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Abstract
In this paper, we study the positive solutions of a higher-order singular fractional
differential system with coupled integral boundary conditions. The conditions for the
existence of at least one positive solution are established together with the estimates
of the lower and upper bounds of the solution at any instant of time. Our results are
based on the method of upper and lower solutions and the Schauder fixed point
theorem. In the end, an example is worked out to illustrate our main results.
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1 Introduction
The fractional order differential equations has been gaining much attention due to their
various applications in science and engineering such as fluid dynamics, heat conduction,
control theory, electroanalytical chemistry, economics, fractal theory, fractional biological
neurons, etc. It is proved that the fractional order differential equation is a better tool
for the description of hereditary properties of various materials and processes than the
corresponding integer order differential equation. With this advantage, fractional-order
models have become more realistic and practical than the corresponding classical integer-
order models, that is, there are more degrees of freedom in the fractional-order models.
Westerlund [] utilized the fractional differential equation to depict the transmission of
electromagnetic waves; the one dimensional model is

με
∂E(x, t)

∂x + μεζDν
t E(x, t) +

∂E(x, t)
∂t = ,

where μ, ε, ζ are constants, Dν
t E(x, t) = ∂νE(x,t)

∂tν is a fractional derivative.
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This paper deals with the positive solutions for a class of singular fractional differential
system involving the coupled integral boundary conditions

⎧
⎪⎪⎨

⎪⎪⎩

Dα
+ u(t) + f(t, u(t), v(t)) = , Dα

+ v(t) + f(t, u(t), v(t)) = ,  < t < ,

u() = u′() = · · · = u(n–)() = , u() = μ
∫ 

 g(s)v(s) dA(s),

v() = v′() = · · · = v(n–)() = , v() = μ
∫ 

 g(s)u(s) dA(s),

(.)

where n –  < α, α ≤ n, n ≥ , Dαi
+ is the standard Riemann-Liouville derivative. μi >  is

a constant, gi : (, ) → [, +∞) is continuous with gi ∈ L(, ), Ai is right continuous on
[, ), left continuous at t = , and nondecreasing on [, ], Ai() = ,

∫ 
 x(s) dAi(s) denotes

the Riemann-Stieltjes integrals of x with respect to Ai, fi : (, ) × (, +∞) × (, +∞) →
[, +∞) is a continuous function, fi(t, u, v) may be singular at t = ,  and u = v =  (i = , ).
The positive solution of the system (.) means that (u, v) ∈ C[, ] × C[, ], (u, v) satisfies
(.) and u(t) > , v(t) > , for all t ∈ (, ].

Many researchers have shown interest in fractional differential equations. The motiva-
tion for those works stems from both the intensive development of the theory of fractional
calculus itself and the applications, so a large number of articles on fractional differential
equations have appeared, for example, [–] have established the existence of solutions
or positive solutions of initial or boundary value problems of some systems of nonlinear
fractional differential equations by the use of techniques of nonlinear analysis (fixed point
index theorems, Leray-Schauder theory, Guo-Krasnosel’skii fixed point theorem, the up-
per and lower solution method, Adomian decomposition method, etc.), for the case where
αi is an integer, a lot of work has been done by many authors; see [, ] and the references
therein. Wang et al. [] studied the following system of nonlinear fractional differential
equations:

⎧
⎨

⎩

Dα
+ u(t) + f (t, v(t)) = , Dβ

+ v(t) + g(t, u(t)) = ,  < t < ,

u() = v() = , u() = au(ξ ), v() = bv(ξ ),
(.)

where  < α,β < ,  ≤ a, b < ,  < ξ < , f , g : [, ] × [, +∞) → [, +∞) are continuous
functions, Dα

+ , Dβ

+ are two standard Riemann-Liouville fractional derivatives. By using
the Banach fixed point theorem and the nonlinear alternative of Leray-Schauder type, the
existence and uniqueness of a positive solution for system (.) are obtained.

The system

⎧
⎨

⎩

Dαu(t) + a(t)f (t, v(t)) = , Dβv(t) + b(t)g(t, u(t)) = ,  < t < ,

u() = , u() =
∫ 

 κ(t)u(t) dt, v() = , v() =
∫ 

 μ(t)v(t) dt,
(.)

was discussed in [], in which  < α,β ≤ , Dα , Dβ are standard Riemann-Liouville frac-
tional derivatives, a, b : (, ) → [, +∞) are continuous, κ ,μ : [, ] → [, +∞) are non-
negative and integrable functions, and f , g : [, ] × [, +∞) → [, +∞) are continuous. By
applying the Banach fixed point theorem and the fixed point theorems of cone expansion
and compression of norm type, the authors in [] get the sufficient conditions for the
existence and nonexistence of positive solutions on system (.).
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In this paper, we consider the system under the condition that fi can be singular at t = 
and u = v = . It is well known in linear elastic fracture mechanics that the stress near the
crack tip exhibits a power singularity of r–. [], where r is the distance measured from
the crack tip, this classical singularity also exists in nonlocal nonlinear problems. Owing to
the singularity of fi, in this work, we shall devote our efforts to finding the suitable upper
and lower solution of the system (.), and establishing the criterion of the existence of
positive solutions for the system (.) by the virtue of the Schauder fixed point theorem.
To our knowledge, very few authors studied the existence of positive solutions for the
singular phenomena in coupled integral condition for fractional differential system, and
this work improves and further develops results of previous work in this field to a certain
degree.

2 Preliminaries and lemmas
The basic space used in this paper is X = C([, ],R)×C([, ],R), whereR is a real number
set, then X is a Banach space with the norm

∥
∥(u, v)

∥
∥ = max

{‖u‖,‖v‖}, ‖u‖ = max
t∈[,]

∣
∣u(t)

∣
∣, ‖v‖ = max

t∈[,]

∣
∣v(t)

∣
∣.

Now we begin our work based on the theory of fractional calculus, and for definitions and
related properties of Riemann-Liouville fractional derivatives and integrals, we refer the
reader to [, ]. In the following, we give the definition on the lower and upper solution
of the system (.).

Definition . A pair of continuous functions (φ(t),ϕ(t)) is called a lower solution of
the system (.), if

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dα
+φ(t) + f(t,φ(t),ϕ(t)) ≥ ,

Dα
+ϕ(t) + f(t,φ(t),ϕ(t)) ≥ ,  < t < ,

φ() = φ′
() = · · · = φ

(n–)
 () ≥ , φ() ≥ μ

∫ 
 g(s)ϕ(s) dA(s),

ϕ() = ϕ′
() = · · · = ϕ

(n–)
 () ≥ , ϕ() ≥ μ

∫ 
 g(s)φ(s) dA(s).

Definition . A pair of continuous functions (φ(t),ϕ(t)) is called an upper solution of
the system (.), if it satisfies

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dα
+φ(t) + f(t,φ(t),ϕ(t)) ≤ ,

Dα
+ϕ(t) + f(t,φ(t),ϕ(t)) ≤ ,  < t < ,

φ() = φ′
() = · · · = φ

(n–)
 () ≤ , φ() ≤ μ

∫ 
 g(s)ϕ(s) dA(s),

ϕ() = ϕ′
() = · · · = ϕ

(n–)
 () ≤ , ϕ() ≤ μ

∫ 
 g(s)φ(s) dA(s).

Similarly to the proof in [, ], it enables us to obtain Lemmas . and ..

Lemma . Assume condition (H) holds:

(H)

k =
∫ 


g(t)tα– dA(t) > , k =

∫ 


g(t)tα– dA(t) > , –μμkk > .
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Let hi ∈ C(, ) ∩ L(, ) (i = , ), then the system with the coupled boundary conditions

⎧
⎪⎪⎨

⎪⎪⎩

Dα
+ u(t) + h(t) = , Dα

+ v(t) + h(t) = ,  < t < ,

u() = u′() = · · · = u(n–) = , u() = μ
∫ 

 g(s)v(s) dA(s),

v() = v′() = · · · = v(n–) = , v() = μ
∫ 

 g(s)u(s) dA(s),

(.)

has a unique integral representation,

⎧
⎨

⎩

u(t) =
∫ 

 K(t, s)h(s) ds +
∫ 

 H(t, s)h(s) ds,

v(t) =
∫ 

 K(t, s)h(s) ds +
∫ 

 H(t, s)h(s) ds,
(.)

where

K(t, s) =
μμktα–

 – μμkk

∫ 


g(t)G(t, s) dA(t) + G(t, s),

H(t, s) =
μtα–

 – μμkk

∫ 


g(t)G(t, s) dA(t),

K(t, s) =
μμktα–

 – μμkk

∫ 


g(t)G(t, s) dA(t) + G(t, s),

H(t, s) =
μtα–

 – μμkk

∫ 


g(t)G(t, s) dA(t),

(.)

and

Gi(t, s) =


�(αi)

⎧
⎨

⎩

[t( – s)]αi– – (t – s)αi–,  ≤ s ≤ t ≤ ,

[t( – s)]αi–,  ≤ t ≤ s ≤ ,
i = , .

Lemma . For t, s ∈ [, ], the functions Ki(t, s) and Hi(t, s) (i = , ) defined as (.) satisfy

K(t, s), H(t, s) ≤ ρtα–, K(t, s), H(t, s) ≤ ρtα–,

K(t, s) ≥ �tα–s( – s)α–, H(t, s) ≥ �tα–s( – s)α–,

K(t, s) ≥ �tα–s( – s)α–, H(t, s) ≥ �tα–s( – s)α–,

where

ρ = max

{ 
�(α–) ( μμk

–μμkk

∫ 
 g(t) dA(t) + ), μ

�(α–)(–μμkk)
∫ 

 g(t) dA(t),


�(α–) ( μμk
–μμkk

∫ 
 g(t) dA(t) + ), μ

�(α–)(–μμkk)
∫ 

 g(t) dA(t)

}

,

� = min

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

μμk
�(α)(–μμkk)

∫ 
 ( – t)tα–g(t) dA(t),

μμk
�(α)(–μμkk)

∫ 
 ( – t)tα–g(t) dA(t),

μ
�(α)(–μμkk)

∫ 
 ( – t)tα–g(t) dA(t),

μ
�(α)(–μμkk)

∫ 
 ( – t)tα–g(t) dA(t)

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

.

Lemmas . and . can lead to the following maximum principle.
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Lemma . If (u, v) ∈ X satisfies

u() = u′() = · · · = u(n–) = , u() = μ

∫ 


g(s)v(s) dA(s),

v() = v′() = · · · = v(n–) = , v() = μ

∫ 


g(s)u(s) dA(s),

and Dα
+ u(t) ≤ , Dα

+ v(t) ≤ ,  < t < , then u(t) ≥ , v(t) ≥ ,  ≤ t ≤ .

3 Main results
We make the following assumptions throughout this paper:

(H) fi ∈ C((, ) × (, +∞) × (, +∞), [, +∞)) is decreasing in second and third variables
and fi(s, sα–, sα–) ∈ L(, ), i = , .

(H) For all r ∈ (, ), there exist  < ε,σ < , for any (t, x, y) ∈ (, ) × (, +∞) × (, +∞),

f(t, rx, ry) ≤ r–εf(t, x, y), f(t, rx, ry) ≤ r–σ f(t, x, y).

Theorem . Assume (H)-(H) hold. Then system (.) has at least one positive solution
(u∗, v∗), which satisfies (L–tα–, L–tα–) ≤ (u∗, v∗) ≤ (Ltα–, Ltα–), where

L = max

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(ρ
∫ 

 f(s, sα–, sα–) ds) 
–ε ,

(ρ
∫ 

 f(s, sα–, sα–) ds) 
–σ ,

, (�
∫ 

 s( – s)α–f(s, sα–, sα–) ds) –
–ε ,

(�
∫ 

 s( – s)α–f(s, sα–, sα–) ds) –
–σ

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

In particular, if L = , then (tα–, tα–) is the positive solution of system (.).

Proof Denote a cone as follows:

P =
{

(u, v) ∈ X : L–tα– ≤ u(t) ≤ Ltα–, L–tα– ≤ v(t) ≤ Ltα–, t ∈ [, ]
}

,

then P is nonempty since (tα–, tα–) ∈ P. Now let us denote an operator T by

T(u, v)(t) =
(
T(u, v)(t), T(u, v)(t)

)
,  ≤ t ≤ , (u, v) ∈ P, (.)

where

T(u, v)(t) =
∫ 


K(t, s)f

(
s, u(s), v(s)

)
ds +

∫ 


H(t, s)f

(
s, u(s), v(s)

)
ds,

T(u, v)(t) =
∫ 


K(t, s)f

(
s, u(s), v(s)

)
ds +

∫ 


H(t, s)f

(
s, u(s), v(s)

)
ds.

(.)

We assert that T is well defined and T(P) ⊂ P. In fact, for any (u, v) ∈ P, we have

L–tα– ≤ u(t) ≤ Ltα–, L–tα– ≤ v(t) ≤ Ltα–, t ∈ [, ].
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Thus, by Lemma . and (H)-(H), we get

T(u, v)(t) =
∫ 


K(t, s)f

(
s, u(s), v(s)

)
ds +

∫ 


H(t, s)f

(
s, u(s), v(s)

)
ds

≤
∫ 


ρtα–f

(
s, L–sα–, L–sα–)ds

+
∫ 


ρtα–f

(
s, L–sα–, L–sα–)ds

≤ Lερtα–
∫ 


f
(
s, sα–, sα–)ds + Lσ ρtα–

∫ 


f

(
s, sα–, sα–)ds

≤ Ltα– (.)

and

T(u, v)(t) =
∫ 


K(t, s)f

(
s, u(s), v(s)

)
ds +

∫ 


H(t, s)f

(
s, u(s), v(s)

)
ds

≤
∫ 


ρtα–f

(
s, L–sα–, L–sα–)ds

+
∫ 


ρtα–f

(
s, L–sα–, L–sα–)ds

≤ Lσ ρtα–
∫ 


f

(
s, sα–, sα–)ds + Lερtα–

∫ 


f
(
s, sα–, sα–)ds

≤ Ltα–. (.)

On the other hand, by Lemma . and (H)-(H), we also get

T(u, v)(t) ≥
∫ 


�tα–s( – s)α–f

(
s, Lsα–, Lsα–)ds

+
∫ 


�tα–s( – s)α–f

(
s, Lsα–, Lsα–)ds

≥ L–ε�tα–
∫ 


s( – s)α–f

(
s, sα–, sα–)ds

+ L–σ �tα–
∫ 


s( – s)α–f

(
s, sα–, sα–)ds

≥ L–tα– (.)

and

T(u, v)(t) ≥
∫ 


�tα–s( – s)α–f

(
s, Lsα–, Lsα–)ds

+
∫ 


�tα–s( – s)α–f

(
s, L–sα–, L–sα–)ds

≥ L–σ �tα–
∫ 


s( – s)α–f

(
s, sα–, sα–)ds
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+ L–ε�tα–
∫ 


s( – s)α–f

(
s, sα–, sα–)ds

≥ L–tα–. (.)

It follows from (.)-(.) that T is well defined and T(P) ⊂ P. Moreover, we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dα
+ T(u, v)(t) + f(t, T(u, v)(t), T(u, v)(t)) = ,

Dα
+ T(u, v)(t) + f(t, T(u, v)(t), T(u, v)(t)) = ,  < t < ,

T(u, v)() = T ′
(u, v)() = · · · = T (n–)

 (u, v)() = ,

T(u, v)() = μ
∫ 

 g(s)T(u, v)(s) dA(s),

T(u, v)() = T ′
(u, v)() = · · · = T (n–)

 (u, v)() = ,

T(u, v)() = μ
∫ 

 g(s)T(u, v)(s) dA(s).

(.)

Take

φ(t) = min
{

tα–, T
(
tα–, tα–)}, φ(t) = max

{
tα–, T

(
tα–, tα–)}, (.)

ϕ(t) = min
{

tα–, T
(
tα–, tα–)}, ϕ(t) = max

{
tα–, T

(
tα–, tα–)}, (.)

since (tα–, tα–) ∈ P, (T(tα–, tα–), T(tα–, tα–)) ∈ P, we have

(φ,ϕ) ∈ P, (φ,ϕ) ∈ P, φ(t) ≤ tα– ≤ φ(t), ϕ(t) ≤ tα– ≤ ϕ(t). (.)

Let

(φ,ϕ) =
(
T(φ,ϕ), T(φ,ϕ)

)
, (φ,ϕ) =

(
T(φ,ϕ), T(φ,ϕ)

)
. (.)

By (.)-(.) and (H), we have

(φ,ϕ) =
(
T(φ,ϕ), T(φ,ϕ)

)

≤ (
T

(
tα–, tα–), T

(
tα–, tα–)) ≤ (

T(φ,ϕ), T(φ,ϕ)
)

= (φ,ϕ), (.)

(φ,ϕ) ≤ (
T

(
tα–, tα–), T

(
tα–, tα–)) ≤ (φ,ϕ),

(φ,ϕ) ≥ (
T

(
tα–, tα–), T

(
tα–, tα–)) ≥ (φ,ϕ).

(.)

Consequently, it follows from (.) and (.)-(.) that

Dα
+φ(t) + f

(
t,φ(t),ϕ(t)

)
= Dα

+ T(φ,ϕ)(t) + f
(
t,φ(t),ϕ(t)

)

= –f
(
t,φ(t),ϕ(t)

)
+ f

(
t,φ(t),ϕ(t)

)

≤ –f
(
t,φ(t),ϕ(t)

)
+ f

(
t,φ(t),ϕ(t)

)
= ,

φ() = φ′
() = · · · = φ

(n–)
 () = , φ() = μ

∫ 


g(s)ϕ(s) dA(s),

(.)
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Dα
+ϕ(t) + f

(
t,φ(t),ϕ(t)

)
= Dα

+ T(φ,ϕ)(t) + f
(
t,φ(t),ϕ(t)

)

= –f
(
t,φ(t),ϕ(t)

)
+ f

(
t,φ(t),ϕ(t)

)

≤ –f
(
t,φ(t),ϕ(t)

)
+ f

(
t,φ(t),ϕ(t)

)
= ,

ϕ() = ϕ′
() = · · · = ϕ

(n–)
 () = , ϕ() = μ

∫ 


g(s)φ(s) dA(s),

(.)

and

Dα
+φ(t) + f

(
t,φ(t),ϕ(t)

)
= Dα

+ T(φ,ϕ)(t) + f
(
t,φ(t),ϕ(t)

)

= –f
(
t,φ(t),ϕ(t)

)
+ f

(
t,φ(t),ϕ(t)

)

≥ –f
(
t,φ(t),ϕ(t)

)
+ f

(
t,φ(t),ϕ(t)

)
= ,

φ() = φ′
() = · · · = φ

(n–)
 () = , φ() = μ

∫ 


g(s)ϕ(s) dA(s),

(.)

Dα
+ϕ(t) + f

(
t,φ(t),ϕ(t)

)
= Dα

+ T(φ,ϕ)(t) + f
(
t,φ(t),ϕ(t)

)

= –f
(
t,φ(t),ϕ(t)

)
+ f

(
t,φ(t),ϕ(t)

)

≥ –f
(
t,φ(t),ϕ(t)

)
+ f

(
t,φ(t),ϕ(t)

)
= ,

ϕ() = ϕ′
() = · · · = ϕ

(n–)
 () = , ϕ() = μ

∫ 


g(s)φ(s) dA(s).

(.)

From (.), (.)-(.), we obtain (φ,ϕ), (φ,ϕ) are lower and upper solutions of the
system (.), and (φ,ϕ), (φ,ϕ) ∈ P.

Define the function F, F by

Fi(t, u, v) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

fi(t,φ(t),ϕ(t)),

 < u < φ(t),  < v < ϕ(t), or  < u < φ(t),  < v < ϕ(t),

fi(t, u, v), φ(t) ≤ u ≤ φ(t),ϕ(t) ≤ v ≤ ϕ(t),

fi(t,φ(t),ϕ(t)), u > φ(t), or v > ϕ(t), i = , .

(.)

It then follows from (H) and (.) that Fi : (, ) × [, +∞) × [, +∞) → [, +∞) is con-
tinuous. We now show that the fractional boundary value system

⎧
⎪⎪⎨

⎪⎪⎩

Dα
+ u(t) + F(t, u(t), v(t)) = , Dα

+ v(t) + F(t, u(t), v(t)) = ,  < t < ,

u() = u′() = · · · = u(n–)() = , u() = μ
∫ 

 g(s)v(s) dA(s),

v() = v′() = · · · = v(n–)() = , v() = μ
∫ 

 g(s)u(s) dA(s),

(.)

has a positive solution. Define the operator T̃ in X

T̃(u, v)(t) =
(
T̃(u, v)(t), T̃(u, v)(t)

)
,  ≤ t ≤ ,

where

T̃(u, v)(t) =
∫ 


K(t, s)F

(
s, u(s), v(s)

)
ds +

∫ 


H(t, s)F

(
s, u(s), v(s)

)
ds,
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T̃(u, v)(t) =
∫ 


K(t, s)F

(
s, u(s), v(s)

)
ds +

∫ 


H(t, s)F

(
s, u(s), v(s)

)
ds.

Then a fixed point of the operator T̃ is a solution of the system (.). For any (u, v) ∈ X,
by (.), we have

T̃(u, v)(t) ≤
∫ 


ρtα–F

(
s, u(s), v(s)

)
ds +

∫ 


ρtα–F

(
s, u(s), v(s)

)
ds

≤
∫ 


ρf

(
s,φ(s),ϕ(s)

)
ds +

∫ 


ρf

(
s,φ(s),ϕ(s)

)
ds

≤
∫ 


ρf

(
s, L–sα–, L–sα–)ds +

∫ 


ρf

(
s, L–sα–, L–sα–)ds

≤ Lερ

∫ 


f
(
s, sα–, sα–)ds + Lσ ρ

∫ 


f

(
s, sα–, sα–)ds < +∞

and

T̃(u, v)(t) ≤
∫ 


ρtα–F

(
s, u(s), v(s)

)
ds +

∫ 


ρtα–F

(
s, u(s), v(s)

)
ds

≤
∫ 


ρf

(
s,φ(s),ϕ(s)

)
ds +

∫ 


ρf

(
s,φ(s),ϕ(s)

)
ds

≤
∫ 


ρf

(
s, L–sα–, L–sα–)ds +

∫ 


ρf

(
s, L–sα–, L–sα–)ds

≤ Lσ ρ

∫ 


f

(
s, sα–, sα–)ds + Lερ

∫ 


f
(
s, sα–, sα–)ds < +∞.

So ‖T̃‖ = max{‖T̃‖,‖T̃‖} < +∞; this implies that ‖T̃‖ is uniformly bounded. In addition,
it follows from the continuity of F, F, the uniform continuity of Ki(t, s), Hi(t, s) on [, ] ×
[, ], and (H) that T̃ : X → X is continuous.

Let � ∈ X × X be bounded, by a standard discussion and the Arzela-Ascoli theorem,
we know T̃i(�) is equicontinuous. Thus T̃ : X → X is completely continuous, by using
the Schauder fixed point theorem, T̃ has at least a fixed point (u∗, v∗) such that (u∗, v∗) =
T̃(u∗, v∗).

Now we prove

φ(t) ≤ u∗(t) ≤ φ(t), ϕ(t) ≤ v∗(t) ≤ ϕ(t), t ∈ [, ]. (.)

We first of all prove u∗(t) ≤ φ(t), v∗(t) ≤ ϕ(t). Otherwise, suppose u∗(t) > φ(t), v∗(t) >
ϕ(t). According to the definition of Fi, we have

Dα
+ u∗(t) + F

(
t, u∗(t), v∗(t)

)
= Dα

+ u∗(t) + f
(
t,φ(t),ϕ(t)

)
= ,

Dα
+ v∗(t) + F

(
t, u∗(t), v∗(t)

)
= Dα

+ v∗(t) + f
(
t,φ(t),ϕ(t)

)
= .

(.)

On the other hand, since (φ(t),ϕ(t)) is an upper solution of system (.), we have

Dα
+φ(t) + f

(
t,φ(t),ϕ(t)

) ≤ , Dα
+ϕ(t) + f

(
t,φ(t),ϕ(t)

) ≤ . (.)



Wang and Zhang Advances in Difference Equations  (2016) 2016:117 Page 10 of 12

Let x(t) = φ(t) – u∗(t), y(t) = ϕ(t) – v∗(t), by (.)-(.), we get

Dα
+ x(t) = Dα

+φ(t) – Dα
+ u∗(t) ≤ , Dα

+ y(t) = Dα
+ϕ(t) – Dα

+ v∗(t) ≤ .

Since (φ(t),ϕ(t)) is upper solution of the system (.) and (u∗, v∗) is the fixed point of T̃ ,
we know

x() = x′() = · · · = x(n–)() = , x() = μ

∫ 


g(s)y(s) dA(s),

y() = y′() = · · · = y(n–)() = , y() = μ

∫ 


g(s)x(s) dA(s).

It follows from Lemma . that x(t) ≥ , y(t) ≥ , i.e., u∗(t) ≤ φ(t), v∗(t) ≤ ϕ(t) on
[, ], which contradicts u∗(t) > φ(t), v∗(t) > ϕ(t) on [, ]. In the same way, we obtain
u∗(t) ≥ φ(t), v∗(t) ≥ ϕ(t) on [, ]. Consequently, (.) is satisfied, then (u∗, v∗) is a pos-
itive solution of the system (.).

Owing to the fact (φ,ϕ), (φ,ϕ) ∈ P and (.), we get (L–tα–, L–tα–) ≤ (u∗, v∗) ≤
(Ltα–, Ltα–). The proof is completed. �

Theorems . and . can be obtained by the same method as Theorem ..

Theorem . Assume (H) holds and for i = , , fi satisfies:

(H∗
 ) fi ∈ C((, ) × [, +∞) × [, +∞), [, +∞)) is decreasing in second and third variables

and

 <
∫ 


fi(t, , ) < +∞.

Then system (.) has at least one positive solution (u∗, v∗), which satisfies (, ) ≤ (u∗, v∗) ≤
(Ltα–, Ltα–), where

L = max

{

ρ

∫ 


f(s, , ) ds, ρ

∫ 


f(s, , ) ds

}

.

Theorem . Assume (H) holds and, for i = , , fi satisfies:

(H′
) fi ∈ C([, ] × [, +∞) × [, +∞), [, +∞)) is decreasing in second and third variables,

fi(t, , ) �≡ , t ∈ [, ].

Then system (.) has at least one positive solution (u∗, v∗), which satisfies (, ) ≤ (u∗, v∗) ≤
(Ltα–, Ltα–), where

L = max

{

ρ

∫ 


f(s, , ) ds, ρ

∫ 


f(s, , ) ds

}

.
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4 Example
Consider the fractional differential system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

D


+ u(t) + f(t, u(t), v(t)) = , D



+ v(t) + f(t, u(t), v(t)) = ,  < t < ,

u() = u′() = , u() = 

∫ 

 t– 
 v(t) dt,

v() = v′() = , v() =
∫ 

 u(t) dt 
 ,

(.)

where α = α = 
 , μ = 

 , μ = , A(t) = t, A(t) = t 
 , g(t) = t– 

 , g(t) = ,

k =
∫ 


g(t)tα– dA(t) =

∫ 


t– 

 t

 dt =




> ,

k =
∫ 


g(t)tα– dA(t) =

∫ 


t


 dt


 =




∫ 


t dt =




> ,

 – μμkk =



> .

So, the condition (H) holds. Let

fi(t, u, v) = t–γi
(
u–δi + v–εi

)
,  < γi +



δi < ,  < γi +



εi < , i = , ,

then fi is decreasing in u and v, and fi(s, sα–, sα–) = s–γi– 
 δi + s–γi– 

 δi ∈ L(, ), i = , .
Moreover, for all r ∈ (, ), (t, u, v) ∈ (, ) × (, +∞) × (, +∞),

fi(t, ru, rv) ≤ r– max{δi ,–εi}fi(t, u, v), i = , .

So, all the conditions of Theorem . hold, and, by Theorem ., the system (.) at least
has a positive solution.
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