into account Equation (), we can estimate

‖x̄‖C([,τ ],X) ≤ (‖x‖ +
∥
∥�–∥∥

L(X)‖x‖
)
e‖�‖L(X)T

+
∥
∥�–∥∥

L(X)e
‖�‖L(X)T‖f ‖L(,T ;X).

Hence,

I,(t) ≤ δτ
(‖ϕ‖C([,T],X) + ‖x‖X + ‖x‖X + ‖f ‖L(,T ;X)

)
.

Applying Theorem , we further get

I,(t) ≤ ‖�‖
L(X)Tβ

(∥∥ϕ(–τ ; τ ) – x
∥∥

X +
∥∥ϕ̇(; τ ) – x

∥∥
X

+ τ
(∥∥ϕ(·; τ )

∥∥
C([–τ ,],X) + ‖f ‖L(,T ;X)

))
.

Combining these inequalities and using again Theorem , we deduce the estimate as-
serted. �
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