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Abstract
In this paper we study some stability criteria for some semilinear integral equations
with a function as initial condition and with additive noise, which is a Young integral
that could be a functional of fractional Brownian motion. Namely, we consider
stability in the mean, asymptotic stability, stability, global stability, and Mittag-Leffler
stability. To do so, we use comparison results for fractional equations and an equation
(in terms of Mittag-Leffler functions) whose family of solutions includes those of the
underlying equation.
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1 Introduction
Currently fractional systems are of great interest because of the applications they have in
several areas of science and technology, such as engineering, physics, chemistry, mechan-
ics, etc. (see, e.g., [–] and the references therein). Particularly we can mention system
identification [], robotics [], control [, ], electromagnetic theory [], chaotic dynam-
ics and synchronization [–], applications on viscoelasticity [], analysis of electrode
processes [], Lorenz systems [], systems with retards [], quantic evolution of com-
plex systems [], numerical methods for fractional partial differential equations [–],
among other. A nice survey of basic properties of deterministic fractional differential equa-
tions is in Lakshmikantham and Vatsala []. Also, many researchers have established sta-
bility criteria of mild solutions of stochastic fractional differential equations using different
techniques.

For deterministic systems, the stability of fractional linear equations has been analyzed
by Matignon [] and Radwan et al. []. Besides, several authors have studied nonlinear
cases using Lyapunov method (see, e.g., Li et al. [] and references therein). In particular,
nonlinear fractional systems with a function as initial condition using also the Lyapunov
technique have been considered in the PhD thesis of Martínez-Martínez []. Moreover,
in the work of Junsheng et al. [] the form of the solution for a linear fractional equation
with a constant initial condition in terms of the Mittag-Leffler function is given by means
of the Adomian decomposition method. Wen et al. [] have established stability results
for fractional nonlinear equations via the Gronwall inequality. Equality () below can be
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seen as an extension of the results in [] and the Gronwall inequality stated in []. In
[], the stability is used to obtain synchronization of fractional systems.

On the other hand, a process used frequently in the literature is fractional Brownian
motion BH = {BH

t , t ≥ } due to the wide range of properties it has, such as long range
memory (when the Hurst parameter H is greater than one half ) and intermittency (when
H < /). Unfortunately, in general, it is not a semimartingale (the exception is H = /).
Thus, we cannot use classical Itô calculus in order to integrate processes with respect to BH

when H �= /, but we may use other approaches, such as Young integration (see Gubinelli
[], Young [], Zähle [], Dudley and Norvaiša [], Lyons []). The reader may also
refer to Nualart [], and Russo and Vallois [] for other types of integrals. As a con-
sequence, an important application is the analysis of stochastic integral equations driven
by fractional Brownian motion that has been considered by several authors these days for
different interpretations of stochastic integrals (see, e.g., Lyons [], Quer-Sardanyons and
Tindel [], León and Tindel [], Nualart [], Friz and Hairer [], Lin [] and Nualart
and Răşcanu []).

The stability of stochastic systems driven by Brownian motion has also been studied.
Some authors use a fundamental solution of this equations in order to investigate the sta-
bility of random systems. An example of this is the paper of Applebay and Freeman [],
who gave the solution in terms of the principal matrix of integrodifferential equations
with an Itô integral noise and find the equivalence between almost sure exponential con-
vergence and the pth mean exponential convergence to zero for these systems. Bao []
used the Gronwall inequality to state the mean square stability for Volterra-Itô equations
with a function as initial condition and bounded kernels. Several researchers have studied
stability of stochastic systems via Lyapunov function techniques. An example of this is the
paper of Li et al. [], who prove stability in probability for Itô-Volterra integral equation;
also Zhang et al. [] have stated a stochastic type stability criterion for stochastic inte-
grodifferential equations with infinite retard, and Zhang and Zhang [] have dealt with
conditional stability of Skorohod Volterra type equations with anticipative kernel. Nguyen
[] presented the solution via the fundamental solution for linear stochastic differential
equations with time-varying delays to obtain the exponential stability of these systems.
The noise is an additive one and has the form

∫ ·
 σ (s) dW H

s . Here

W H
t =

∫ t


(t – s)H–/ dWs, H ∈ (/, ),

W is a Brownian motion and σ is a deterministic function such that
∫ ∞


σ (s)eλs ds < ∞,

for some λ > . Also, Zeng et al. [] utilize the Lyapunov function techniques to prove
stability in probability and moment exponential stability for stochastic differential equa-
tion driven by fractional Brownian motion with parameter H > /. Yan and Zhang []
proved sufficient conditions for the asymptotical stability in the pth moment for the closed
form of the solution to a fractional impulsive partial neutral stochastic integrodifferential
equation with state dependent retard in Hilbert space. In the linear case, Fiel et al. []
have used the Adomian decomposition method to find the mild solution of a stochastic
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fractional integral equation with a function as initial condition driven by a Hölder contin-
uous process in terms of Young or Skorohod integrals. This closed form is given in terms
of the Mittag-Leffler functions. The stability in the large and stability in the mean sense of
these random systems is also analyzed. As an application, the stability of equations driven
by a functional of fractional Brownian motion is derived.

In this paper we extend the results given in [] and [], that is, we study the stability
of the solution to the equation

X(t) = ξt +


Γ (β)

∫ t


(t – s)β–[AX(s) + h

(
X(s)

)]
ds + Zt , t ≥ . ()

The initial condition ξ = {ξt , t ≥ } is a function, h is a O(x) as x →  (i.e., we have C > 
and δ >  such that |h(x)| ≤ C|x| for |x| < δ), β ∈ (, ), A < , and Z is a Young integral of
the form

Zt =


Γ (α)

∫ t


(t – s)α– dθs.

Here, θ = {θs, s ≥ } is a γ -Hölder continuous function that may represent the paths of a
functional of fractional Brownian motion, where γ ∈ (, ), α ∈ (, ), and α +γ > . Unlike
other papers where the involved kernels are bounded functions we consider the case that
kernels are not bounded, and we use comparison results as a main tool.

We observe that equation () can be a useful model for applications in several areas
of science. For example, () provides a fractional version of the Verhlust-Pearl equation
(see Scudo [], p.), where h(x) = λx, for some λ ∈ R. So, now the stability of a single
insolated species can be analyzed by means of fractional systems. Also, as pointed out in
[], for some fractional systems in engineering h is a O(x) as x → .

This work is organized as follows. In Section  we introduce a fractional integral equa-
tion, whose family of solutions includes those of (). Also, in Section , we state a compar-
ison result for fractional systems that becomes the main tool for our results. In Section ,
we study some stability criteria for equation () in the case that Z ≡ . These results can
be seen as extensions of the results given in [] and []. Finally, the stability of equation
() in the case that θ is either a Hölder continuous process or a functional of fractional
Brownian motion is considered in Section .

2 Preliminaries
In this section we introduce the framework and the definitions that we use to prove our
results. Part of the main tool that we need is the stability of some fractional linear systems
as presented by Fiel et al. [] and a comparison result (see Lemma  below).

2.1 The Young integral
For T >  and γ ∈ (, ), let Cγ

 ([, T];R) be the set of γ -Hölder continuous functions
g : [, T] →R of one variable such that the seminorm

‖g‖γ ,[,T] := sup
r,t∈[,T],r �=t

|gt – gr|
|t – r|γ ,

is finite.
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The Young integral was initially defined for functions with p-variation in the work of
Young []. In particular, for f ∈ Cκ

 ([, T];R) and g ∈ Cγ
 ([, T];R), with κ + γ >  the

Young integral is well defined, and for s ≤ t ≤ T it is given by

∫ t

s
fu dgu = lim|Πst |→

n–∑

i=

fti (gti+ – gti ),

where the limit is over any partition Πst = {t = s, . . . , tn = t} of [s, t], whose mesh tends to
zero.

We observe that this integral has been extended by Zähle [], Gubinelli [], Lyons [],
among others. For a detailed exposition on the Young integral the reader is referred to the
paper of Dudley and Norvais̆a [] (see also Gubinelli [], and León and Tindel []).

2.2 Semilinear Volterra integral equations with additive noise
Here we consider the Volterra integral equation

X(t) = ξt +


Γ (β)

∫ t


(t – s)β–AX(s) ds +


Γ (α)

∫ t


(t – s)α– dθs, t ≥ , ()

where the initial condition ξ = {ξt , t ≥ } is bounded on compact sets and measurable,
β ∈ (, ), A ∈ R, α ∈ (, ), θ = {θs, s ≥ } is a γ -Hölder continuous function with γ ∈ (, )
and Γ is the gamma function. The second integral in () is a Young one and it is well
defined if α –  + γ > , because s 
→ (t – s)α– is (α – )-Hölder continuous on [, t].

Remember that, for z ∈R, the Mittag-Leffler function is defined as

Ea,b(z) =
∞∑

k=

zk

Γ (ka + b)
, a, b > ,

where Γ is the gamma function. In order to see a more detailed exposition of this function,
the reader is referred to the book of Podlubny [].

The closed form for the solution of equation () is

X(t) = ξt + A
∫ t


(t – s)β–Eβ ,β

(
A(t – s)β

)
ξs ds

+
∫ t


(t – s)α–Eβ ,α

(
A(t – s)β

)
dθs, t ≥ . ()

The reader can consult [] for its proof.
In this work we use comparison methods in order to obtain the stability of some frac-

tional systems. We can find comparison theorems in the literature for fractional evolution
equations (see, e.g., Theorem . in []), but, unfortunately these results are not suitable
for our purpose. Thus, we give the following lemma, which is a version of Theorem .. in
Pachpatte [] and allows us to prove stability for the semilinear equations that we study.
Hence, this result is a fundamental tool in the development of this paper.

Lemma  Let k : [, T] ×R →R be a function such that:
(i) k(·, x) is measurable on [, T] for each x ∈R;

(ii) There is a constant M >  such that |k(s, x) – k(s, y)| ≤ M|x – y|, for any s ∈ [, T]
and x, y ∈R;
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(iii) k is bounded on bounded sets of [, T] ×R;
(iv) k(s, ·) is non-decreasing for any s ∈ [, T].

Also, let B ∈R, β ∈ (, ), and x and y two continuous functions on [, T] such that

x(t) ≤ y(t) +
∫ t


(t – s)β–Eβ ,β

(
B(t – s)β

)
k
(
s, x(s)

)
ds, t ∈ [, T]. ()

Then x ≤ u on [, T], where u is the solution to the equation

u(t) = y(t) +
∫ t


(t – s)β–Eβ ,β

(
B(t – s)β

)
k
(
s, u(s)

)
ds, t ∈ [, T]. ()

Remark The assumptions of k entail that equation () has a unique continuous solution.

Proof Denote by C([, T]) the family of continuous functions on [, T]. LetG : C([, T]) →
C([, T]) be given by

(Gz)(t) = y(t) +
∫ t


(t – s)β–Eβ ,β

(
B(t – s)β

)
k
(
s, z(s)

)
ds, t ∈ [, T].

It is not difficult to see that hypotheses (i) and (iii) imply that G is well defined. It means that
G(z) is a continuous function for each z ∈ C([, T]). We denote supt∈[a,b] |z(t)| by ‖z‖∞,[a,b]

for any function z ∈ C([a, b]). Then, from the continuity of Eβ ,β and hypothesis (ii), there
is a constant M̄ >  such that, for every z, z̃ ∈ C([, T]), we have

∣
∣(Gz)(t) – (Gz̃)(t)

∣
∣ ≤ M̄

∫ t


(t – s)β–∣∣k

(
s, z(s)

)
– k

(
s, z̃(s)

)∣∣ds

≤ MM̄
∫ t


(t – s)β–∣∣z(s) – z̃(s)

∣
∣ds

≤ MM̄
β

Tβ‖z – z̃‖∞,[,T], for t ∈ [, T].

Similarly, for T̄ ≤ T , we are able to see that

‖Gz – Gz̃‖∞,[,T̄] ≤ MM̄
β

‖z – z̃‖∞,[,T̄]T̄β .

Consequently, if T̄β MM̄
β

< , G is a contraction on C([, T̄]). Therefore the sequence
vn+ = Gvn, with v = x, is such that vn(t) → u(t) and vn(t) ≤ vn+(t) for t ∈ [, T̄], due to
hypothesis (iv), (), and Eβ ,β being a completely monotonic function (see Miller et al. []
or Schneider []). Thus the result is true if we write T̄ instead of T .

Now, suppose the lemma holds for the interval [, nT̄], n ∈N. Then, by () we can write

x(t) ≤ y(t) +
∫ nT̄


(t – s)β–Eβ ,β

(
B(t – s)β

)
k
(
s, x(s)

)
ds

+
∫ t

nT̄
(t – s)β–Eβ ,β

(
B(t – s)β

)
k
(
s, x(s)

)
ds

≤ ȳ(t) +
∫ t

nT̄
(t – s)β–Eβ ,β

(
B(t – s)β

)
k
(
s, x(s)

)
ds, t ∈ [

nT̄ , (n + )T̄
]
,
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where

ȳ(t) = y(t) +
∫ nT̄


(t – s)β–Eβ ,β

(
B(t – s)β

)
k
(
s, u(s)

)
ds.

Finally, defining G(n) : C([nT̄ , (n + )T̄]) → C([nT̄ , (n + )T̄]) by

(
G(n)z

)
(t) = ȳ(t) +

∫ t

nT̄
(t – s)β–Eβ ,β

(
B(t – s)β

)
k
(
s, z(s)

)
ds,

and using the fact that equation () has a unique solution due to hypothesis (ii), we can
proceed as in the first part of this proof to see that x ≤ u on [, (n + )T̄]. Thus, the result
follows using induction on n. �

3 A class of nonlinear fractional-order systems
In this section we establish two sufficient conditions for the stability of a deterministic
semilinear Volterra integral equation. Thus, we improve the results in [] for this kind of
systems when the noise is null (i.e., Z in () is equal to zero).

3.1 A constant as initial condition
This part is devoted to a refinement of Theorem  of [] in the one-dimensional case.
Toward this end, in this section, we suppose that the initial condition is a constant. That
is, we first consider the fractional equation

X(t) = x +


Γ (β)

∫ t


(t – s)β–AX(s) ds

+


Γ (β)

∫ t


(t – s)β–h

(
X(s)

)
ds, t ≥ , ()

with x ∈R, β ∈ (, ), A < , and h : R →R a measurable function.
In the remaining of this paper we deal with the following hypotheses.
(H) There is a constant C >  such that A + C <  and |h(x)| ≤ C|x|, for all x ∈R.
(H) There are δ >  and C >  such that A + C <  and |h(x)| ≤ C|x|, for |x| < δ.
Now, we consider several definitions of stability.

Definition  Any solution X to equation () is said to be:
(i) globally stable in the large if X(t) goes to zero as t tends to infinity, for all x ∈R;

(ii) Mittag-Leffler stable if there is δ >  such that |x| < δ implies

∣
∣X(t)

∣
∣ ≤ [

m(x)Eβ ,
(
Btβ

)]b, t ≥ ,

where β ∈ (, ), B < , b > , and m is a positive and locally Lipschitz function with
m() = ;

(iii) stable if for ε > , there is δ >  such that |x| < δ implies |X(t)| < ε, for all t ≥ ;
(iv) stable in the large if there is δ >  such that |x| < δ implies limt→∞ X(t) = ;
(v) asymptotically stable if it is stable and stable in the large.
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Remark  Observe that, under the assumptions that h is continuous and satisfies (H),
equation () has at least one solution on [,∞) because of [] (Theorems . and .).
Indeed, in [] (Theorem .) we can consider

g(t, x) =

{
 if x ≤ ,
(|A| + C)x if x > .

Similarly, for a continuous function h satisfying (H), we introduce the function

ϕ(x) =

⎧
⎪⎨

⎪⎩

x if |x| ≤ δ/,
δ if x > δ/,
–δ if x < –δ/.

Then, using [] (Theorems . and .) again, the equation

X(t) = x +


Γ (β)

∫ t


(t – s)β–(AX(s) + h

(
ϕ
(
X(s)

)))
ds ()

has at least one solution defined on [,∞) due to |Ax + h(ϕ(x))| ≤ |Ax| + C|ϕ(x)| ≤ (|A| +
C)|x|. Hence equation () has at least one continuous solution on [,∞) if () is stable and
x is small enough because, in this case, the solution of () is also a solution of equation
() and h ◦ ϕ is bounded. So, without loss of generality we can assume that () has at least
one continuous solution because one of the main purposes of the paper is to deal with the
stability of ().

Our first stability result for any continuous solution of equation () is the following.

Proposition  Assume either (H) or (H) is satisfied. Then any continuous solution X to
equation () is stable.

Proof Let (H) (resp. (H)) be true and x ∈ (, δ) (resp. x > ). Then the continuity
of X implies that there is τ >  such that X(t) ∈ (, δ) (resp. X(t) > ) for all t ∈ [, τ ].
Consequently

 < X(t) ≤ x +


Γ (β)

∫ t


(t – s)β–[A + C]X(s) ds < x, t ∈ [, τ ]. ()

In other words, () shows that X is less than x if X >  on [, τ ]. Thus, we can proceed as
in [] (Lemma ) using (H) (resp. (H)) to see that X(t) >  for all t ≥ , which implies
that X is stable.

Finally, for x <  and X a solution of (), we see that –X is a solution of

Y (t) = –x +


Γ (β)

∫ t


(t – s)β–[AY (s) ds + ĥ

(
Y (s)

)]
ds, t ≥ ,

with ĥ(x) = –h(–x). Therefore the proposition follows. �

Now we establish the main result of this subsection.
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Proposition  Let h be a function satisfying (H) (resp. (H)). Then any continuous solu-
tion of equation () is Mittag-Leffler stable and therefore is also asymptotically stable (resp.
globally stable in the large).

Proof Let (H) (resp. (H)) be satisfied and  < x < δ (resp. x > ). Then  < X(t) < δ

(resp. X(t) > ) by [] (see ()).
On the one hand, consider the solution Z of the following linear fractional equation:

Z(t) = x +


Γ (β)

∫ t


(t – s)β–[A + C]Z(s) ds, t ≥ .

Then by the continuity of the solutions X and Z, there exists τ >  such that, for all t ∈
(, τ ), we have  < X(t) < Z(t). If this inequality is satisfied for any t > , we can ensure that
X is asymptotically stable (resp. and globally stable in the large), and that this solution is
also Mittag-Leffler stable because the solution Z of last equation is given by (see [] or ())

Z(t) = xEβ ,
(
[A + C]tβ

)
, t ≥ .

We now suppose that there exists t >  such that X(t) = Z(t) and X(t) < Z(t), for t < t.
Set Y = X – Z, then

Y (t) = –x +


Γ (β)

∫ t


(t – s)β–AY (s) ds

+


Γ (β)

∫ t


(t – s)β–[h

(
X(s)

)
– CZ(s)

]
ds, t ≥ .

From () (see also []) we observe that Y also satisfies the equality

Y (t) = –xEβ ,
(
Atβ

)
+

∫ t


(t – s)β–Eβ ,β

(
A(t – s)β

)[
h
(
X(s)

)
– CZ(s)

]
ds, t ≥ .

For s ∈ (, t), we have |h(X(s))| ≤ CX(s) < CZ(s). Thus h(X(s)) – CZ(s) < . Consequently,
by the completely monotonic property of Eβ ,β (e.g., see Miller et al. [] or Schneider []),
we have Y (t) < , and this is a contradiction because it is supposed that Y (t) = . Now
we can conclude that X is Mittag-Leffler stable.

Finally we consider the case that –δ < x <  (resp. x < ). Note that X̂ = –X is such
that

X̂(t) = –x +


Γ (β)

∫ t


(t – s)β–AX̂(s) ds +


Γ (β)

∫ t


(t – s)β–h̃

(
X̂(s)

)
ds, t ≥ ,

with h̃(x) = –h(–x). Hence, by the first part of this proof and the fact that h̃ satisfies (H)
(resp. (H)), we see that the proof is complete. �

Remark Let X be a solution to equation (). Wen et al. [] (Theorem ) have proved
that the solution to equation () is stable if lim|x|→

|h(x)|
|x| → . Also, Zhang and Li []

have used an equality similar to () to prove that X is asymptotically stable for the case
that limx→

|h(x)|
|x| = , β ∈ (, ) and β + 

|A| < . Proposition  establishes that X is asymp-
totically stable under a weaker condition. Namely (H). This is possible because we use a
comparison type result and the fact that this solution does not change sign.
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3.2 A function as initial condition
Here we treat the case that the initial condition is a function satisfying some suitable con-
ditions.

Consider the following deterministic Volterra integral equation:

X(t) = ξt +


Γ (β)

∫ t


(t – s)β–AX(s) ds

+


Γ (β)

∫ t


(t – s)β–h

(
X(s)

)
ds, t ≥ . ()

Here β ∈ (, ), A < , and h : R 
−→ R and ξ : R+ 
−→ R are two measurable functions.
Concerning the existence of a continuous solution of equation () we remark the fol-

lowing. For a continuous function h as in (H) and ξ continuous, we can consider the
equation

Z(t) =


Γ (β)

∫ t


(t – s)β–f

(
s, Z(s)

)
ds,

where f (s, x) = A(x + ξs) + h(x + ξs), which has a solution Z due to Theorem . in [] (with
g(s, x) = (|A|+ C)(x + |ξs|)) and (). Therefore Z + ξ is a solution of (). Similarly if ξ is ‘small
enough’ and h is either a continuous Lipschitz function on a neighborhood of zero, or as
in (H), then we can proceed as in Remark  to see that () has at least one solution in
this case. Therefore, as in Remark , we can assume that () has at least one continuous
solution.

On the other hand, in this paper we analyze several stability criteria for different classes
E of initial conditions. Sometimes E is a subset of a normed linear space X of continuous
functions endowed with the norm ‖·‖X . In other words we consider normed linear spaces
(X ,‖ · ‖X ). Mainly, in the remaining of this paper, we deal with the following classes of
initial conditions.

Definition  We have the following assumptions on ξ :
. If the initial condition ξ is continuous on [,∞) and we have ξ∞ ∈R such that, given

ε > , there exists t >  such that |ξs – ξ∞| ≤ ε for any s ≥ t, we say that ξ belongs to
the family E .

. E is the set of all functions ξ of class C(R+) (i.e., ξ has a continuous derivative on
R+) such that

lim
t→∞|ξt|/tβ =  and

∣
∣ξ ′

t
∣
∣ ≤ C̃

t–υ
, for some υ ∈ (,β) and C̃ ∈R.

. E is the space of continuous functions of the form

ξt =


Γ (η)

∫ t


(t – s)η–g(s) ds, ()

with g ∈ L([,∞)) ∩ Lp([,∞)), η ∈ (,β + ), and p > 
η

∨ .

The stability concepts that we develop in this section are the following.
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Definition  Let E ⊂X . A solution X of () is said to be:
(i) globally stable in the large for the class E (or globally E-stable in the large) if X(t)

tends to zero as t → ∞, for every ξ ∈ E ;
(ii) E-stable if for ε > , there is δ >  such that ‖X‖∞,[,∞) < ε for every ξ ∈ E satisfying

‖ξ‖X < δ;
(iii) asymptotically E-stable if it is E-stable and there is δ >  such that limt→∞ X(t) = 

for any ξ ∈ E such that ‖ξ‖X < δ.

In the following auxiliary result, E is the family of functions ξ having the form () with
η = β and g is a continuous function such that limt→∞ g(t) = . In this case, the involved
norm is ‖ξ‖X = ‖g‖∞,[,∞).

Lemma  Let B <  and ξ ∈ E. Then the solution to the equation

Y (t) = ξt +


Γ (β)

∫ t


(t – s)β–BY (s) ds, t ≥ ,

is E-stable and globally E-stable in the large.

Proof We observe that, by (), we have

Y (t) =
∫ t


(t – s)β–Eβ ,β

(
B(t – s)β

)
g(s) ds

=
∫ t


sβ–Eβ ,β

(
Bsβ

)
g(t – s) ds, t ≥ .

So, the completely monotone property of Eβ ,β (see Miller et al. [] or Schneider []),
and [] (Theorem . and equality (.)) leads to

∣
∣Y (t)

∣
∣ ≤

(
sup
s≥

∣
∣g(s)

∣
∣
)∫ t


sβ–Eβ ,β

(
Bsβ

)
ds

=
(

sup
s≥

∣
∣g(s)

∣
∣
)

tβEβ ,β+
(
Btβ

)

≤ Cβ ,β+

|B| ‖g‖∞,[,∞).

Thus, Y is E-stable.
Also, by using (.) in [] again, we are able to write

Y (t) =
∫ t


(t – s)β–Eβ ,β

(
B(t – s)β

)
g(s) ds

= g(t)tβEβ ,β+
(
Btβ

)

+
∫ t


(t – s)β–Eβ ,β

(
B(t – s)β

)[
g(s) – g(t)

]
ds, t ≥ .

Therefore, using Theorem . in [] and the proof of Proposition .. in [] again, to-
gether with the facts that B <  and g is a continuous function such that limt→∞ g(t) = ,
we obtain Y (t) →  as t → ∞. �
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Now we give a general result.

Theorem  Let (H) (resp. (H)) be true, and E a family of continuous functions of a
normed linear space X such that the solution of the equation

Y (t) = ξt +


Γ (β)

∫ t


(t – s)β–AY (s) ds, t ≥ , ()

is asymptotically E-stable (resp. globally E-stable in the large). Then any continuous solu-
tion of equation () is also asymptotically E-stable (resp. globally E-stable in the large).

Proof Suppose that (H) (resp. (H)) is true. Let X be a continuous solution to equation
(). Take Z = X – Y , then we have

Z(t) =


Γ (β)

∫ t


(t – s)β–[AZ(s) + h

(
X(s)

)]
ds, t ≥ .

Thus, () allows us to write

Z(t) =
∫ t


(t – s)β–Eβ ,β

(
A(t – s)β

)
h
(
X(s)

)
ds, t ≥ .

Hence, for ξ ∈ E we have (resp. for ξ ∈ E such that ‖Y‖∞,[,∞) < δ, which gives |ξ| =
|Y ()| < δ, the continuity of X implies that there is t >  such that ‖X‖∞,[,t) < δ and
therefore (H) leads to)

∣
∣Z(t)

∣
∣ ≤ C

∫ t


(t – s)β–Eβ ,β

(
A(t – s)β

)∣∣X(s)
∣
∣ds

≤ C
∫ t


(t – s)β–Eβ ,β

(
A(t – s)β

)∣
∣Z(s)

∣
∣ds

+ C
∫ t


(t – s)β–Eβ ,β

(
A(t – s)β

)∣∣Y (s)
∣
∣ds, t ≥  (resp. t ≤ t),

where we make use of the completely monotonic property of Eβ ,β . Invoking Lemma  and
the uniqueness of the solutions for the involved equations, |Z(t)| ≤ u(t) for all t ≥  (resp.
t ≤ t), where u is the solution to

u(t) =
C

Γ (β)

∫ t


(t – s)β–∣∣Y (s)

∣
∣ds +


Γ (β)

∫ t


(t – s)β–[A + C]u(s) ds, t ≥ .

Finally observe that |X(t)| ≤ u(t) + |Y (t)| for t ≥  (resp. for t ≤ t such that ‖X‖∞,[,t) <
δ). Thus Lemma  implies that u is globally E-stable in the large (resp. u is E-stable and
globally E-stable in the large), which shows that the proof is complete. �

Remark For each i ∈ {, . . . , n} let X i be a normed linear space of functions. Note that if
ξ =

∑n
i= ξ (i), where ξ (i) ∈ Ê i ⊂ X i and () is Ê (i)-stable for each i ∈ {, . . . , n}. Then ()

is also E-stable, where E is the family of functions of the form
∑n

i= ξ (i) and the involved
seminorm is ‖ξ‖X =

∑n
i= ‖ξ (i)‖X i . Indeed, by () we see that the solution Y is given by

Y (t) =
n∑

i=

Y (i)(t) =
n∑

i=

(

ξ
(i)
t + A

∫ t


(t – s)β–Eβ ,β

(
A(t – s)β

)
ξ (i)

s ds
)

, t ≥ ,
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where, for each i ∈ {, . . . , n}, Y (i) is the unique solution to the linear equation

Y (i)(t) = ξ
(i)
t +


Γ (β)

∫ t


(t – s)β–AY (i)(s) ds, t ≥ .

In the following result we see that the family E := {ξ ∈ C([,∞)) : ξ =
∑

i= ξ (i), ξ (i) ∈ E i}
is an example of a family of functions for which the assumptions of Theorem  is satis-
fied. Here, ‖ · ‖X  = ‖ · ‖∞,[,∞), ‖ξ ()‖X  = ‖ξ ()· Eβ ,(A·β )‖∞,[,∞) + ‖ ·–υ ξ ()·

′‖∞,[,∞) and
‖ξ ()‖X  = ‖g‖L([,∞)) + ‖g‖Lp([,∞)), where ·–υξ ()·

′ denotes s 
→ s–υξ
()
s

′
and ξ () is given

by the right-hand side of (). Thus, in this case ‖ξ‖X =
∑

i= ‖ξ (i)‖X i .

Proposition  Let A <  and β ∈ (, ). Then any solution to () is E-stable and E-stable
in the large.

Proof By the previous remark we only need that equation () is E i-stable and E i-stable
in the large, for i = , , . To prove this, let Y be the solution to equation (). The global
E i-stability in the large has already been considered in [] (Theorem .). Now we divide
the proof in three steps.

Step . Here we consider the case i = . Then () and (.) in [] give, for t ≥ ,

∣
∣Y (t)

∣
∣ ≤ ∣

∣ξ ()
t

∣
∣ + |A|

∫ t


(t – s)β–Eβ ,β

(
A(t – s)β

)∣∣ξ ()
s

∣
∣ds

≤ ∥
∥ξ ()∥∥∞,[,∞)

(

 + |A|
∫ t


(t – s)β–Eβ ,β

(
A(t – s)β

)
ds

)

=
∥
∥ξ ()∥∥∞,[,∞)

(
 + |A|tβEβ ,β+

(
Atβ

))

≤ ∥
∥ξ ()∥∥∞,[,∞)( + Cβ ,β+),

which implies that the solution of () is ξ ()-stable.
Step . For i = , we get

∣
∣Y (t)

∣
∣ ≤ ∣

∣ξ ()
t Eβ ,

(
Atβ

)∣∣ +
∣
∣
∣
∣A

∫ t


(t – s)β–Eβ ,β

(
A(t – s)β

)(
ξ ()

s – ξ
()
t

)
ds

∣
∣
∣
∣

≤ ∥
∥ξ ()∥∥

X ()

(

 + |A|
∫ t


(t – s)βEβ ,β

(
A(t – s)β

)
sυ– ds

)

, t ≥ .

Consequently, [] (the proof of Theorem ..) yields

∣
∣Y (t)

∣
∣ ≤ ∥

∥ξ ()∥∥
X ()

(
 + tυΓ (υ)

[
υEβ ,υ+

(
Atβ

)
– Eβ ,υ

(
Atβ

)])

≤ C
∥
∥ξ ()∥∥

X () , t ≥ ,

where C >  is a constant and we have utilized that υ < β .
Step . Finally we consider the case i = . In this scenario, from (), we obtain

∣
∣Y (t)

∣
∣ =

∣
∣
∣
∣

∫ t


(t – s)η–Eβ ,η

(
A(t – s)β

)
g(s) ds

∣
∣
∣
∣

=
∣
∣
∣
∣

∫ t


sη–Eβ ,η

(
Asβ

)
g(t – s) ds

∣
∣
∣
∣
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≤
∣
∣
∣
∣

∫ t∧


sη–Eβ ,η

(
Asβ

)
g(t – s) ds

∣
∣
∣
∣ +

∣
∣
∣
∣

∫ t

t∧
sη–Eβ ,η

(
Asβ

)
g(t – s) ds

∣
∣
∣
∣

= I()
 (t) + I()

 (t), t ≥ .

For I()
 we can apply the Hölder inequality to write, for q– =  – p– and C > ,

I()
 (t) ≤ Cβ ,η

[∫ 


sq(η–) ds

]/q[∫ t∧



∣
∣g(t – s)

∣
∣p ds

]/p

≤ C‖g‖Lp([,∞)), t ≥ ,

and for I()
 we use the fact that η –  – β < . Thus

∣
∣I()

 (t)
∣
∣ ≤ Cβ ,η

|A| ‖g‖L([,∞)). �

Remark Observe that E  contains the bounded variation functions on compact sets of
R+ of the form ξ = ξ () – ξ (), where ξ () and ξ () are two non-decreasing and bounded
functions on R+.

The following result is an immediate consequence of Theorem  and Proposition .

Theorem  Suppose that (H) (resp. (H)) holds. Let ξ be as in Proposition . Then any
continuous solution to () is asymptotically E-stable (resp. globally E-stable in the large).

4 Semilinear integral equations with additive noise
In this section we consider the equation

X(t) = ξt +


Γ (β)

∫ t


(t – s)β–[AX(s) + h

(
X(s)

)]
ds

+


Γ (α)

∫ t


(t – s)α–f (s) dθs, t ≥ . ()

Here ξ , β , A, and h are as in equation (). Henceforth we assume that α ∈ (, ), θ = {θs, s ≥
} is a γ -Hölder continuous function with γ ∈ (, ) such that θ =  and γ +α > , and f is
a τ -Hölder continuous function in C(R+), with τ +γ > . Note that, in this case, the Young
integral in the right-hand side of () is equal to 

Γ (α)
∫ t

 (t – s)α– dθ̃s, where θ̃s =
∫ s

 f (r) dθr

due to [] (Lemma .). Thus, () is still true for () and [] (Lemma .) implies


Γ (α)

∫ t


(t – s)α–f (s) dθs =

α – 
Γ (α)

∫ t


(t – s)α–θ̃s ds.

Hence, the existence of a continuous solution to () can be considered as in Section ..

Definition  Let E ⊂ X be a family of continuous functions. We say that a solution X of
() is:

(i) (E , p)-stable if for ε > , there is δ >  such that ‖X‖∞,[,∞) < ε for any (ξ , f , θ ) such
that

‖ξ‖X + ‖f θ‖L([,∞)) + ‖f θ‖Lp([,∞)) + ‖ḟ θ‖L([,∞)) < δ; ()
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(ii) asymptotically (E , p)-stable if it is (E , p)-stable and there is δ >  such that
limt→∞ X(t) =  for any (ξ , f , θ ) satisfying ().

An extension of Theorem  is the following.

Theorem  Let (H) (resp. (H)) be satisfied and E a class of continuous functions such
that the solution of the equation

Y (t) = ξt +


Γ (β)

∫ t


(t – s)β–AY (s) ds +


Γ (α)

∫ t


(t – s)α–f (s) dθs, t ≥ , ()

is asymptotically (E , p)-stable (resp. globally E-stable in the large). Then any continuous
solution of () is also asymptotically (E , p)-stable (resp. globally E-stable in the large).

Proof Observe X() = ξ. Consequently the proof is similar to that of Theorem . �

Now we state a consequence of Theorem .

Theorem  Assume (H) (resp. (H)) holds. Let ξ be as in Proposition , f ∈ C((,∞))
such that ḟ θ ∈ L([,∞)) and f θ ∈ L([,∞)) ∩ Lp([,∞)) for some p > 

α– , and β +  > α.
Then any continuous solution to () is asymptotically (E , p)-stable (resp. globally E-stable
in the large).

Proof Suppose that (H) (resp. (H)) is satisfied. By Theorem  we only need to see that
the solution Y of equation () is asymptotically (E , p)-stable (resp. globally E-stable in the
large). Toward this end, we invoke () and [] (Lemma .) to establish

Y (t) = ξt + A
∫ t


(t – s)β–Eβ ,β

(
A(t – s)β

)
ξs ds

+
∫ t


(t – s)α–Eβ ,α

(
A(t – s)β

)
f (s) dθs

= I(t) + I(t) + I(t), t ≥ .

Thus, considering Proposition  and [] (the proof of Proposition .) we only need to
show that, given ε > , ‖I‖∞,[,∞) < ε if ‖ξ‖X + ‖f θ‖L([,∞)) + ‖f θ‖Lp([,∞)) + ‖ḟ θ‖L([,∞)) is
small enough. For this purpose, we observe that (.) in [] and [] (Lemma .) imply

I(t) =
∫ t


(t – s)α–Eβ ,α–

(
A(t – s)β

)
θsf (s) ds

–
∫ t


(t – s)α–Eβ ,α

(
A(t – s)β

)
θsḟ (s) ds

= I,(t) + I,(t), t ≥ . ()

For I, we have, from [] (Theorem .) and q– =  – p–,

∣
∣I,(t)

∣
∣ ≤

∫ ∧t


sα–∣∣Eβ ,α–

(
Asβ

)∣
∣
∣
∣θt–sf (t – s)

∣
∣ds

+
∫ t

∧t
sα–∣∣Eβ ,α–

(
Asβ

)∣∣
∣
∣θt–sf (t – s)

∣
∣ds
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≤ Cβ ,α–

(∫ 


sq(α–) ds

)/q(∫ ∧t



∣
∣θt–sf (t – s)

∣
∣p ds

)/p

+ Cβ ,α–

∫ t



∣
∣θt–sf (t – s)

∣
∣ds

≤ C(‖θ f ‖Lp([,∞)) + ‖θ f ‖L([,∞))), t ≥ . ()

Finally, using [] (Theorem .) again and the fact that β +  > α,

I,(t) ≤
∫ ∧t


sα–∣∣Eβ ,α

(
Asβ

)∣∣
∣
∣θt–sḟ (t – s)

∣
∣ds

+
∫ t

∧t
sα–∣∣Eβ ,α

(
Asβ

)∣
∣
∣
∣θt–sḟ (t – s)

∣
∣ds

≤ Cβ ,α

∫ t



∣
∣θt–sḟ (t – s)

∣
∣ds +

Cβ ,α

|A|
∫ t



∣
∣θt–sḟ (t – s)

∣
∣ds

≤ C
∫ ∞



∣
∣θsḟ (s)

∣
∣ds, t ≥ .

Hence () and () show that the proof is complete. �

Observe that, in the previous proof, the inequality

I,(t) ≤ C
∫ ∞



∣
∣θsḟ (s)

∣
∣ds, t ≥ ,

is still true for β +  ≥ α, which is used in the proof of Theorem  below.

4.1 Stochastic integral equations with additive noise
In the remaining of this paper we suppose that all the introduced random variables are
defined on a complete probability space (Ω ,F , P).

Remark  Note that, in equation (), we can consider a random variable A : Ω →
(–∞, ), stochastic processes ξ , θ , and f , and a random field h such that for almost all ω,
A(ω), ξ·(ω), θ·(ω), f (ω, ·) and h(ω, ·) satisfy the hypotheses of Theorem  (or Theorem ),
then we can analyze stability for equation () ω by ω (i.e., with probability one). An exam-
ple for the process θ is a fractional Brownian motion BH with Hurst parameter H ∈ (, ).
Fractional Brownian motion is a centered Gaussian process with covariance

RH (s, t) = E
(
BH

s BH
t
)

=


(
sH + tH – |t – s|H)

, s, t ≥ .

It is well known that BH has γ -Hölder continuous paths on compact sets, for any exponent
γ < H , due to the Kolmogorov continuity theorem (see Decreusefond and Üstünel []).

The last remark motivates the following.

Definition  A continuous solution X to equation () is said to be globally E-stable in
the mean if E|X(t)| →  as t → ∞ for any process ξ ∈ E .
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An immediate consequence of the proof of Theorem , we can state the following ex-
tension of Theorem .

Theorem  Let h satisfy (H), A < , E a family of continuous processes and f , θ as in
Remark  such that the solution to equation () is stable in the mean. Then any continuous
solution to equation () is also E-stable in the mean.

Remark In [] (Theorem .) we can find examples of families of processes for which
the solution of () is E-stable in the mean.

Another definition motivated by Remark  is the following.

Definition  Let E ⊂ X be a family of continuous functions. We say that a continuous
process ξ belongs to E in the mean (ξ ∈ Em for short) if E(|ξ |) ∈ E .

Now we consider the stochastic integral equation

X(t) = ξt +


Γ (β)

∫ t


(t – s)β–[AX(s) + h

(
X(s)

)]
ds

+


Γ (β + )

∫ t


(t – s)β f (s) dBγ

s , t ≥ . ()

Here, in order to finish the paper, A, h, β , γ , and f are as in equation () such that β +γ > ,
and ξ is a continuous stochastic process. We remark that we interpret equation () path
by path (i.e., ω by ω).

The following definition is also inspired by Remark .

Definition  Let E ⊂ X be a family of continuous functions. We say that a continuous
solution to equation () is (E , p)-stable in the mean if for a given ε >  there is δ >  such
that ‖E|X|‖∞,[,∞) < ε for any ξ ∈ Em such that

∥
∥E|ξ |∥∥X +

∥
∥f (·)·γ ∥

∥
L([,∞)) +

∥
∥f (·)·γ ∥

∥
Lp([t,∞)) +

∥
∥ḟ (·)·γ ∥

∥
L([,∞)) < δ.

Remark In this definition, if ξ =
∑n

i= ξ (i), with ξ (i) ∈ Em, then we set ‖ξ‖X =
∑n

i= ‖ξ (i)‖X .

Theorem  Let (H) be true, ξ as in Proposition , p > 
β

, and f ∈ C((,∞)) a positive
function with negative derivative such that (r 
→ rγ |ḟ (r)|) ∈ L([,∞)) and (r 
→ rγ f (r)) ∈
L([,∞)) ∩ Lp([,∞)). Moreover, let h be a non-decreasing and locally Lipschitz function,
which is concave on R+ and convex on R– ∪{}. Then the solution to equation () is (Ẽ , p)-
stable in the mean, where ξ ∈ Ẽ if and only if ξ = ξ () – ξ () with ξ , ξ  two non-negative,
non-decreasing, and continuous processes in Em.

Proof Let X be the continuous solution to equation (). Then () implies

X(t) = ξtEβ ,
(
Atβ

)
+ A

∫ t


(t – s)β–Eβ ,β

(
A(t – s)β

)
(ξs – ξt) ds

+
∫ t


(t – s)β–Eβ ,β

(
A(t – s)β

)
h
(
X(s)

)
ds
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+
∫ t


(t – s)βEβ ,β+

(
A(t – s)β

)
f (s) dBγ

s

≤ ξ
()
t Eβ ,

(
Atβ

)
+ A

∫ t


(t – s)β–Eβ ,β

(
A(t – s)β

)(
ξ ()

s – ξ
()
t

)
ds

+
∫ t


(t – s)β–Eβ ,β

(
A(t – s)β

)
h
(
X(s)

)
ds

+
∫ t


(t – s)β–Eβ ,β

(
A(t – s)β

)∣∣Bγ
s
∣
∣f (s) ds

–
∫ t


(t – s)βEβ ,β+

(
A(t – s)β

)
ḟ (s)

∣
∣Bγ

s
∣
∣ds, t ≥ ,

where the last inequality follows from the facts that  ≤ ξ (), ξ () are two non-decreasing
processes, f , (–ḟ ) ≥  and from [] (Lemma .). Therefore, we can state, by Lemma ,
that X ≤ X() where X() is the solution to

X()(t) = ξ
()
t Eβ ,

(
Atβ

)
+ A

∫ t


(t – s)β–Eβ ,β

(
A(t – s)β

)(
ξ ()

s – ξ
()
t

)
ds

+
∫ t


(t – s)β–Eβ ,β

(
A(t – s)β

)
h
(
X()(s)

)
ds

+
∫ t


(t – s)β–Eβ ,β

(
A(t – s)β

)∣
∣Bγ

s
∣
∣f (s) ds

–
∫ t


(t – s)βEβ ,β+

(
A(t – s)β

)
ḟ (s)

∣
∣Bγ

s
∣
∣ds, t ≥ . ()

Observe that we also have X()(t) ≥  due to h() = , Lemma , and

–X()(t) ≤
∫ t


(t – s)β–Eβ ,β

(
A(t – s)β

)
ĥ
(
–X()(s)

)
ds, t ≥ ,

with ĥ(x) = –h(–x), x ∈ R. Proceeding similarly we have –X(t) ≤ X()(t), with X()(t) > 
and

X()(t) = ξ
()
t Eβ ,

(
Atβ

)
+ A

∫ t


(t – s)β–Eβ ,β

(
A(t – s)β

)(
ξ ()

s – ξ
()
t

)
ds

+
∫ t


(t – s)β–Eβ ,β

(
A(t – s)β

)
ĥ
(
X()(s)

)
ds

+
∫ t


(t – s)β–Eβ ,β

(
A(t – s)β

)∣
∣Bγ

s
∣
∣f (s) ds

–
∫ t


(t – s)βEβ ,β+

(
A(t – s)β

)
ḟ (s)

∣
∣Bγ

s
∣
∣ds, t ≥ . ()

In other words, we have

E
(|X(t)|) ≤ E

(
X()(t)

)
+ E

(
X()(t)

)
, t ≥ . ()
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Finally, observe that (), (), the fact that A is a negative number and the Jensen in-
equality give, for θs = sγ ,

E
(
X()(t)

) ≤ E
(
ξ

()
t

)
Eβ ,

(
Atβ

)

+ A
∫ t


(t – s)β–Eβ ,β

(
A(t – s)β

)
E
(
ξ ()

s – ξ
()
t

)
ds

+
∫ t


(t – s)β–Eβ ,β

(
A(t – s)β

)
h
(
E
[
X()(s)

])
ds

+
∫ t


(t – s)βEβ ,β+

(
A(t – s)β

)
f (s) dθs, t ≥ 

and

E
(
X()(t)

) ≤ E
(
ξ

()
t

)
Eβ ,

(
Atβ

)

+ A
∫ t


(t – s)β–Eβ ,β

(
A(t – s)β

)
E
(
ξ ()

s – ξ
()
t

)
ds

+
∫ t


(t – s)β–Eβ ,β

(
A(t – s)β

)
ĥ
(
E
[
X()(s)

])
ds

+
∫ t


(t – s)βEβ ,β+

(
A(t – s)β

)
f (s) dθs, t ≥ .

Hence by (), Lemma , hypothesis (H), and the proofs of Proposition  and Theo-
rem  we see that the result holds. Indeed, for i = , ,

E
(
X(i)(t)

) ≤ u(i)(t), t ≥ ,

where u(i) is the unique solution to the equation

u(i)(t) = E
(
ξ

(i)
t

)
+


Γ (β)

∫ t


(t – s)β–[A + C]u(i)(s) ds

+


Γ (β + )

∫ t


(t – s)β f (s) dθs, t ≥ . �

Example  A function h that satisfies the conditions of Theorem  is

h(x) =

{
 – e–Cx if x ≥ ,
eCx –  if x < ,

where C > . Indeed, we have

h′(x) =

{
Ce–Cx if x ≥ ,
CeCx if x < .

Thus, given ε >  there is δ >  such that

∣
∣h(x)

∣
∣ ≤ (C + ε)|x|, for |x| ≤ δ.
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Example  Here we give a function that satisfies assumption  on Definition . Let ξt =
g(t) sin 

t , t ≥ . The function g is bounded and satisfies g(t) = ψ(t)ct–υ + ϕ(t) c
+t , where

ψ ,ϕ ∈ C∞(R+) are such that

ψ(t) =

{
 if t ∈ [, ],
 if t ≥ 

and ϕ(t) =

{
 if t ∈ [, ],
 if t ≥ .

Thus

ξ ′
t = g ′(t) sin


t

– g(t)t– cos

t

, t ≥ .

Now it is easy to verify our claim is true using straightforward calculations.

5 Conclusion
In this work we show that a useful tool to study several definitions of stability for some
fractional equations is comparison results for fractional systems (see Lemma ) and an
equation in terms of the Mittag-Leffler functions (see representation ()). Hence we can
apply the properties of the Mittag-Leffler function to consider fractional systems with a
function as initial condition and an additive noise, which is a Young integral that could be
a functional of fractional Brownian motion.
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