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Abstract
We investigate sufficient conditions for existence and uniqueness of solutions for a
coupled system of fractional order hybrid differential equations (HDEs) with
multi-point hybrid boundary conditions given by
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where t ∈ [0, 1], δ1,δ2,μ,ν ∈ (0, 1), andDω ,Dε ,Dμ andDν are Caputo’s fractional
derivatives of order ω, ε , μ and ν , respectively,K1,K2 ∈ C([0, 1]×R×R,R) and
G ,H ∈ C([0, 1]×R×R,R – {0}). We use classical results due to Dhage and Banach’s
contraction principle (BCP) for the existence and uniqueness of solutions. For
applications of our results, we include examples.
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1 Introduction
Scientists working in various disciplines of science are interested in getting better interpre-
tations of their results by incorporating more and more information in their models. For
this purpose they are utilizing different mathematical tools in their models, one of them is
the use of fractional order derivatives. Fractional order differential equations (FDEs) cap-
ture more information as compared to ordinary differential equations and are believed
to be a better approach in mathematical modeling of many scientific problems. Recently,
FDEs have been frequently used in biology, economics, polymer rheology, chemistry, me-
chanics, aerodynamics, control theory, regular variation in thermodynamics, biophysics,
signal and image processing etc. [–].
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Recently, the theory on existence, uniqueness and multiplicity of nonlinear boundary
value problems (BVPs) for FDEs has attracted much attention and is a fast growing area
of research. We refer to [, ] and the references therein for some of valuable and recent
achievements in the study of existence theory for BVPs corresponding to FDEs.

Existence and uniqueness of solutions (EUS) for coupled systems of fractional order
differential equations (CSFDEs) have also attracted the attention of many scientists, for
example, Rehman and Khan [], Li and Liu [], Ntouyas and Obaid []. Hybrid differential
equations were explored by Hedrih [] and Dhage [, ]. Ahmad et al. [] investigated a
coupled system of hybrid fractional order differential equations (CSHFDEs) by the help of
Banach’s fixed point theorem and Leray-Schauder’s alternative, they considered the frac-
tional derivative in Caputo’s sense. Herzallah and Baleanu [], Ahmad and Ntouyas []
discussed the existence of solutions for hybrid FDEs with initial value problems by a fixed
point theorem due to Dhage [].

In this paper, we study EUS for the following coupled system of HFDEs:
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where δ, δ ∈ (, ), ω, ε ∈ (, ], t ∈ [, ] and Dω , Dε , Dμ, Dν are Caputo’s fractional
derivatives of orders ω, ε, μ, ν , respectively, K,K ∈ C([, ] ×R,R), H,G ∈ C([, ] ×
R,R – {}) and x, z ∈ C([, ],R). Here we remark that H(t, x, z) can not be of O(x) and
G(t, x(t), z(t)) can not be of O(z). Because if H(t, x, z) is of O(x) and G(t, x(t), z(t)) is of O(z),
then system () will reduce to an algebraic coupled system of equations and will lose its
hybrid nature.

It is investigated that dynamics of multi deformable bodies such as beams, plates, mem-
branes etc. coupled by standard light fractional order discrete continuous layers is de-
scribed by coupled fractional order hybrid system dynamics []. These are generally per-
turbed fractional order differential equations, and they are mainly classified as perturbed
differential equations of the first and second type. The perturbation itself is of two types,
namely linear and quadratics, whose details can be studied in [–]. Here, our system ()
is not an artificial one but in fact a quadratic perturbation of the second type. These types
of systems are generally tackled with the use of hybrid fixed point theory. The significance
of the hybrid system of differential equations lies in the fact that they include several dy-
namical systems as special cases. For example, if we choose H(t, x, z) = , G(t, x, z) =  as
constant functions, then our system () will reduce to a class of coupled system of bound-
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ary value problems for fractional order differential equations of the type:

Dωx(t) = –K
(
t, x(t), z(t)

)
, ω ∈ (, ],
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z(t)|t= = , Dνz(t)|t=δ = , z()() = .

()

Organization of the paper: In this section, we give the basic and related work to the
existence of solutions of FDEs by the use of some classical results; also the auxiliary lemma
of this paper is presented, and some important work which has stimulated us for this study
is cited. In Section , we give the main two lemmas of the paper in two subsections for the
existence of solutions (ES) and uniqueness of solutions (US) for the coupled system of
HFDEs (). In the final section, we give two illustrative examples for demonstration of our
results, which affirm the EUS for CSHFDEs ().

We recall the following definitions of fractional order integral, fractional order derivative
in Caputo’s sense and some basic results of fractional calculus [, ].

Definition  [] If f (t) ∈ L(a, b), the set of all integrable functions, and ω > , then the
left Riemann-Liouville fractional integral of order ω is defined by

Iωf (t) =


�(ω)

∫ t

a
(t – x)ω–f (x) dx. ()

Definition  [] For ω > , the left Caputo fractional derivative of order ω is defined by

Dωf (t) =


�(n – ω)

∫ t


(t – x)n–ω–Dnf (x) dx, ()

where n is such that n –  < ω < n and D = d
dx .

Lemma  [] For ω,β > , the following relation holds:

Dωtε =
�( + ε)

�( + ε – ω)
tε–ω–, ε > n, Dωtk = , k = , , . . . , n – . ()

Lemma  [] Let a, b ≥  and f ∈ L[p, q]. Then Ia
+ Ib

+ f (t) = Ia+b
+ f (t) = Ib

+ Ia
+ f (t) and

cDb
+ Ib

+ f (t) = f (t) for all t ∈ [p, q].

Lemma  [] For ε ≥ ω >  and f (t) ∈ L[a, b], the following holds:

DωIε
a+f (t) = Iε–ω

a+ f (t)

on the interval [a, b] if f ∈ C[a, b].

Lemma  [] For k –  < ω ≤ k and f (t) ∈ ACk(, ), the solution of homogenous FDE
Dω

+ f (t) =  is

f (t) = c + ct + ct + · · · + cktk–, ki ∈ R, i = , , , . . . , k. ()
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We present the following lemma as the auxiliary lemma of this paper for the EUS for
CSHFDEs ().

Lemma  For x ∈ AC[, ] and any Z ∈ C[, ], a solution of the HBVP
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Proof Applying the operator Iω on the differential equation in (), we obtain
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Applying Caputo’s fractional derivative of order μ to (), we get
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�
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which implies that

x(t) = H(t, x, z)
[
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(δ – s)ω–μ–Z(s) ds

]
. ()

Thus, the proof is completed. �
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2 Main results
In this section, we are concerned with the EUS for CSHFDEs () by using some classical
results. For this, consider the Banach space X = {x(t) : x(t) ∈ C[, ]} with norm ‖x‖ =
maxt∈[,] |x(t)| and (X × X,‖(·, ·)‖) with norm ‖(x, z)‖ = ‖x‖ + ‖z‖. We define an operator
F : X × X → X × X by

F (x, z)(t) =
(
F(x, z)(t),F(x, z)(t)

)
, ()

where

F(x, z)(t) = H(t, x, z)
[

–
∫ t



(t – s)ω–

�(ω)
K

(
s, x(s), z(s)

)
ds

+
∫ 



( – s)ω–

�(ω)
K

(
s, x(s), z(s)

)
ds

+
(t – )

��(ω – μ)

∫ δ


(δ – s)ω–μ–K

(
s, x(s), z(s)

)
ds

]
, ()

and

F(x, z)(t) = G(t, x, z)
[

–
∫ t



(t – s)ε–

�(ε)
K

(
s, x(s), z(s)

)
ds

+
∫ 



( – s)ε–

�(ε)
K

(
s, x(s), z(s)

)
ds

+
(t – )

��(ε – ν)
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(δ – s)ε–ν–K

(
s, x(s), z(s)

)
ds

]
, ()

where � = δ
–μ


�(–μ) , � = δ–ν


�(–ν) . In view of Lemma , the solutions of CSHFDEs () are fixed
points of the operator F . Define the following terms:

N =


�(ω + )
+

δ
ω–μ


��(ω – μ + )
, ()

N =


�(ε + )
+

δε–ν


��(ε – ν + )
. ()

2.1 Existence of solutions
In this subsection, we are interested in the existence of solutions of CSHFDEs (). For this
purpose, we take help from the following fixed point theorem.

Theorem  [, ] Let Xa() and Xa() be open and closed balls in a Banach algebra X
centered at the origin  of radius a for some real number a, and let A,B : Xa() → X be
two operators satisfying the following:

() A is Lipschitz with Lipschitz constant λ;
() B is continuous and compact;
() λM < , where M = ‖B(Xa())‖ = sup{‖B(x)‖ : x ∈Xa()}.

Then, either
(a) the equation A(x)B(x) = x has a solution in Xa(), or
(b) there is an element x ∈ X such that ‖x‖ = a satisfying μAxBx = x for some  < μ < .
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Definition  [] Let X be a Banach space. A mappingF : X → X is calledD-Lipschitzian
if there exists a continuous and nondecreasing function ψ : R → R such that ‖Fx –Fy‖ ≤
ψ‖x – y‖ for all x, y ∈ X, where ψ() = . If ψ is not necessarily nondecreasing and satisfies
ψ(a) < a for a > , the mapping F is called a nonlinear contraction with a contraction
function ψ .

Theorem  Assume the following:

(C) There exist real constants μi >  (for i = , , , ) such that |H(t, x, z) –H(t, x, z)| ≤
μ|x –x|+μ|z –z|, |G(t, x, z)–G(t, x, z)| ≤ μ|x –x|+μ|z –z|, for (t, xj, zj) ∈
([, ] ×R×R), j = , .

(C) There exist functions Mi(t) ∈ C[, ] (for i = , ) such that |K(t, x, z)| ≤ M(t),
|K(t, x, z)| ≤M(t) for (t, x, z) ∈ ([, ] ×R×R).

(C) γ (N‖M‖ + N‖M‖) < , for γ = μ + μ + μ + μ.
(C) λ

–ρ
(HN‖M‖

–λN‖M‖ + GN‖M‖
–λN‖M‖ ) < r forH = maxt∈[,] |H(t, , )| andG = maxt∈[,] |G(t,

, )| and ρ = max{ λN‖M‖
–λN‖M‖ , λN‖M‖

–λN‖M‖ }, where λ ∈ (, ).

Then CSHFDEs () has a solution.

Proof We give the proof in the following four steps.
The operators F, F given in (), () are equivalent to

F
(
x(t), z(t)

)
= A

(
x(t), z(t)

)
B

(
x(t), z(t)

)
=

(
x(t), z(t)

)
, t ∈ [, ], ()

F
(
x(t), z(t)

)
= A

(
x(t), z(t)

)
B

(
x(t), z(t)

)
=

(
x(t), z(t)

)
, t ∈ [, ]. ()

Thus, the operator F defined in () can be expressed in the form

F (x, z)(t) =
(
F(x, z)(t),F(x, z)(t)

)
= A

(
x(t), z(t)

)
B

(
x(t), z(t)

)
, ()

where A = (A,A), B = (B,B) and Ai,Bi : Xr() → X for i = ,  are defined by

A
(
x(t), z(t)

)
= H(t, x, z), A

(
x(t), z(t)

)
= G(t, x, z), ()

B
(
x(t), z(t)

)
= –

∫ t



(t – s)ω–

�(ω)
K

(
s, x(s), z(s)

)
ds

+
∫ 



( – s)ω–

�(ω)
K

(
s, x(s), z(s)

)
ds

+
(t – )

��(ω – μ)

∫ δ


(δ – s)ω–μ–K

(
s, x(s), z(s)

)
ds, ()

B
(
x(t), z(t)

)
= –

∫ t



(t – s)ε–

�(ε)
K

(
s, x(s), z(s)

)
ds

+
∫ 



( – s)ε–

�(ε)
K

(
s, x(s), z(s)

)
ds

+
(t – )

��(ε – ν)

∫ δ


(δ – s)ε–ν–K

(
s, x(s), z(s)

)
ds. ()
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Step I. The operators A, A are Lipschitz on X. For this, let (x, z), (x, z) ∈ X × X and
t ∈ [, ]; then by (C) we get

∣∣A(x, z)(t) – A(x, z)(t)
∣∣ =

∣∣H(x, z) – H(x, z)
∣∣

≤ μ
∣∣x(t) – z(t)

∣∣ + μ
∣∣x(t) – z(t)

∣∣

≤ (μ + μ)
∥∥(x, z) – (x, z)

∥∥. ()

Similarly, we obtain

∣∣A(x, z)(t) – A(x, z)(t)
∣∣ =

∣∣G(x, z) – G(x, z)
∣∣

≤ μ
∣∣x(t) – z(t)

∣∣ + μ
∣∣x(t) – z(t)

∣∣

≤ (μ + μ)
∥∥(x, z) – (x, z)

∥∥. ()

From () and () we obtain

∣∣A(x, z)(t) – A(x, z)(t)
∣∣ =

∣∣(A,A)(x, z) – (A,A)(x, z)
∣∣

≤ (μ + μ + μ + μ)
∥∥(x, z) – (x, z)

∥∥. ()

Thus, () implies that A is Lipschitz on X × X with Lipschitz constant μ + μ + μ + μ.
Step II. In this step, we show that the operator B is continuous. For this, let us assume

that {xn}, {zn} are convergent sequences such that xn → x, zn → z as n → +∞. From
the continuity of K it follows that K(t, xn(t), zn(t)) →K(t, x(t), z(t)), K(t, xn(t), zn(t)) →
K(t, x(t), z(t)). By the Lebesgue dominated theorem, we have

lim
n→∞B(xn, zn) = lim

n→∞

(
–

∫ t



(t – s)ω–

�(ω)
K

(
s, xn(s), zn(s)

)
ds

+
∫ 



( – s)ω–

�(ω)
K

(
s, xn(s), zn(s)

)
ds

+
(t – )

��(ω – μ)

∫ δ


(δ – s)ω–μ–K

(
s, xn(s), zn(s)

)
ds

)

= –
∫ t



(t – s)ω–

�(ω)
lim

n→∞K
(
s, xn(s), zn(s)

)
ds

+
∫ 



( – s)ω–

�(ω)
lim

n→∞K
(
s, xn(s), zn(s)

)
ds

+
(t – )

��(ω – μ)

∫ δ


(δ – s)ω–μ– lim

n→∞K
(
s, xn(s), zn(s)

)
ds

= –
∫ t



(t – s)ω–

�(ω)
K

(
s, x(s), z(s)

)
ds

+
∫ 



( – s)ω–

�(ω)
K

(
s, x(s), z(s)

)
ds

+
(t – )

��(ω – μ)

∫ δ


(δ – s)ω–μ–K

(
s, x(s), z(s)

)
ds

= B(x, z). ()
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Similarly, we obtain

lim
n→

B(xn, zn) = lim
n→∞

(
–

∫ t



(t – s)ε–

�(ε)
K

(
s, xn(s), zn(s)

)
ds

+
∫ 



( – s)ε–

�(ε)
K

(
s, xn(s), zn(s)

)
ds

+
(t – )

��(ε – ν)

∫ δ


(δ – s)ε–ν–K

(
s, xn(s), zn(s)

)
ds

)

= –
∫ t



(t – s)ε–

�(ε)
lim

n→∞K
(
s, xn(s), zn(s)

)
ds

+
∫ 



( – s)ε–

�(ε)
lim

n→∞K
(
s, xn(s), zn(s)

)
ds

+
(t – )

��(ε – ν)

∫ δ


(δ – s)ε–ν– lim

n→∞K
(
s, xn(s), zn(s)

)
ds

= –
∫ t



(t – s)ε–

�(ε)
K

(
s, x(s), z(s)

)
ds

+
∫ 



( – s)ε–

�(ε)
K

(
s, x(s), z(s)

)
ds

+
(t – )

��(ε – ν)

∫ δ


(δ – s)ε–ν–K

(
s, x(s), z(s)

)
ds

= B(x, z). ()

By the help of (), () we proved that the operator B = (B,B) is continuous for all
t ∈ [, ].

Step III. In this step, we show that the operator B = (B,B) is compact on Xr().

∣∣B(x, z)(t)
∣∣ =

∣∣∣∣–
∫ t



(t – s)ω–

�(ω)
K

(
s, x(s), z(s)

)
ds

+
∫ 



( – s)ω–

�(ω)
K

(
s, x(s), z(s)

)
ds

+
(t – )

��(ω – μ)

∫ δ


(δ – s)ω–μ–K

(
s, x(s), z(s)

)
ds

∣∣∣∣

≤
∫ t



(t – s)ω–

�(ω)
∣∣M(s)

∣∣ds +
∫ 



( – s)ω–

�(ω)
∣∣M(s)

∣∣ds

+
(t – )

��(ω – μ)

∫ δ


(δ – s)ω–μ–∣∣M(s)

∣∣ds

≤
(


�(ω + )

+


�(ω + )
+

δ
ω–μ


��(ω – μ + )

)
‖M‖

= N‖M‖. ()

Taking supremum over t ∈ [, ], we have

∥∥B(x, z)
∥∥ ≤N‖M‖ ∀(x, z) ∈Xr() ×Xr(). ()
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Similarly, we obtain

∣∣B
(
x(t), z(t)

)∣∣ =
∣∣∣∣–

∫ t



(t – s)ε–

�(ε)
K

(
s, x(s), z(s)

)
ds +

∫ 



( – s)ε–

�(ε)
K

(
s, x(s), z(s)

)
ds

+
(t – )

��(ε – ν)

∫ δ


(δ – s)ε–ν–K

(
s, x(s), z(s)

)
ds

∣∣∣∣

≤
∫ t



(t – s)ε–

�(ε)
∣∣M(s)

∣∣ds +
∫ 



( – s)ε–

�(ε)
∣∣M(s)

∣∣ds

+
(t – )

��(ε – ν)

∫ δ


(δ – s)ε–ν–∣∣M(s)

∣∣ds

≤
(


�(ε + )

+


�(ε + )
+

δε–ν


��(ε – ν + )

)
‖M‖

= N‖M‖. ()

Taking the supremum of () over t ∈ [, ], we get

∥∥B(x, z)
∥∥ ≤N‖M‖ ∀(x, z) ∈Xr() ×Xr().

From () and () it follows that

∥∥B(x, z)
∥∥ ≤N‖M‖ + N‖M‖ ∀(x, z) ∈Xr() ×Xr(), ()

which implies that B(Xr() ×Xr()) is a uniformly bounded set in X × X.
Now we prove that the operator B is equicontinuous. For this, let us assume  ≤ t ≤

t ≤ , then we have

∣∣B(x, z)(t) – B(x, z)(t)
∣∣ =

∣∣∣∣
∫ t



(t – s)ω–

�(ω)
K

(
s, x(s), z(s)

)
ds

–
∫ t



(t – s)ω–

�(ω)
K

(
s, x(s), z(s)

)
ds

+
(t – t)

��(ω – μ)

∫ δ


(δ – s)ω–μ–K

(
s, x(s), z(s)

)
ds

∣∣∣∣

≤
∫ t



(t – s)ω–

�(ω)
M(s) ds –

∫ t



(t – s)ω–

�(ω)
M(s) ds

+
(t – t)

��(ω – μ)

∫ δ


(δ – s)ω–μ–M(s) ds

≤
(

tω
 – tω


�(ω + )

+
(t – t)δω–ν


��(ω – μ + )

)
‖M‖. ()

Similarly, we have

∣∣B(x, z)(t) – B(x, z)(t)
∣∣ =

∣∣∣∣
∫ t



(t – s)ε–

�(ε)
K

(
s, x(s), z(s)

)
ds

–
∫ t



(t – s)ε–

�(ε)
K

(
s, x(s), z(s)

)
ds
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+
(t – t)

��(ε – ν)

∫ δ


(δ – s)ε–ν–K

(
s, x(s), z(s)

)
ds

∣∣∣∣

≤
∫ t



(t – s)ε–

�(ε)
M(s) ds –

∫ t



(t – s)ε–

�(ε)
M(s) ds

+
(t – t)

��(ε – ν)

∫ δ


(δ – s)ε–ν–M(s) ds

≤
(

tε
 – tε


�(ε + )

+
(t – t)δε–ν


��(ε – ν + )

)
‖M‖. ()

From () and () it follows that

∣∣B(x, z)(t) – B(x, z)(t)
∣∣ ≤

[
tω
 – tω


�(ω + )

+
(t – t)δω–ν


��(ω – μ + )

]
‖M‖

+
[

tε
 – tε


�(ε + )

+
(t – t)δε–ν


��(ε – ν + )

]
‖M‖, ()

which implies that B(x, z)(t) – B(x, z)(t) →  as t → t. This shows that the operator B
is equicontinuous and, by the Arzela-Ascoli theorem, the operator B is compact.

Step IV. We have γBmax < , where Bmax = ‖B(Xr())‖ = sup{‖B(x)‖ : x ∈ Xr()}, and
Bi,max = ‖Bi(Xr())‖ = sup{‖Bi(x) : x ∈ Xr()‖} for i = , . Using () and hypothesis (C),
we have

Bmax ≤ γ
(
N‖M‖ + N‖M‖

)
<  ∀(x, z) ∈Xr() ×Xr(). ()

In this step, we prove that the operator F maps bounded subset of Y ×Y into a bounded
set. Choose r >  and define a bounded subset S of Y × Y by S = {(x, z) ∈ Y × Y :
‖(x, z)‖ ≤ r}. Now, for (x, z) ∈ S and t ∈ [, ], λ ∈ (, ) such that ‖(x, z)‖ = r and (x, z) =
λA(x, z)B(x, z). Using (C) and (C), we proceed

∣∣x(t)
∣∣ = λ

∣∣H(t, x, z)
∣∣
∣∣∣∣
(

–
∫ t



(t – s)ω–

�(ω)
K

(
s, x(s), z(s)

)
ds

+
∫ 



( – s)ω–

�(ω)
K

(
s, x(s), z(s)

)
ds

+
(t – )

��(ω – μ)

∫ δ


(δ – s)ω–μ–K

(
s, x(s), z(s)

)
ds

)∣∣∣∣

≤ λ
∣∣H(t, x, z) – H(t, , ) + H(t, , )

∣∣
∣∣∣∣
(

–
∫ t



(t – s)ω–

�(ω)
M(s) ds

+
∫ 



( – s)ω–

�(ω)
M(s) ds + (t – )

∫ δ



(δ – s)ω–μ–M(s) ds
��(ω – μ)

)∣∣∣∣

≤ λ
(
μ

∣∣x(t)
∣∣ + μ

∣∣z(t)
∣∣ + H

)( 
�(ω + )

+
δ

ω–μ


��(ω – μ + )

)
‖M‖

= λ
(
μ

∣∣x(t)
∣∣ + μ

∣∣z(t)
∣∣ + H

)
N‖M‖. ()

Taking supremum over t ∈ [, ] and using (C), we obtain

‖x‖ ≤ λ
(
μ‖x‖ + μ‖z‖ + H

)
N‖M‖, ()
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which implies that

‖x‖ ≤ λ
(μ‖z‖ + H)

 – λμN‖M‖N‖M‖. ()

Similarly, we have

‖z‖ ≤ λ
(μ‖x‖ + G)

 – λμN‖M‖N‖M‖. ()

By the help of () and (), we get

∥∥(x, z)
∥∥ = ‖x‖ + ‖z‖ ≤ λ

(μ‖z‖ + H)
 – λμN‖M‖N‖M‖

+ λ
(μ‖x‖ + G)

 – λμN‖M‖N‖M‖

= λ
μ‖z(t)‖

 – λN‖M‖N‖M‖ + λ
H

 – λμN‖M‖N‖M‖

+ λ
μ‖x‖

 – λμN‖M‖N‖M‖ + λ
G

 – λμN‖M‖N‖M‖. ()

From () we obtain

∥∥(x, z)
∥∥ ≤ 

 – ρ

(
λHN‖M‖

 – λμN‖M‖ +
λGN‖M‖

 – μλN‖M‖
)

< r, ()

which contradicts our supposition ‖(x, z)‖ = r. Thus, the operator (x, z) = A(x, z)B(x, z) has
a solution in Xr() ×Xr() which is a solution of system (). This completes the proof of
the theorem. �

Example  Consider the following system of fractional order hybrid differential equa-
tions:

D.
(

x(t)
 + (|x(t)|+|z(t)|) sin(t)



)
=

 + x(t) sin(t)
 + |x(t)| + |z(t)| ,

D.
(

z(t)
 + (|x(t)|+|z(t)|) cos(t)



)
=

 + x(t) cos(t)
 + |x(t)| + |z(t)| ,

()

with initial and boundary conditions as defined in () for δ = δ = μ = ν = . and t ∈
[, ]. Then system () satisfies all the conditions of Theorem . From () we have
H(t, x, z) =  + (|x(t)|+|z(t)|) sin(t)

 , G(t, x, z) =  + (|x(t)|+|z(t)|) cos(t)
 . |H(t, x, z) –H(t, x, z)| ≤


 (‖x – x‖ + ‖z – z‖), |G(t, x, z) –G(t, x, z)| ≤ 

 (‖x – x‖ + ‖z – z‖), which implies
μi = 

 for i = , , , . By using these values, we deduce β ≥ ., we choose β = .
Thus system () has a solution in X() ×X().

2.2 Uniqueness of solutions
In this subsection, we provide uniqueness of solutions for CSHFDEs (). For this, we use
BCP.
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Theorem  Assume that (C) and (C) hold. If μ(N + N)(‖M‖ + ‖M‖) < , then
CSHFDEs () has a unique solution.

Proof Define H = supt∈[,] |H(t, , )|, G = supt∈[,] |G(t, , )| and μ = μ +μ +μ +μ.
Choose β ≥ μ(H+G)(N+N)(‖M‖+‖M‖)

–μ(N+N)(‖M‖+‖M‖) , where N, N are defined in (), (), respec-
tively. Define a set Sβ = {(x, z)(t) ∈ X × X : ‖(x, z)‖ ≤ β}. Then, for (x, z) ∈ Sβ , we have

∣∣F
(
x(t), z(t)

)∣∣

=
∣∣H(t, x, z)

∣∣
∣∣∣∣
(

–
∫ t



(t – s)ω–

�(ω)
K

(
s, x(s), z(s)

)
ds

+
∫ 



( – s)ω–

�(ω)
K

(
s, x(s), z(s)

)
ds

+
(t – )

��(ω – μ)

∫ δ


(δ – s)ω–μ–K

(
s, x(s), z(s)

)
ds

)∣∣∣∣

≤ ∣∣H(t, x, z) – H(t, , ) + H(t, , )
∣∣
(∫ t



(t – s)ω–

�(ω)
∥∥M(s)

∥∥ds

+
∫ 



( – s)ω–

�(ω)
∥∥M(s)

∥∥ds +
(t – )

��(ω – μ)

∫ δ


(δ – s)ω–μ–∥∥M(s)

∥∥ds
)

≤ (
μ

∣∣x(t)
∣∣ + μ

∣∣z(t)
∣∣ + H

)( 
�(ω + )

+
δ

ω–μ


��(ω – μ + )

)
‖M‖

=
(
μ

∣∣x(t)
∣∣ + μ

∣∣z(t)
∣∣ + H

)
N‖M‖. ()

Taking supremum over t ∈ [, ], we obtain

∥∥F(x, z)
∥∥ ≤ (μ + μ)

(‖x‖ + ‖z‖ + H
)
N‖M‖

≤ (μ + μ)(β + H)N‖M‖. ()

Similarly, we have

∥∥F(x, z)
∥∥ ≤ (μ + μ)

(‖x‖ + ‖z‖ + G
)
N‖M‖

≤ (μ + μ)(β + G)N‖M‖. ()

By the help of () and (), we get

∥∥F (x, z)
∥∥ ≤ (μ + μ)(β + H)N‖M‖

+ (μ + μ)(β + G)N‖M‖
≤ (μ + μ + μ + μ)(β + H + G)(N + N)

(‖M‖ + ‖M‖
) ≤ β . ()

Now, for (x, z)(t), (x, z)(t) ∈ X × X and any t ∈ [, ], we have

∣∣F(x, z)(t) – F(x, z)(t)
∣∣

≤ ∣∣H(t, x, z) – H(t, x, z)
∣∣
{∫ t



(t – s)ω–

�(ω)
∣∣M(s)

∣∣ds
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+
∫ 



( – s)ω–

�(ω)
∣∣M(s)

∣∣ds + |t – |
∫ δ



(δ – s)ω–μ–
∣∣M(s)

∣∣ds
��(ω – μ)

}

≤ (
μ|x – x| + μ|z – z|

)( 
�(ω + )

+
δ

ω–μ


��(ω – μ + )

)∣∣M(t)
∣∣

≤ (μ + μ)N
∣∣M(t)

∣∣(|x – x| + |z – z|
)
. ()

Taking the supremum over t ∈ [, ], we obtain

∥∥F(x, z) – F(x, z)
∥∥

≤ (μ + μ)N‖M‖
(‖x – x‖ + ‖z – z‖

)
. ()

Similarly, we obtain

∥∥F(x, z) – F(x, z)
∥∥

≤ (μ + μ)N‖M‖
(‖x – x‖ + ‖z – z‖

)
. ()

From () and () it follows that

∥∥F (x, z) – F (x, z)
∥∥

≤ μ(N + N)
(‖M‖ + ‖M‖

)(‖x – x‖ + ‖z – z‖
)
, ()

which implies that F is a contraction. By the help of Banach’s contraction principle the
operator F has a unique fixed point which is the unique solution of CSHFDEs (). This
completes the proof. �

Example  Consider the following system of fractional order hybrid differential equa-
tions:

D.
(

x(t)
 + (|x(t)|+|z(t)|) sin(t)



)
=

 + x(t) sin(t)
 + |x(t)| + |z(t)| ,

D.
(

z(t)
 + (|x(t)|+|z(t)|) cos(t)



)
=

 + x(t) cos(t)
 + |x(t)| + |z(t)| ,

()

with initial and boundary conditions as defined in () for δ = δ = μ = ν = .. From system
() we have H(t, x, z) =  + (|x(t)|+|z(t)|) sin(t)

 , G(t, x, z) =  + (|x(t)|+|z(t)|) cos(t)
 . |H(t, x, z) –

H(t, x, z)| ≤ 
 (‖x – x‖ + ‖z – z‖), |G(t, x, z) –G(t, x, z)| ≤ 

 (‖x – x‖ + ‖z – z‖),
which implies μi = 

 for i = , , , . By using these values, we deduce β ≥ ., we
choose β = . μ(N +N)(‖M‖ + ‖M‖) ≤ . < . Therefore, system () satisfies
the assumptions of Theorem . Thus, system () has a unique solution in X()×X().
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