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Abstract
Multiplicity results are obtained for systems of first order dynamic inclusions on time
scales with the periodic boundary condition. To this aim, we introduce the notion of a
strict solution-tube. We consider the case where the nonlinearity satisfies an upper
semi-continuity condition. Our results are new even in the particular cases where the
nonlinearity is single-valued or it has real values.
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1 Introduction
The concept of dynamic equations on time scales was initiated by Hilger [] in . By
introducing the notion of delta-derivative x�(t), which coincides with x′(t) (resp. �x(t))
in the case where the time scale T is an interval (resp. a discrete set {, , . . . , n}), a unified
approach to discrete and continuous calculus is provided. In this way, one can easily carry
over many results concerning differential equations to corresponding results for difference
equations. This can avoid proving results separately.

In this paper, we establish multiplicity results for the following system of first order dy-
namic inclusions:

x�(t) ∈ F
(
t, x

(
σ (t)

))
, �-a.e. t ∈ T,

x(a) = x(b).
(.)

Here T is an arbitrary compact time scale such that a = minT and b = maxT, T = T\{b},
and F : T ×R

n →R
n is a set-valued mapping with compact, convex values which satisfies

an upper semi-continuity condition.
In the particular case where n = , first existence results for this type of problems on

an arbitrary compact time scale were obtained by Atici and Biles []. Their results were
established with the method of lower and upper solutions.

Existence results were obtained in [–] for systems of dynamic equations on time scales
(that is, for n >  and in the particular case where F is single-valued). In particular, a kind of
coordinate-wise lower and upper solutions condition was imposed in [], while Gilbert []
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introduced the notion of solution-tube to systems of first order dynamic equations which
generalizes the notions of lower and upper solutions.

Existence results for systems of first order dynamic inclusions were obtained in [, ]
for the initial value problem (that is, problem (.) with n > , F multi-valued, and the
periodic boundary condition replaced by x(a) = x). Frigon and Gilbert [] were the first
to give conditions insuring the existence of a solution to the system (.) with the periodic
boundary condition. To this aim, they extended the notion of solution-tube to systems of
first order dynamic inclusions on time scales. It is worth to mention that the concept of
solution-tube generalizes the notion of lower and upper solutions given in [].

In the literature, there are very few results establishing the existence of more than one
solution to first order problems. Sun and Li [] established the existence of at least three
solutions of (.) in the particular case where n =  and F is single-valued. In the particular
case where n >  and T = [a, b], problem (.) is in fact a system of first order differential
inclusions. Multiplicity results were obtained by the authors in [] for such systems of
differential inclusions.

To our knowledge, in this paper, we establish the first multiplicity result for the system
(.). In order to obtain the existence of at least three solutions of (.), we introduce the
notion of a strict solution-tube of (.). It is inspired by a notion introduced in [] for
systems of first order differential inclusions. It is worth to mention that our result are new
even in the particular cases where the nonlinearity is single-valued or it has real values.

2 Preliminaries
In this section, we recall some notions and results which we will use in this article.

2.1 Multi-valued maps and topological degree
For the sake of completeness, we recall some definitions in the theory of multi-valued
mappings. Let X and Y be topological spaces, and Z a measurable space. We say that a
set-valued mapping F : X → Y is compact if F(X) =

⋃
x∈X F(x) is relatively compact, and

F is upper semi-continuous (u.s.c.) if {x ∈ X : F(x) ∩ C �= ∅} is closed for every closed set
C ⊂ Y . We say that a set-valued mapping F : Z → Y is measurable if {z ∈ Z : F(z) ∩ C �= ∅}
is measurable for each closed set C ⊂ Y . The reader is referred to [–] for more details
on set-valued mappings.

Our results will rely on the topological degree theory for multi-valued maps. We recall
some properties. The interested reader can consult []. Let E be a real Banach space. We
denote by A the set of pairs (�, id –F) such that � ⊂ E is a nonempty, open, bounded set,
and F : � → E is a compact, u.s.c. multi-valued map with nonempty, compact, convex val-
ues and such that x /∈ F(x) for every x ∈ ∂�. The topological degree on E for multi-valued
maps associates to every (�, id –F) ∈ A an integer deg(id –F ,�) satisfying the following
properties:

(i) (Normalization) If  ∈ �, deg(id,�) = , for y ∈ �.
(ii) (Additivity) If �, � are disjoint, open subsets of � such that

 /∈ (id –F)(�\� ∪ �), then

deg(id –F ,�) = deg(id –F ,�) + deg(id –F ,�).

(iii) (Homotopy) If H : [, ] × �̄ → E is a compact, u.s.c. multi-valued map with
nonempty, compact, convex values such that  /∈ (id –H(t, ·))(∂�) for every
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t ∈ [, ], then

deg
(
id –H(t, ·),�)

= deg
(
id –H(, ·),�) ∀t ∈ [, ].

(iv) (Existence) If deg(id –F ,�) �= , then there exists x ∈ � such that x ∈ F(x).
(v) (Excision) If � ⊂ � is open and  /∈ (id –F)(�\�), then

deg(id –F ,�) = deg(id –F ,�).

2.2 Time scale and �-measure
Let T be a compact time scale with

a = minT < b = maxT.

The forward jump operator σ : T → T (resp. the backward jump operator ρ : T → T) is
defined by

σ (t) =

⎧
⎨

⎩
inf{s ∈ T : s > t} if t < b,

b if t = b
⎛

⎝resp. ρ(t) =

⎧
⎨

⎩
sup{s ∈ T : s < t} if t > a,

a if t = a

⎞

⎠ .

We say that t < b is right-scattered (resp. t > a is left-scattered) if σ (t) > t (resp. ρ(t) < t).
The set of right-scattered points of T is at most countable; see []. We denote it by

RT =
{

t ∈ T : t < σ (t)
}

= {ti : i ∈ I}

for some I ⊂ N. The graininess function μ : T → [,∞) is defined by μ(t) = σ (t) – t. We
denote

T = T\{b}.

Definition . A map f : T → R
n is �-differentiable at t ∈ T\(ρ(b), b] if there exists

f �(t) ∈ R
n (called the �-derivative of f at t) such that for all ε > , there exists a neighbor-

hood U of t such that

∥∥(
f
(
σ (t)

)
– f (s) – f �(t)

(
σ (t) – s

))∥∥ ≤ ε
∣∣σ (t) – s

∣∣ ∀s ∈ U .

We say that f is �-differentiable if f �(t) exists for every t ∈ T\(ρ(b), b].

Definition . A function f : T → R
n is called rd-continuous provided it is continuous

at right-dense points of T and its left-sided limits exist at left-dense points of T. The set
of rd-continuous functions f : T → R

n is denoted by Crd(T,Rn). The set of functions f :
T → R

n which are �-differentiable and whose �- derivative is rd-continuous is denoted
by C

rd(T,Rn) and, moreover,

C
,rd(T) =

{
φ : T→ R : φ ∈ C

rd(T,R) and φ(a) =  = φ(b)
}

.
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We recall some notions and results related to the theory of a �-measure.

Definition . ([]) A set A ⊂ T is said to be �-measurable if, for every set E ⊂ T,

m∗
 (E) = m∗

 (E ∩ A) + m∗

(
E ∩ (T\A)

)
,

where

m∗
 (E) =

⎧
⎨

⎩
inf{∑m

k=(dk – ck) : E ⊂ ⋃m
k=[ck , dk) with ck , dk ∈ T} if b /∈ E,

∞ if b ∈ E.

The �-measure on M(m∗
 ) = {A ⊂ T : A is �-measurable}, denoted by μ�, is the restric-

tion of m∗
 to M(m∗

 ). So, (T,M(m∗
 ),μ�) is a complete measurable space.

Proposition . ([]) Let A ⊂ T. Then A is �-measurable if and only if A is Lebesgue
measurable.

Inspired by Proposition . in [], we prove the following proposition.

Proposition . Let F : T → R
n be a set-valued mapping and F̃ : [a, b) → R

n defined by

F̃(t) =

⎧
⎨

⎩
F(t) if t ∈ T,

F(ti) if t ∈ (ti,σ (ti)), for some i ∈ I.

Then F is �-measurable if and only if F̃ is Lebesgue measurable.

Proof Let C ⊂R be a closed set. One has

{
t ∈ [a, b) : F̃(t) ∩ C �= ∅}

=
{

t ∈ T : F̃(t) ∩ C �= ∅} ∪
{

t ∈
⋃

i∈I

(
ti,σ (ti)

)
: F̃(t) ∩ C �= ∅

}

=
{

t ∈ T : F(t) ∩ C �= ∅} ∪
(⋃

i∈K

(
ti,σ (ti)

)
)

,

where K = {i ∈ I : F(ti) ∩ C �= ∅}.
Since F is �-measurable, I is at most countable and using Proposition ., we deduce

the conclusion. �

Let E ⊂ T be a �-measurable set and f : T → R
n be a �-measurable function. We say

that f ∈ L
�(E,Rn) provided

∫

E

∥
∥f (s)

∥
∥�s < ∞.

The set L
�(T,Rn) is a Banach space endowed with the norm

‖f ‖L
�

=
∫

T

∥
∥f (s)

∥
∥�s.
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We also recall the notion of a Sobolev space, see []:

W ,
�

(
T,Rn) =

{
x ∈ L

�

(
T,Rn) : ∃g ∈ L

�

(
T,Rn) such that

∫

T

x(s)φ�(s)�s = –
∫

T

g(s)φ
(
σ (s)

)
�s,∀φ ∈ C

,rd(T)
}

.

If x ∈ W ,
� (T,Rn), then x is �-differentiable �-a.e. on T and x� is the function g given

in the definition of W ,
� (T,Rn).

In order to obtain a priori bounds for solutions to suitable family of problems, we will
use the following result due to Gilbert [].

Lemma . Let s ∈ W ,
� (T,R) be such that

s�(t) < , �-a.e. t ∈ {
t ∈ T : s

(
σ (t)

)
> 

}
.

If one of the following conditions holds:
(i) s(a) ≤ ;

(ii) s(a) ≤ s(b);
then s(t) ≤  for every t ∈ T.

We recall the following existence result for dynamical systems of linear equations on
time scales, which is based on the exponential function e(·, a) defined by

e(t, a) = exp

(∫ t

a
ξ

(
μ(s)

)
�s

)
, (.)

where

ξ(h) =

⎧
⎨

⎩
 if h = ,
log(+h)

h if h > .

The interested reader can find the proof of the following proposition in [] (see also [, ]
for the continuous case).

Proposition . For every g ∈ L
�(T,Rn), the problem

x�(t) + x
(
σ (t)

)
= g(t), �-a.e. t ∈ T,

x(a) = x(b);
(.)

has a unique solution x ∈ W ,
� (T,Rn) given by

x(t) =


e(t, a)

(


e(b, a) – 

∫

[a,b)∩T
g(s)e(s, a)�s +

∫

[a,t)∩T
g(s)e(s, a)�s

)
. (.)

Moreover, this defines a continuous linear operator L : L
�(T,Rn) → C(T,Rn) by L(g) = x

given in (.).
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2.3 �-Carathéodory multi-valued maps
Definition . A set-valued mapping F : T × R

n → R
n with nonempty closed, convex

values is said to be �-Carathéodory if the following conditions hold:
(i) t �→ F(t, x) is �-measurable for every x ∈R

n;
(ii) x �→ F(t, x) is u.s.c. for �-a.e. t ∈ T;

(iii) for every r > , there exists hr ∈ L
�(T,R) such that

sup
{‖y‖ : y ∈ F(t, x),‖x‖ ≤ r

} ≤ hr(t), �-a.e. t ∈ T.

Remark . A single-valued mapping f : T ×R
n →R

n is �-Carathéodory if and only if
F = {f } is �-Carathéodory in the sense of Definition ..

The mappings in the next two examples will be useful later.

Example . Let (v, r) ∈ W ,
� (T,Rn) × W ,

� (T, (,∞)), and let the multi-valued map
G(v,r) : T ×R

n →R
n be defined by

G(v,r)(t, x) =

⎧
⎪⎪⎨

⎪⎪⎩

{z ∈R
n : 〈x – v(σ (t)), z – v�(t)〉

≤ r�(t)‖x – v(σ (t))‖} if r(σ (t)) < ‖x – v(σ (t))‖,

R
n otherwise.

(.)

Then, arguing as in [], one can show that G(v,r) has nonempty, closed, convex values and
it satisfies the following properties:

(i) t �→ G(v,r)(t, x) is �-measurable for all x ∈R
n;

(ii) x �→ G(v,r)(t, x) is u.s.c. for �-a.e. t ∈ T.

Example . Let (v, r) ∈ W ,
� (T,Rn) × W ,

� (T, (,∞)), ε : T → (,∞) a lower semi-
continuous (l.s.c.) single-valued mapping, and let K(v,r,ε) : T ×R

n →R
n be defined by

K(v,r,ε)(t, x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

{z ∈R
n : 〈x – v(σ (t)), z – v�(t)〉

≤ r�(t)‖x – v(σ (t))‖} if r(σ (t)) – ε(σ (t))

< ‖x – v(σ (t))‖ < r(σ (t)),

R
n otherwise.

(.)

Then, arguing as in [], it can be shown that K(v,r,ε) has nonempty, closed, convex values
and it has the following properties:

(i) t �→ K(v,r,ε)(t, x) is �-measurable for all x ∈R
n;

(ii) x �→ K(v,r,ε)(t, x) is u.s.c. for �-a.e. t ∈ T.

The following proposition is an easy consequence of well-known properties of set-
valued mappings.

Proposition . Let M, M : T × R
n → R

n be multi-valued maps with nonempty,
closed, convex values such that

(i) M is �-Carathéodory;
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(ii) t �→ M(t, x) is �-measurable for all x ∈R
n, and x �→ M(t, x) is u.s.c. for �-a.e.

t ∈ T;
(iii) M(t, x) ∩ M(t, x) �= ∅ for all x ∈R

n and �-a.e. t ∈ T.
Then M ∩ M is �-Carathéodory.

For (v, r) ∈ W ,
� (T,Rn) × W ,

� (T, (,∞)), we denote the projection of x on the closed
ball centered in v(t) of radius r(t) by

x̄(v,r)(t, x) =

⎧
⎨

⎩

r(t)
‖x–v(t)‖ (x – v(t)) + v(t) if ‖x – v(t)‖ > r(t),

x otherwise.
(.)

For a set-valued mapping F : T ×R
n →R

n, we define F : C(T,Rn) → C(T,Rn) by

F (x) = L
({

y ∈ L
�

(
T,Rn) : y(t) ∈ F

(
t, x

(
σ (t)

))
,�-a.e. t ∈ T

})
, (.)

where L is the function defined in Proposition ..
Fixed points of such a map will permit us to obtain solutions to our system of first order

dynamic inclusions. In the following result, which will be used later, a particular map F
is considered and conditions are given ensuring that the associated map F is a compact,
u.s.c. multi-valued map with nonempty, convex, compact values.

Proposition . Let M, M : T × R
n → R

n be multi-valued maps with nonempty,
closed, convex values, and let (v, r) ∈ W ,

� (T,Rn) × W ,
� (T, (,∞)). We assume that

(i) M is �-Carathéodory;
(ii) t �→ M(t, x) is �-measurable for all x ∈R

n, and x �→ M(t, x) is u.s.c. for �-a.e.
t ∈ T;

(iii) �-a.e. t ∈ T and for every x ∈ C(T,Rn),

M
(
t, x̄(v,r)

(
σ (t), x

(
σ (t)

))) ∩ M
(
t, x

(
σ (t)

)) �= ∅.

Let F : T ×R
n →R

n be defined by

F(t, x) = x̄(v,r)
(
σ (t), x

)
+ M

(
t, x̄(v,r)

(
σ (t), x

)) ∩ M(t, x),

and let F : C(T,Rn) → C(T,Rn) be the multi-valued map associated to F given in (.).
Then F is u.s.c., compact with nonempty, convex, compact values.

The proof of this result follows from arguments analogous to those used in Proposi-
tion . in [], or using Proposition . and arguing as in Proposition . in [] or Propo-
sition . in [].

3 Multiplicity results
In this section, we establish a multiplicity result for the system of first order dynamic inclu-
sions (.). To this aim, we use the following slight modification of the notion of solution-
tube introduced in [].
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Definition . Let (v, r) ∈ W ,
� (T,Rn) × W ,

� (T, (,∞)). We say that (v, r) is a solution-
tube of (.) if

(i) �-a.e. t ∈ T and for every x ∈R
n such that ‖x – v(σ (t))‖ = r(σ (t)), there exists

y ∈ F(t, x) such that

〈
x – v

(
σ (t)

)
, y – v�(t)

〉 ≤ r
(
σ (t)

)
r�(t);

(ii) ‖v(b) – v(a)‖ ≤ r(a) – r(b).
We denote

T(v, r) =
{

x ∈ C
(
T,Rn) :

∥
∥x(t) – v(t)

∥
∥ ≤ r(t) for every t ∈ T

}
.

It was shown in [] that the existence of a solution-tube ensures the existence of a solu-
tion of (.).

Theorem . ([]) Let F : T × R
n → R

n be a Carathéodory set-valued mapping with
nonempty, closed, convex values. Assume there exists (v, r) ∈ W ,

� (T,Rn) × W ,
� (T, (,∞))

a solution-tube of (.). Then problem (.) has a solution x in W ,
� (T,Rn) such that ‖x(t) –

v(t)‖ ≤ r(t) for every t ∈ T.

In order to establish our multiplicity result, we introduce the notion of a strict solution-
tube of (.) which will permit one to obtain solutions satisfying ‖x(t) – v(t)‖ < r(t) for all
t ∈ [, ].

Definition . Let (v, r) ∈ W ,
� (T,Rn) × W ,

� (T, (,∞)). We say that (v, r) is a strict
solution-tube of (.) if the following conditions hold:

(i) there exists a l.s.c. mapping ε : T→ (,∞) with ε(t) < r(t) for every t ∈ T, and such
that for �-a.e. t ∈ T and all x ∈R

n satisfying

r
(
σ (t)

)
– ε

(
σ (t)

)
<

∥∥x – v
(
σ (t)

)∥∥ ≤ r
(
σ (t)

)
,

there exists y ∈ F(t, x) such that

〈
x – v

(
σ (t)

)
, y – v�(t)

〉 ≤ r�(t)
∥∥x – v

(
σ (t)

)∥∥;

(ii) ‖v(a) – v(b)‖ < r(a) – r(b).

Obviously, a strict solution-tube is a solution-tube of (.).

Definition . Let (v, r) and (v, r) be two strict solution-tubes of (.). They are said to
be compatible if the l.s.c. functions ε and ε in Definition .(i) can be chosen such that
for �-a.e. t ∈ T and all x ∈ R

n satisfying

ri
(
σ (t)

)
– εi

(
σ (t)

)
<

∥
∥x – vi

(
σ (t)

)∥∥ < ri
(
σ (t)

)
for i = , ,

there exists y ∈ F(t, x) such that

〈
x – vi

(
σ (t)

)
, y – v�

i (t)
〉 ≤ r�

i (t)
∥
∥x – vi

(
σ (t)

)∥∥ for i = , .
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Remark . If F = {f } is single-valued, then any two strict solution-tubes of (.) are com-
patible.

Here is our main multiplicity result for the system of first order dynamic inclusions (.).

Theorem . Let F : T × R
n → R

n be a �-Carathéodory set-valued mapping with
nonempty, closed, convex values. Assume the following conditions hold:

(i) there exists (v, r) a solution-tube of (.);
(ii) there exist (v, r) and (v, r) two compatible strict solution-tubes of (.) such that

(a) T(vi, ri) ⊂ T(v, r) for i = , ;
(b) T(v, r) ∩ T(v, r) = ∅.

Then problem (.) has at least three distinct solutions x, x, x ∈ W ,
� (T,Rn) such that

xj ∈ T(vj, rj) and x /∈ T(vi, ri) for i = ,  and j = , , .

To prove this result, we will need four lemmas and we will consider the following mod-
ified problems for j = , , :

x�(t) + x
(
σ (t)

) ∈ Fj
(
t, x

(
σ (t)

))
, �-a.e. t ∈ T,

x(a) = x(b),
(.j)

where Fj : T ×R
n → R

n are defined as follows:

F(t, x) = x̄
(
σ (t), x

)
+ F

(
t, x̄

(
σ (t), x

)) ∩ G(t, x) ∩ K(t, x) ∩ K(t, x), (.)

F(t, x) = x̄
(
σ (t), x

)
+ F

(
t, x̄

(
σ (t), x

)) ∩ G(t, x) ∩ K(t, x) ∩ K
(
t, x̄

(
σ (t), x

))
, (.)

F(t, x) = x̄
(
σ (t), x

)
+ F

(
t, x̄

(
σ (t), x

)) ∩ G(t, x) ∩ K
(
t, x̄

(
σ (t), x

)) ∩ K(t, x); (.)

with

Gj(t, x) = G(vj ,rj)(t, x), j = , , ; (.)

Kj(t, x) = K(vj ,rj ,εj)(t, x), j = , ; (.)

and

x̄j(t, x) = x̄(vj ,rj)(t, x), j = , , . (.)

Here G(v,r), K(v,r,ε), and x̄(v,r) are defined in (.), (.), and (.), respectively.
For j = , , , we consider Fi : C(T,Rn) → C(T,Rn) defined by

Fj(x) = L
({

y ∈ L
�

(
T,Rn) : y(t) ∈ Fj

(
t, x

(
σ (t)

))
,�-a.e. t ∈ T

})
, (.)

where L was defined in Proposition .. We show that Fj has nice properties.

Lemma . Assume the assumptions of Theorem . hold. Then, for j = , , , Fj is u.s.c.,
compact with nonempty, convex, compact values.
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Proof Since (v, r) and (v, r) are compatible strict solution-tubes of (.), and (v, r) is a
solution-tube of (.) such that T(v, r) contains T(v, r) ∪ T(v, r), one sees that �-a.e.
t ∈ T and for every x ∈ C(T,Rn),

Fj
(
t, x

(
σ (t)

)) �= ∅, ∀j = , , .

Using the fact that F is �-Carathéodory, the conclusion follows from Propositions .
and ., and Examples . and .. �

Taking into account the existence property of the topological degree, we can deduce that
(.j) has a solution.

Lemma . Assume the assumptions of Theorem . hold. Then, for j = , , , there exists
a bounded open set �j ⊂ C(T,Rn) such that the topological degree

deg(id –Fj,�j) = .

In particular, (.j) has a solution in �j.

Proof Let Hj : [, ] × C(T,Rn) → C(T,Rn) be defined by

Hj(λ, x) = λFj(x).

The previous lemma implies that Hj is an u.s.c., compact set-valued mapping with
nonempty, compact, convex values. Hence, there exists a bounded open set �j ⊂ C(T,Rn)
such that

Hj
(
[, ] × C

(
T,Rn)) ⊂ �j.

The topological degree theory implies that

 = deg(id,�j) = deg
(
id –Hj(, ·),�j

)
= deg

(
id –Hj(, ·),�j

)

= deg(id –Fj,�j).

Thus, (.j) has a solution by the existence property of the topological degree. �

In the next lemma, we obtain information on the localization of solutions of (.j).

Lemma . Under the assumptions of Theorem ., if, for some j ∈ {, , }, x ∈ W ,
� (T,Rn)

is a solution of (.j), then x ∈ T(vj, rj).

Proof Let x ∈ W ,
� (T,Rn) be a solution of (.j). So, there exists u ∈ L

�(T,Rn) such that

x�(t) + x
(
σ (t)

)
= x̄j

(
σ (t), x

(
σ (t)

))
+ u(t) ∈ Fj

(
t, x

(
σ (t)

))
, �-a.e. t ∈ T. (.)
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Since (vj, rj) is a solution-tube of (.) and u(t) ∈ Gj(t, x(σ (t))), �-a.e. t ∈ T, one has

〈
x
(
σ (t)

)
– vj

(
σ (t)

)
, u(t) – v�

j (t)
〉 ≤ r�

j (t)
∥∥x

(
σ (t)

)
– vj

(
σ (t)

)∥∥,

�-a.e. on
{

t ∈ T :
∥
∥x

(
σ (t)

)
– vj

(
σ (t)

)∥∥ > rj
(
σ (t)

)}
. (.)

Observe that, for t ∈ RT,

∥∥x(t) – vj(t)
∥∥� =

‖x(σ (t)) – vj(σ (t))‖ – ‖x(t) – vj(t)‖
μ(t)

≤ 〈x(σ (t)) – vj(σ (t)), x(σ (t)) – vj(σ (t)) – (x(t) – vj(t))〉
μ(t)‖x(σ (t)) – vj(σ (t))‖

=
〈x(σ (t)) – vj(σ (t)), x�(t) – v�

j (t)〉
‖x(σ (t)) – vj(σ (t))‖ ; (.)

and for �-almost every t ∈ T\RT,

∥
∥x(t) – vj(t)

∥
∥� =

〈x(t) – vj(t), x�(t) – v�
j (t)〉

‖x(t) – vj(t)‖

=
〈x(σ (t)) – vj(σ (t)), x�(t) – v�

j (t)〉
‖x(σ (t)) – vj(σ (t))‖ . (.)

Let s(t) = ‖x(t) – vj(t)‖ – rj(t). Combining (.), (.), (.), and (.), we deduce that
�-a.e. on {t ∈ T : s(σ (t)) > },

s�(t) ≤ 〈x(σ (t)) – vj(σ (t)), x�(t) – v�
j (t)〉

‖x(σ (t)) – vj(σ (t))‖ – r�
j (t)

=
〈x(σ (t)) – vj(σ (t)), x̄j(σ (t), x(σ (t))) – x(σ (t))〉

‖x(σ (t)) – vj(σ (t))‖

+
〈x(σ (t)) – vj(σ (t)), u(t) – v�

j (t)〉
‖x(σ (t)) – vj(σ (t))‖ – r�

j (t)

=
〈x̄j(σ (t), x(σ (t))) – v(σ (t)), u(t) – v�

j (t)〉
rj(σ (t))

+ rj
(
σ (t)

)
–

∥
∥x

(
σ (t)

)
– vj

(
σ (t)

)∥∥ – r�
j (t)

<
rj(σ (t))r�

j (t)
rj(σ (t))

– r�
j (t)

= . (.)

Taking into account the periodic boundary condition and the fact that (vj, rj) is a solution-
tube of (.), we obtain

s(a) =
∥
∥x(a) – vj(a)

∥
∥ – rj(a)

≤ ∥∥x(b) – vj(b)
∥∥ – rj(b) +

∥∥vj(b) – vj(a)
∥∥ – rj(a) + rj(b)

≤ s(b). (.)
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It follows from (.), (.), and Lemma . that s(t) ≤  for all t ∈ T. Thus, x ∈
T(vj, rj). �

The fact that (vj, rj) is a strict solution-tube of (.), when j ∈ {, }, permits us to get
more precision on the localization of the solutions of (.j).

Lemma . Assume the assumptions of Theorem . hold. For each j ∈ {, }, if x ∈
T(vj, rj) ∩ W ,

� (T,Rn) is solution of (.j), then it satisfies

∥∥x(t) – vj(t)
∥∥ < rj(t) ∀t ∈ T.

Proof Let x ∈ T(vj, rj) be a solution of (.j) for some j ∈ {, }. Observe that x̄j(σ (t),
x(σ (t))) = x(σ (t)) for all t ∈ T. Let u ∈ L

�(T,Rn) be such that

x�(t) + x
(
σ (t)

)
= x

(
σ (t)

)
+ u(t) ∈ Fj

(
t, x

(
σ (t)

))
, �-a.e. t ∈ T.

So, u ∈ Kj(t, x(σ (t))), �-a.e. t ∈ T.
Since εj is l.s.c., we can find δj >  such that

δj < min
{
εj(t) : t ∈ T

}
and δj < rj(a) – rj(b) –

∥∥vj(b) – vj(a)
∥∥.

Observe that the periodic boundary condition and the fact that (vj, rj) is a strict solution-
tube of (.) imply that

∥
∥x(a) – vj(a)

∥
∥ ≤ ∥

∥x(b) – vj(b)
∥
∥ – rj(b) +

∥
∥vj(b) – vj(a)

∥
∥ + rj(b)

< rj(a) – δj. (.)

Let us suppose that

B =
{

t ∈ T :
∥∥x(t) – vj(t)

∥∥ = rj(t) – δj
} �= ∅,

and t = inf B. It follows from (.) that t > a.
First, we consider the case where t is not left-scattered; that is t = ρ(t). Since

rj(t) – εj(t) <
∥
∥x(t) – vj(t)

∥
∥ = rj(t) – δj,

together with the lower semi-continuity of εj and the continuity of x, vj and rj, there exists
a ≤ t < t such that

rj(t) – εj(t) <
∥∥x(t) – vj(t)

∥∥ < rj(t) – δj for all t ∈ [t, t).

By the definition of Kj, one has

〈x(σ (t)) – vj(σ (t)), x�(t) – v�
j (t)〉

‖x(σ (t)) – vj(σ (t))‖ =
〈x(σ (t)) – vj(σ (t)), u(t) – v�

j (t)〉
‖x(σ (t)) – vj(σ (t))‖

≤ r�
j (t), �-a.e. t ∈ [t, t) ∩T.
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This inequality combined with (.) and (.) implies that

(
rj(t) – δj

)
–

(
rj(t) – δj

)
<

∥
∥x(t) – vj(t)

∥
∥ –

∥
∥x(t) – vj(t)

∥
∥

=
∫

[t,t)∩T

∥∥x(t) – v(t)
∥∥�

�t

≤
∫

[t,t)∩T

〈x(σ (t)) – vj(σ (t)), x�(t) – v�
j (t)〉

‖x(σ (t)) – vj(σ (t))‖ �t

≤
∫

[t,t)∩T
r�

j (t)�t

= rj(t) – rj(t).

This is a contradiction.
Now, we consider the case where t is left-scattered; that is t = σ (t) > t for some t ∈ T.

Using (.) and the definition of Kj, we deduce that

(
rj(t) – δj

)
–

(
rj(t) – δj

)
<

∥∥x(t) – vj(t)
∥∥ –

∥∥x(t) – vj(t)
∥∥

= μ(t)
∥∥x(t) – vj(t)

∥∥�

≤ μ(t)〈x(σ (t)) – vj(σ (t)), x�(t) – v�
j (t)〉

‖x(σ (t)) – vj(σ (t))‖

=
μ(t)〈x(σ (t)) – vj(σ (t)), u(t) – v�

j (t)〉
‖x(σ (t)) – vj(σ (t))‖

≤ μ(t)r�
j (t)

= r(t) – r(t).

This is a contradiction.
We can conclude that ‖x(t) – vj(t)‖ < rj(t) – δj for every t ∈ T. �

We are now ready to prove Theorem ..

Proof of Theorem . For j = , , , let Fj : C(T,Rn) → C(T,Rn) be defined in (.). From
the definition and Proposition ., we see that a fixed point of Fj is a solution of (.j). It
follows from Lemma . that there exists an open bounded set �j ⊂ C(I,Rn) such that

deg(id –Fj,�j) =  for j = , , . (.)

From the proof of Lemma ., �j can be chosen big enough such that

� = � = � = � ⊃ T(v, r) ⊃ T(v, r) ∪ T(v, r).

For j ∈ {, }, we define the open set

Uj =
{

x ∈ C
(
T,Rn) :

∥∥x(t) – vj(t)
∥∥ < rj(t) for all t ∈ T

}
.
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Lemmas . and ., (.), and the excision property of the degree imply that

deg(id –Fj, Uj) = deg(id –Fj,�) =  for j = , . (.)

For j ∈ {, }, since x ∈ T(vj, rj) ⊂ T(v, r),

∀x ∈ Uj, x
(
σ (t)

)
= x̄

(
σ (t), x

(
σ (t)

))
= x̄j

(
σ (t), x

(
σ (t)

)) ∀t ∈ T.

So,

F
(
t, x

(
σ (t)

))
= Fj

(
t, x

(
σ (t)

))
, �-a.e. t ∈ T,

and hence,

∀x ∈ Uj, F(x) = Fj(x).

Therefore,

deg(id –F, Uj) = deg(id –Fj, Uj) for j = , . (.)

The addition property of the degree, combined with (.), (.), and (.) imply that

deg
(
id –F,�\(U ∪ U)

)

= deg(id –F,�) –
(
deg(id –F, U) + deg(id –F, U)

)

= deg(id –F,�) –
(
deg(id –F, U) + deg(id –F, U)

)

=  – ( + ).

So, for j = , , problem (.j) has a solution xj ∈ T(vj, rj), and, for j = , (.j) has a solution

x /∈ T(v, r)\(T(v, r) ∪ T(v, r)
)
.

Assumption (ii)(b) of Theorem . implies that x, x, and x are distinct.
Finally, for j = , , , it follows from the definition of Fj that

Fj
(
t, xj

(
σ (t)

)) ⊂ x
(
σ (t)

)
+ F

(
t, xj

(
σ (t)

))
, �-a.e. t ∈ T.

We conclude that x, x, and x are three distinct solutions of (.). �

We obtain the following corollary for a real-valued nonlinearity.

Corollary . For i = , , let αi,βi ∈ W ,
� (T,R), and let F : T × R → R be a �-

Carathéodory set-valued mapping with nonempty, closed, convex values. Assume the fol-
lowing conditions hold:

(i) α(t) < β(t) ≤ β(t) and α(t) ≤ α(t) < β(t) for all t ∈ T;
(ii) there exists t ∈ T such that β(t) < α(t);
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(iii) αi(a) < αi(b) and βi(a) > βi(b) for i = , ;
(iv) for i = , , there exists a l.s.c. mapping εi : T→ (,∞) such that:

() F(t, x) ∩ [α�
i (t),∞) �= ∅ for �-a.e. t ∈ T and all x ∈R such that

αi(t) ≤ x < αi(t) + εi(t);
() F(t, x) ∩ (–∞,β�

i (t)] �= ∅ for �-a.e. t ∈ T and all x ∈R such that
βi(t) ≥ x > βi(t) – εi(t);

(v) () there exists y ∈ F(t, x) such that y ≥ max{α�
 (t),α�

 (t)} for �-a.e. t ∈ T and all
x ∈ (α(t),α(t) + ε(t)) ∩ (α(t),α(t) + ε(t));

() there exists y ∈ F(t, x) such that y ≤ min{β�
 (t),β�

 (t)} for �-a.e. t ∈ T and all
x ∈ (β(t) – ε(t),β(t)) ∩ (β(t) – ε(t),β(t));

() for i, j ∈ {, } with i �= j, there exists y ∈ F(t, x) such that α�
j (t) ≤ y ≤ β�

i (t) for
�-a.e. t ∈ T and all x ∈ (βi(t) – εi(t),βi(t)) ∩ (αj(t),αj(t) + εj(t)).

Then problem (.) has at least three distinct solutions x, x, x ∈ W ,
� (T,R) such that

α(t) ≤ x(t) ≤ β(t), α(t) < x(t) < β(t), and α(t) < x(t) < β(t) for every t ∈ T and
β(t) ≤ x ≤ α(t) for some t ∈ T.

Proof Let

v =
α + β


and r =

β – α


,

and, for i = , ,

vi =
αi + βi


and ri =

βi – αi


.

Assumptions (i), (iii), and (iv) imply that (v, r) is a solution-tube of (.) and (vi, ri) are
strict solution-tubes of (.) for i = , . It follows from (v) that (v, r) and (v, r) are com-
patible strict solution-tubes. Theorem . gives the conclusion. �

Remark . In the particular case where F is single-valued, condition (v) of the previous
corollary can be omitted.
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