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Abstract
Using Krasnoselskii’s fixed point theorem and dichotomy theory, we prove the
existence of periodic solutions for differential equations with multiple delays of the
form x′(t) + cx′(t – τ ) = A(t)x(t) + f (t, x(t – α1(t)), . . . , x(t – αm(t))), where the parameter
c � 1 is a small perturbation for a delayed forced term. Moreover, we discuss the
convergence of these solutions to a solution of the unperturbed problem as c → 0.
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1 Introduction
Delay differential equations are of interest in many areas of applications, such as popula-
tion dynamics, drug administration, automatic control, laser optics, neural networks, eco-
nomics and others (see for example [–]). There are significant theoretical researches on
delay differential equation addressing many aspects of the dynamics, for example, stabil-
ity of equilibria, existence of periodic solutions, complicated behavior, and chaos. Several
methods were developed to obtain periodic solutions of autonomous delay differential
equations, both for equations with time-invariant delay and with state-dependent delay.
For references, see [–].

One of the main tools that has been extensively used when studying bounded solutions
of differential equations is the concept of exponential dichotomy of the associated linear
system

x′(t) = A(t)x(t). (.)

Several results on the existence and uniqueness of bounded solutions, periodic solutions
and almost periodic solutions of both linear and nonlinear differential equations are ob-
tained under the assumption that the associated homogeneous linear equation (.) has
an exponential dichotomy (see, for example, [–] and references therein). However,
there are similar results on the existence and uniqueness of bounded solutions under a
more general condition such as the (h, k)-dichotomy or the integrable dichotomy [, ].

© 2015 Sa Ngiamsunthorn. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13662-015-0598-0
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-015-0598-0&domain=pdf
mailto:parinya.san@kmutt.ac.th


Sa Ngiamsunthorn Advances in Difference Equations  (2015) 2015:259 Page 2 of 11

In [], the existence and uniqueness of periodic solutions of an integro-differential equa-
tions with bounded and unbounded delays were proved under the integrable dichotomy
condition on system (.).

For the second order differential equation of motion

mx′′(t) + bx′(t) + kx(t) = ,

it has been studied that a time lag thats could result in the force represented by the term
cx′(t – τ ) so that the equation becomes

mx′′(t) + bx′(t) + cx′(t – τ ) + kx(t) = 

(see [], p.). Motivated by this, we will consider the first order linear system (.) with
a small delayed forced term cx′(t – τ ). Our aim is to establish the existence of periodic
solutions under periodic perturbation and multiple variable lags. More precisely, we con-
sider the differential system (.) with periodic coefficients under the integrable dichotomy
condition and a periodic nonlinear perturbation with several delays,

f
(
t, x

(
t – α(t)

)
, . . . , x

(
t – αm(t)

))
,

together with a small delayed forced term cx′(t – τ ), which results in the following system:

x′(t) + cx′(t – τ ) = A(t)x(t) + f
(
t, x

(
t – α(t)

)
, . . . , x

(
t – αm(t)

))
, (.)

where we consider the parameter c �  as a small perturbation. A similar problem was
considered in [] under an exponential-typed condition on the corresponding linear sys-
tem. Our new result on the existence of periodic solutions of (.) is based on a more
general condition of an integrable dichotomy and Krasnoselskii’s fixed point theorem.

It should also be noted that there are recent works in [] and [] on the existence of
periodic solutions of similar systems of differential equations with multiple delays of the
form

x′(t) = Ax(t) +
k∑

j=

Bjx(t – j) +
k∑

j=

Cjx′(t – j) + f (t)

and

x′(t) = Ax(t) + Bx(t – ) + Cx′(t – ) + F
(
t, x(t), x(t – ), . . . , x(t – k)

)
,

respectively. In those works, the periodic solutions are constructed as an infinite series
x(t) =

∑∞
i= xi(t) of solutions of system of delay equations. In our work, the coefficients

A(t) in system (.) is non-autonomous and the delay term x(t – αi(t)) is more general.
Moreover, we apply a different approach to obtain the existence of periodic solutions.

The paper is organized as follows. In the next section, some preliminary results on in-
tegrable dichotomy based on the result of [], and the frameworks of our problem are
introduced. Section  is devoted to establishing some criteria for the existence of peri-
odic solutions of system (.). Finally, in Section , we discuss the convergence of these
solutions to a solution of unperturbed problem as c → .
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2 Preliminaries and frameworks
The concept of an exponential dichotomy has been extensively used when studying
bounded solutions of differential equations. Several results on the existence and unique-
ness of bounded solutions, periodic solutions and almost periodic solutions of both linear
and nonlinear differential equations are obtained under the assumption that the associ-
ated homogeneous linear equation satisfies the exponential dichotomy condition. How-
ever, there are similar results on the existence and uniqueness of bounded solutions un-
der more general conditions such as the (h, k)-dichotomy, integrable dichotomy, and inte-
grable (h, k)-dichotomy.

2.1 Periodic solutions for linear differential systems
Consider a linear differential system of the form (.), where A(t) is a continuous N × N
matrix function. Denote by �(t) the fundamental matrix solution of system (.), that is,
�(t) is a solution matrix of (.) with �() = I . Let P be a projection matrix. We define a
Green matrix G = GP associated with P by

G(t, s) =

{
�(t)P�–(s) for t ≥ s,
–�(t)(I – P)�–(s) for t < s.

(.)

We take the following definitions from [].

Definition . We say that the linear differential system (.) has an integrable dichotomy
if there exist a projection matrix P and a positive constant μ such that the associated Green
matrix G = GP satisfies

sup
t∈R

∫ ∞

–∞

∥∥G(t, s)
∥∥ds = μ. (.)

A special case of an integrable dichotomy includes the following class of integrable (h, k)-
dichotomies.

Definition . Let h, k : R → R
+ be two positive continuous functions. We say that the

linear differential system (.) has an (h, k)-dichotomy if there exist a projection matrix P
and a positive constant c such that the associated Green matrix G = GP satisfies

∥
∥G(t, s)

∥
∥ ≤ gh,k(t, s),

for all t, s ∈R where

gh,k(t, s) =

{
c h(t)

h(s) for t ≥ s,
c k(s)

k(t) for t ≤ s.
(.)

In addition, if there exists μh,k >  such that

sup
t∈R

∫ ∞

–∞
gh,k(t, s) ds = μh,k

then we say that the linear differential system (.) has an integrable (h, k)-dichotomy.
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Remark If the differential system (.) has an integrable (h, k)-dichotomy with projec-
tion P, then (.) has an integrable dichotomy for which �(t)P�–(t) is bounded.

We review the following result about bounded solutions of linear differential system
(.).

Proposition . ([]) Suppose that a linear differential system (.) has an integrable
dichotomy. Then x(t) =  is the unique bounded solution of (.).

Under an integrable dichotomy condition for system (.), we consider the solution of
the corresponding non-homogeneous linear system

x′(t) = A(t)x(t) + f (t). (.)

We denote by BC(R,RN ) the set of all bounded and continuous functions defined on R

to R
N .

Theorem . ([]) Suppose that the homogeneous system (.) has an integrable di-
chotomy. If f is a function in BC(R,RN ), then system (.) has a unique bounded solution
x ∈ BC(R,RN ). Moreover, we have

x(t) =
∫ ∞

–∞
G(t, s)f (s) ds. (.)

In addition, if the differential operator A(t) and the non-homogeneous term f (t) are T-
periodic, we can obtain periodic solutions of (.).

Proposition . ([]) Suppose that the homogeneous system (.) has an integrable di-
chotomy for which �(t)P�–(t) is bounded. If A(t + T) = A(t), then �(t)P�–(t) is also T-
periodic.

Theorem . ([]) Suppose that the homogeneous system (.) has an integrable di-
chotomy for which �(t)P�–(t) is bounded. If A(t + T) = A(t) and f ∈ BC(R,RN ) is T-
periodic, then (.) has a unique periodic solution satisfying (.).

2.2 Frameworks
In this paper, we will investigate the existence of a periodic solution of a delay differential
equation of the form (.), where τ and c are constants with |c| �  sufficiently small per-
turbation and αi(t), i = , , . . . , m, are real continuous functions on R with period T > .

Denote

BC(
R,RN)

=
{

u : R→R
N | u, u′ are bounded and continuous

}
.

It is easily seen that BC(R,RN ) is a Banach space when equipped with the norm

‖u‖ = ‖u‖∞ +
∥
∥u′∥∥∞,

where ‖u‖∞ = supt∈R |u(t)| and ‖u′‖∞ = supt∈R |u′(t)|.
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Let u ∈ BC(R,RN ) be a T-periodic function. Consider the linear periodic systems (.)
and the corresponding non-homogeneous system

x′(t) = A(t)x(t) + f
(
t, u

(
t – α(t)

)
, . . . , u

(
t – αm(t)

))
– cu′(t – τ ). (.)

We assume the following conditions.

Assumption  We assume that A(t) is an N × N real continuous matrix function defined
on R and T-periodic, that is, A(t + T) = A(t) for all t ∈R.

Note that by the periodicity and continuity of A(t), we have

L := sup
t∈R

∥∥A(t)
∥∥ < ∞. (.)

Assumption  System (.) has an integrable dichotomy for which �(t)P�–(t) is
bounded.

Here, �(t) is the fundamental matrix solution of (.). Hence, the associated Green ma-
trix G(t, s) given by (.) satisfies (.) for some positive constant μ.

In addition, we impose the following condition on f .

Assumption  We assume that f (t, u, . . . , uk) is a real continuous vector function defined
on R×R

N × · · · ×R
N such that

(i) f (t + T , u, . . . , um) = f (t, u, . . . , um) for all (t, u, . . . , um) ∈R×R
N × · · · ×R

N .
(ii) There exists a positive constant r < 

m(+Lμ+μ) such that

∣∣f (t, u, . . . , um) – f (t, v, . . . , vm)
∣∣ < r

(|u – v| + |u – v| + · · · + |um – vm|),

for every u, u, . . . , um, v, v, . . . , vm ∈R
N and t ∈R,

where the constants L and μ are given by (.) and (.), respectively.

We prove the existence of a periodic solution of (.) under an integrable dichotomy
condition.

By Theorem ., system (.) has a unique periodic solution satisfying the integral equa-
tion

x(t) =
∫ ∞

–∞
G(t, s)

[
f
(
s, u

(
s – α(s)

)
, . . . , u

(
s – αm(s)

))
– cu′(s – τ )

]
ds. (.)

3 Existence of periodic solutions
In this section, we prove our main result on the existence of periodic solutions to system
(.).

Theorem . Suppose that Assumptions , , and  are satisfied. For every |c| �  suffi-
ciently small, there exists at least a T-periodic solution of system (.).

To establish the existence result, we will apply Krasnoselskii’s fixed point theorem []
as stated below.
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Theorem . Let K be a bounded nonempty closed and convex subset of a Banach space X.
Suppose that � and � are maps on K into X such that

(i) �x + �y ∈ K for all x, y ∈ K ;
(ii) � is a contraction on K ;

(iii) � is completely continuous on K .
Then there exists x∗ ∈ K such that �x∗ + �x∗ = x∗.

For u ∈ BC(R,RN ), we define the operators V and W by

(Vu)(t) := –cu(t – τ ) (.)

and

(Wu)(t) :=
∫ ∞

–∞
G(t, s)

[
f
(
s, u

(
s–α(s)

)
, . . . , u

(
s–αm(s)

))
–cu′(s–τ )

]
ds+cu(t –τ ). (.)

Lemma . The operators V and W defined above are operators from BC(R,RN ) into
itself, that is, V , W : BC(R,RN ) → BC(R,RN ).

Proof The statement is clear for V . By Assumption , we see that

sup
t∈[,T]

∥∥A(t)
∥∥ := L < ∞. (.)

Denoted by ν := supt∈[,T] |f (t, , . . . , )|. Let u ∈ BC(R,RN ) be arbitrary, we have from
Assumption 

∣∣f
(
t, u

(
t – α(t)

)
, . . . , u

(
t – αm(t)

))∣∣

≤ ∣
∣f

(
t, u

(
t – α(t)

)
, . . . , u

(
t – αm(t)

))
– f (t, , . . . , )

∣
∣ +

∣
∣f (t, , . . . , )

∣
∣

≤ r
(∣∣u

(
t – α(t)

)∣∣ + · · · +
∣∣u

(
t – αm(t)

)∣∣) +
∣∣f (t, , . . . , )

∣∣

≤ rm‖u‖ + sup
t∈[,T]

∣∣f (t, , . . . , )
∣∣

≤ rm‖u‖ + ν (.)

for all t ∈ R. It follows that

∣∣(Wu)(t)
∣∣ ≤

∫ ∞

–∞

∣∣G(t, s)
[
f
(
s, u

(
s – α(s)

)
, . . . , u

(
s – αm(s)

))
– cu′(s – τ )

]∣∣ds

+ |c|∣∣u(t – τ )
∣
∣

≤ μ
(
rm‖u‖ + ν

)
+ μ|c|∥∥u′∥∥∞ + |c|‖u‖∞

≤ μ
(
rm‖u‖ + ν

)
+ μ|c|‖u‖ + |c|‖u‖

for all t ∈ R. Hence, ‖Wu‖∞ ≤ μ(rm‖u‖ + ν) + μ|c|‖u‖ + |c|‖u‖. In addition,

(Wu)′(t) =
d
dt

(∫ ∞

–∞
G(t, s)

[
f
(
s, u

(
s – α(s)

)
, . . . , u

(
s – αm(s)

))
– cu′(s – τ )

]
ds

)

+ cu′(t – τ )
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= A(t)
∫ ∞

–∞
G(t, s)

[
f
(
s, u

(
s – α(s)

)
, . . . , u

(
s – αm(s)

))
– cu′(s – τ )

]
ds

+ f
(
t, u

(
t – α(t)

)
, . . . , u

(
t – αm(t)

))
– cu′(t – τ ) + cu′(t – τ )

= A(t)
∫ ∞

–∞
G(t, s)

[
f
(
s, u

(
s – α(s)

)
, . . . , u

(
s – αm(s)

))
– cu′(s – τ )

]
ds

+ f
(
t, u

(
t – α(t)

)
, . . . , u

(
t – αm(t)

))
. (.)

Thus,

∣
∣(Wu)′(t)

∣
∣ ≤ ∥

∥A(t)
∥
∥
∣∣
∣∣

∫ ∞

–∞
G(t, s)

[
f
(
s, u

(
s – α(s)

)
, . . . , u

(
s – αm(s)

))
– cu′(s – τ )

]
ds

∣∣
∣∣

+
∣∣f

(
t, u

(
t – α(t)

)
, . . . , u

(
t – αm(t)

))∣∣

≤ Lμ
[(

rm‖u‖ + ν
)

+ |c|‖u‖] + rm‖u‖ + ν

for all t ∈ R. Hence,

∥
∥(Wu)′

∥
∥∞ ≤ Lμ

[(
rm‖u‖ + ν

)
+ |c|‖u‖] + rm‖u‖ + ν.

Consequently, we have

‖Wu‖ ≤ μ
(
rm‖u‖ + ν

)
+ μ|c|‖u‖ + |c|‖u‖

+ Lμ
[(

rm‖u‖ + ν
)

+ |c|‖u‖] + rm‖u‖ + ν

= (L + )μ
[(

rm‖u‖ + ν
)

+ |c|‖u‖] +
(|c| + rm

)‖u‖ + ν < ∞. (.)

The lemma follows. �

It is clear that if V + W has a fixed point, then the fixed point is a periodic solution
of (.). Hence, we will turn to the problem of establishing a fixed point of the operator
V + W .

Let M >  be a positive constant. Denote

KM =
{

u ∈ BC(
R,RN)

: ‖u‖ ≤ M and u(t + T) = u(t) for all t ∈ R
}

and

BM =
{

u ∈ BC(
R,RN)

: ‖u‖ < M and u(t + T) = u(t) for all t ∈R
}

.

Clearly, the set KM is a bounded nonempty closed and convex subset of BC(R,RN ).

Lemma . The operator V : BC(R,RN ) → BC(R,RN ) defined by (.) is a contraction.

Proof The result is clear since ‖Vu‖ = |c|‖u‖ for u ∈ BC(R,RN ) and |c| < . �

Lemma . There exists M >  such that, for any v, w ∈ KM , we have Vv + Ww ∈ KM when-
ever |c| �  is sufficiently small.
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Proof Let v, w ∈ KM . Then ‖v‖,‖w‖ ≤ M. By (.), we have

‖Vv + Ww‖ ≤ |c|M + (L + )μ
[(

rmM + ν
)

+ |c|M]
+

(|c| + rm
)
M + ν

=
[|c| + (L + )μrm + (L + )μ|c| + |c| + rm

]
M + (L + )μν + ν

=
[
|c| + rm + (L + )μh,k

(
rm + |c|)]M + (L + )μh,kν + ν

=
[

|c| + rm + (L + )μ
(
rm + |c|) +

(L + )μν + ν

M

]
M

≤
[(

|c| + rm
)(

 + (L + )μ
)

+
(L + )μν + ν

M

]
M

=
[

|c|( + (L + )μ
)

+ rm
(
 + (L + )μ

)
+

(L + )μν + ν

M

]
M. (.)

By Assumption , we have

rm
(
 + (L + )μ

)
<

m( + (L + )μ)
m( + Lμ + μ)

= . (.)

We can choose |c| �  sufficiently small so that

|c|( + (L + )μ
)

+ rm
(
 + (L + )μ

)
< . (.)

In addition, since (L+)μν+ν

M →  as M → ∞, we can choose M >  sufficiently large so that

(L + )μν + ν

M
<  – |c|( + (L + )μ

)
– rm

(
 + (L + )μ

)
. (.)

It follows from (.), (.), and (.) that

‖Vv + Ww‖ < M,

for all v, w ∈ KM . �

We next prove that W is a completely continuous operator on KM , which is a conse-
quence of the following lemma.

Lemma . The set W (BM) is relatively compact in BC(R,RN ).

Proof Since W (BM) ⊂ KM , we see that {Wu : u ∈ BM} is bounded in BC(R,RN ). In par-
ticular, we have

‖Wu‖∞ < M

and

∥∥(Wu)′
∥∥∞ < M
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for all u ∈ BM . Therefore, {Wu : u ∈ BM} is equicontinuous. Let un be arbitrary sequence
in BM . It follows from the Arzela-Ascoli theorem that there is a subsequence, denoted
again by un, such that

‖Wun – v‖∞ → 

as n → ∞ with the limit v ∈ BC(R,RN ). Moreover, for any u ∈ BM , we have from (.)

(Wu)′(t) = A(t)
∫ ∞

–∞
G(t, s)

[
f
(
s, u

(
s – α(s)

)
, . . . , u

(
s – αm(s)

))
– cu′(s – τ )

]
ds

+ f
(
t, u

(
t – α(t)

)
, . . . , u

(
t – αm(t)

))

= A(t)
[
(Vu)(t) + (Wu)(t)

]
+ f

(
t, u

(
t – α(t)

)
, . . . , u

(
t – αm(t)

))
.

Notice that A(t) is uniformly continuous on [, T] and f (t, u, . . . , um) is uniformly contin-
uous on [, T] × {x ∈ R

N : |x| ≤ M} × · · · × {x ∈ R
N : |x| ≤ M}. In addition, the families

{u ∈ BM}, {Vu : u ∈ BM}, and {Wu : u ∈ BM} are equicontinuous. Therefore, {(Wu)′ : u ∈
BM} is equicontinuous. It follows from the Arzela-Ascoli theorem that there is a further
subsequence unk such that

∥
∥(Wunk )′ – w

∥
∥∞ → 

as k → ∞ with the limit w ∈ BC(R,RN ). Since the convergence Wunk → v and the conver-
gence (Wunk )′ → w are uniform, we have w = v′ and thus Wunk → v in BC(R,RN ). This
shows that W is relatively compact. �

It follows from the above lemmas and Krasnoselskii’s fixed point theorem (Theorem .)
that there exists a T-periodic solution of (.). Hence, we have proved Theorem ..

Remark We give the following remarks on our main result.
() The result in Theorem . can be applied to the case when c = , however, we indeed

obtain a unique periodic solution (see Lemma .).
() We may consider an alternative approach to establish the existence of periodic

solutions of (.) by using the transformation y(t) = x(t) + cx(t – τ ). Hence, system
(.) can be written as

y′(t) = A(t)y(t) + g(t),

where g(t) := f (t, x(t – α(t)), . . . , x(t – αm(t))) – A(t)cx(t – τ ). By Theorem ., we
know that the solution of the above system satisfies the integral equation

y(t) =
∫ ∞

–∞
G(t, s)g(s) ds.

Hence, the problem is reduced to showing the existence of periodic solution of the
following delay integral equation

x(t) = –cx(t – τ )
∫ ∞

–∞
G(t, s)

[
f
(
s, x

(
s – α(s)

)
, . . . , x

(
s – αm(s)

))
– A(s)cx(s – τ )

]
ds.
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4 Continuity of periodic solutions in a neighborhood of c = 0
In this section, we show that periodic solutions for the systems with periodic perturbation
(.) converge to a solution of the following unperturbed system:

x′(t) = A(t)x(t) + f
(
t, x

(
t – α(t)

)
, . . . , x

(
t – αm(t)

))
(.)

when c → .

Lemma . Suppose that Assumptions , , and  are satisfied. Then the T-periodic solu-
tion of (.) exists and is unique.

Proof Since a solution of (.) is a fixed point of S defined by

(Su)(t) :=
∫ ∞

–∞
G(t, s)

[
f
(
s, u

(
s – α(s)

)
, . . . , u

(
s – αm(s)

))]
ds.

By our assumptions, the map S is a contraction since

∣∣(Su)(t) – (Sv)(t)
∣∣

=
∣
∣∣
∣

∫ ∞

–∞
G(t, s)

[
f
(
s, u

(
s – α(s)

)
, . . . , u

(
s – αm(s)

))

– f
(
s, v

(
s – α(s)

)
, . . . , v

(
s – αm(s)

))]
ds

∣
∣∣
∣

≤ rm‖u – v‖∞
∫ ∞

–∞

∥∥G(t, s)
∥∥ds

≤ rmμ‖u – v‖∞

<


m( + Lμ + μ)
mμ‖u – v‖∞

< ‖u – v‖∞,

for all T-periodic function u, v. By the contraction mapping theorem, (.) has a unique
T-periodic solution. �

Theorem . Suppose that Assumptions , , and  are satisfied. For |c| �  sufficiently
small, a sequence of T-periodic solutions uc of system (.) converges to the T-periodic so-
lution of system (.) as c → .

Proof From the proof of Theorem ., we see that periodic solutions uc ∈ BC(R,RN ) of
system (.) are uniformly bounded and equicontinuous. By the Arzela-Ascoli theorem,
we can extract a subsequence ucn that converges uniformly to u. Since ucn is a fixed point
of V + W , we have

ucn (t) =
∫ ∞

–∞
G(t, s)

[
f
(
s, ucn

(
s – α(s)

)
, . . . , ucn

(
s – αm(s)

))
– cnu′

cn (s – τ )
]

ds.

As f is continuous, we obtain from the dominated convergence theorem

u(t) =
∫ ∞

–∞
G(t, s)

[
f
(
s, u

(
s – α(s)

)
, . . . , u

(
s – αm(s)

))]
ds.
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So the limit u is a T-periodic solution of (.). Since the T-periodic solution of (.) is
unique, we conclude that the whole sequence uc converges to the solution u of (.) as
c → . �
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