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Abstract
In this paper, the author considers the following nonlinear fractional boundary value
problem:

{
d
dt (

1
2 0D

–β
t (u′(t)) + 1

2 tD
–β
T (u′(t))) +∇F(t,u(t)) = 0, a.e. t ∈ [0, T ],

u(0) = u(T ) = 0,

where 0D
–β
t and tD

–β
T are the left and right Riemann-Liouville fractional integrals of

order 0 ≤ β < 1, respectively, ∇F(t, x) is the gradient of F at x. By applying the variant
fountain theorems, the author obtains the existence of infinitely many small or high
energy solutions to the above boundary value problem.

Keywords: fractional differential equations; variant fountain theorems; critical point
theory; variational method

1 Introduction
Fractional calculus has applications in many areas, including fluid flow, electrical net-
works, probability and statistics, chemical physics and signal processing and so on; see
[–] and the references therein. In recent years, there have been many papers dealing
with the existence of solutions of nonlinear initial (or boundary ) value problems of frac-
tional equations by applying nonlinear analysis such as fixed point theorems, lower and
upper solution method, monotone iterative method, coincidence degree theory. However,
up to now, there are few results on the solutions to fractional boundary value problems
that are established by the variational methods; see for example, [–]. It is often very dif-
ficult to establish a suitable space and variational functional for fractional boundary value
problem, especially for the fractional equations including both left and right fractional
derivatives.

Jiao and Zhou [] were first to show that the critical point theory is an effective approach
to track the existence of solutions to the following fractional boundary value problem (BVP
for short):

{
d
dt ( 

 D–β
t (u′(t)) + 

 tD–β

T (u′(t))) + ∇F(t, u(t)) = , a.e. t ∈ [, T],
u() = u(T) = ,

(.)
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where D–β
t and tD–β

T are the left and right Riemann-Liouville fractional integrals of order
 ≤ β < , respectively, ∇F(t, x) is the gradient of F at x.

As in [], for any u ∈ AC([, T],RN ), BVP (.) is equivalent to the following problem:

{
d
dt ( 

 Dα–
t (c

Dα
t u(t)) – 

 tDα–
T (c

t Dα
T u(t))) + ∇F(t, u(t)) = , a.e. t ∈ [, T],

u() = u(T) = ,
(.)

where α =  – β/ ∈ (/, ].
Physical models containing fractional differential operators have recently renewed at-

tention from scientists which is mainly due to applications as models for physical phenom-
ena exhibiting anomalous diffusion. A strong motivation for investigating the fractional
BVP (.) comes from the fractional advection-dispersion equation (ADE). A fractional
ADE is a generalization of the classical ADE in which the second-order derivative is re-
placed with a fractional-order derivative. In contrast to the classical ADE, the fractional
ADE has solutions that resemble the highly skewed and heavy-tailed breakthrough curves
observed in field and laboratory studies [, ], in particular in contaminant transport of
groundwater flow []. In [], Benson et al. stated that solutes moving through a highly
heterogeneous aquifer violate the basic assumptions of local second-order theories be-
cause of large deviations from the stochastic process of Brownian motion.

In [], Jiao and Zhou obtained the existence of solutions for BVP (.) by the mountain
pass theorem under the Ambrosetti-Rabinowitz condition. Following Jiao’s work [–]
studied the BVP (.) or its variant form. In [, ], Chen and Tang studied the existence
and multiplicity of solutions by use of the mountain pass theorem or the fountain theorem.
In [–], by use of some three critical points theorem or the mountain pass theorem, the
authors, respectively, studied the existence of multiple solutions to the following problem:

{
d
dt ( 

 D–β
t (u′(t)) + 

 tD–β

T (u′(t))) + λ∇F(t, u(t)) = , a.e. t ∈ [, T],
u() = u(T) = ,

(.)

where λ is a parameter. In [], by using the critical point theorem established by Bonanno,
Bai investigated the following problem:

{
d
dt ( 

 D–β
t (u′(t)) + 

 tD–β

T (u′(t))) + λa(t)f (u(t)) = , a.e. t ∈ [, T],
u() = u(T) = ,

(.)

where λ is a parameter and a : R → R is a nonnegative continuous function. In [], by
applying critical point theorems, Li, Sun and Zhang studied the existence of solutions to
the following problem:

{
– d

dt ( 
 D–β

t (u′(t)) + 
 tD–β

T (u′(t))) = λu(t) + ∇F(t, u(t)), a.e. t ∈ [, T],
u() = u(T) = ,

(.)

where λ lies various interval. In [], by the variational method combined with an iter-
ative technique, Sun and Zhang investigated the existence of solutions to the following
problems:

{
d
dt (pD–β

t (u′(t)) + qtD–β
 (u′(t))) + f (t, u(t)) = , t ∈ [, ],

u() = u() = .
(.)
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Very recently, in [], by using a three critical points theorem, Ferrara and Hadjian studied
the existence of three solutions for the following problem:

{
d
dt ( 

 D–β
t (u′(t)) + 

 tD–β

T (u′(t))) + λf (t, u(t)) + μg(t, u(t)) = , a.e. t ∈ [, T],
u() = u(T) = ,

(.)

where λ, μ are two parameters and f , g : [, T] ×R → R are two nonnegative continuous
functions.

Some fractional equations including both left and right fractional derivatives and having
some relations with BVP (.) were also investigated; see, for example, [–]. By the
critical point theory, Jiao and Zhou in [] established the existence of solutions for the
following fractional boundary value problem:

{
tDα

T (Dα
t u(t)) = ∇F(t, u(t)), a.e. t ∈ [, ],

u() = u(T) = .
(.)

On the other hand, the variant fountain theorems are effective tools for studying the
existence of infinitely many high or small energy solutions [, ].

Different from the work mentioned above, in this paper, the author attempts to apply
the variant fountain theorems to study the existence of infinitely many small or high en-
ergy solutions to BVP (.). As pointed out in [, ], the variant fountain theorems do
not need the (P.S.) or (P.S.∗) conditions, which is an important condition usually assumed
in the literature. By taking advantage of the variant fountain theorems, to consider the
infinitely many solutions to BVP (.) in this paper, the Ambrosetti-Rabinowitz condition
is not needed. This is one of the new features of the paper compared with some papers
above such as []. In [], because of applying fountain theorems, the (P.S.) condition, or
say, the Ambrosetti-Rabinowitz condition (which ensures that the P.S. condition holds) is
necessary. In addition, the assumed conditions in this paper are easy to verify.

The paper is arranged as follows. In Section , the author presents some necessary pre-
liminary facts that will be needed in the paper. In Section , the author establishes the
existence of infinitely many small or high energy solutions for BVP (.) and gives two
examples to show the effectiveness of the results obtained.

2 Preliminaries
To apply the variant fountain theorems to the existence of infinitely many solutions for
BVP (.), we shall state some basic notations and results, which will be used in the proofs
of our main results.

Throughout this paper, we denote α =  – β

 , and we assume that the following condition
is satisfied.

(H) F(t, x) is measurable in t for every x ∈ R
N and continuously differentiable in x for

a.e. t ∈ [, T], and there exists a ∈ C(R+,R+), b ∈ L([, T],R+) such that

∣∣F(t, x)
∣∣ ≤ a

(|x|)b(t),
∣∣∇F(t, x)

∣∣ ≤ a
(|x|)b(t) (.)

for all x ∈R
N and a.e. t ∈ [, T].
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Definition . ([]) Let f be a function defined on [a, b]. The left and right Riemann-
Liouville fractional integrals of order γ for function f denoted by aD–γ

t f (t) and tD–γ

b f (t),
respectively, are defined by

aD–γ
t f (t) =


�(γ )

∫ t

a
(t – s)γ –f (s) ds, t ∈ [a, b],γ > 

and

tD–γ

b f (t) =


�(γ )

∫ b

t
(s – t)γ –f (s) ds, t ∈ [a, b],γ > ,

provided in both cases that the right-hand side is pointwise defined on [a, b], where � is
the gamma function.

Definition . ([]) Let f be a function defined on [a, b]. The left and right Riemann-
Liouville fractional derivatives of order γ for function f denoted by aDγ

t f (t) and tDγ

b f (t),
respectively, exist almost everywhere on [a, b]. aDγ

t f (t) and tDγ

b f (t) are represented by

aDγ
t f (t) =


�(n – γ )

dn

dtn

∫ t

a
(t – s)n–γ –f (s) ds, t ∈ [a, b]

and

tDγ

b f (t) =
(–)n

�(n – γ )
dn

dtn

∫ b

t
(s – t)n–γ –f (s) ds, t ∈ [a, b],

where n –  ≤ γ < n and n ∈N. In particular, if  ≤ γ < , then

aDγ
t f (t) =


�( – γ )

d
dt

∫ t

a
(t – s)–γ f (s) ds, t ∈ [a, b]

and

tDγ

b f (t) = –


�( – γ )
d
dt

∫ b

t
(s – t)–γ f (s) ds, t ∈ [a, b].

Definition . ([]) If γ ∈ (n – , n) and f ∈ ACn([a, b],RN), then the left and right Caputo
fractional derivatives of order γ for function f denoted by c

aDγ
t f (t) and c

t Dγ

b f (t), respec-
tively, exist almost everywhere on [a, b]. c

aDγ
t f (t) and c

t Dγ

b f (t) are represented by

c
aDγ

t f (t) = aDγ –n
t f (n)(t) =


�(n – γ )

∫ t

a
(t – s)n–γ –f (n)(s) ds

and

c
t Dγ

b f (t) = (–)n
tDγ –n

b f (n)(t) =
(–)n

�(n – γ )

∫ b

t
(s – t)n–γ –f (n)(s) ds,

respectively, where t ∈ [a, b]. In particular, if  < γ < , then

c
aDγ

t f (t) = aDγ –
t f ′(t) =


�( – γ )

∫ t

a
(t – s)–γ f ′(s) ds, t ∈ [a, b]
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and

c
t Dγ

b f (t) = –tDγ –
b f ′(t) = –


�( – γ )

∫ b

t
(s – t)–γ f ′(s) ds, t ∈ [a, b].

Let us recall that for any u ∈ Lp[, T],  ≤ p < ∞, ‖u‖p = (
∫ T

 |u(t)|p dt)/p, and u ∈
C[, T], ‖u‖∞ = maxt∈[,T] |u(t)|.

Definition . Let  < α ≤  and  < p < ∞. The fractional derivative space Eα,p
 is defined

by the closure of C∞
 ([, T],RN ) with respect to the weighted norm

‖u‖α,p =
(∫ T



∣∣u(t)
∣∣p dt +

∫ T



∣∣c
Dα

t u(t)
∣∣p dt

)/p

, ∀u ∈ Eα,p
 .

As in [], we note the following.

Remark .
() The fractional derivative space Eα,p

 is the space of functions u ∈ Lp([, T],RN )
having an αth order Caputo fractional derivative c

Dα
t u ∈ Lp([, T],RN ) and

u() = u(T) = .
() For any u ∈ Eα,p

 , noting the fact that u() = , we have c
Dα

t u(t) = Dα
t u(t), t ∈ [, T].

Lemma . ([]) Let  < α ≤  and  < p < ∞. The fractional derivative space Eα,p
 is a

reflexive and separable Banach space.

Lemma . ([]) Let  < α ≤  and  < p < ∞. For any u ∈ Eα,p
 , we have

‖u‖p ≤ Tα

�(α + )
∥∥c

Dα
t u

∥∥
p.

Moreover, if α > /p and /p + /q = , then

‖u‖∞ ≤ Tα–/p

�(α)((α – )q + )/q

∥∥c
Dα

t u
∥∥

p.

According to Lemma ., we consider Eα,p
 with respect to the norm

‖u‖α,p =
∥∥c

Dα
t u

∥∥
p =

(∫ T



∣∣c
Dα

t u(t)
∣∣p dt

)/p

in this paper.

Lemma . ([]) Let  < α ≤  and  < p < ∞. If α > 
p and the sequence {uk} converges

weakly to u in Eα,p
 , i.e. uk ⇀ u, then uk → u in C([, T]), i.e. ‖u – uk‖∞ →  as k → ∞.

In the following, we always consider the space Eα,p
 with p =  and denote Eα = Eα,

 with
the corresponding norm ‖u‖ = ‖u‖α,. Moreover, we always assume that 

 < α ≤ .
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Remark . By Lemma ., it is easy to see that the space Eα is a separable Hilbert space
with the inner product

〈u, v〉 =
∫ T



(c
Dα

t u(t), c
Dα

t v(t)
)

dt, u, v ∈ Eα .

Lemma . ([]) If / < α ≤ , then for any u ∈ Eα , we have

∣∣cos(πα)
∣∣‖u‖ ≤ –

∫ T



(c
Dα

t u(t), c
t Dα

T u(t)
)

dt ≤ 
| cos(πα)| ‖u‖.

Let us denote Dαu(t) = 
 Dα–

t (c
Dα

t u(t)) – 
 tDα–

T (c
t Dα

T u(t)).

Definition . A function u ∈ AC([, T],RN ) is called a solution of BVP (.) if
() Dαu(t) is derivable for almost every t ∈ [, T], and
() u satisfies (.).

Remark . As before, for α =  – β/ with / < α ≤ , if u ∈ AC([, T],RN ) is a solution
of BVP (.) iff u is a solution of BVP (.).

To study the existence of infinitely many solutions of BVP (.), we need to introduce
the following variant fountain theorems. Let X be a Banach space with the space norm
‖ · ‖, and X =

⊕
j∈N Xj with dim Xj < ∞ for any j ∈ N. Set Wk =

⊕k
j= Xj, Zk =

⊕∞
j=k Xj, and

Bk = {u ∈ Wk : ‖u‖ ≤ ρk}, Sk = {u ∈ Zk : ‖u‖ = rk}. For ρk > rk > , consider a family of C-
functionals 
λ : X →R defined by


λ(u) = A(u) – λB(u), λ ∈ [, ].

The following two variant fountain theorems were established in [, ].

Lemma . Assume that 
λ satisfies:

(A) 
λ maps bounded sets into bounded sets uniformly for λ ∈ [, ], and 
λ(–u) = 
λ(u)
for all (λ, u) ∈ [, ] × X ;

(A) B(u) ≥  for all u ∈ X , and B(u) → ∞ as ‖u‖ → ∞ on any finite-dimensional subspace
of X ;

(A) there exists ρk > rk >  such that

ak(λ) = inf
u∈Zk ,‖u‖=ρk


λ(u) ≥ ,

bk(λ) = max
u∈Wk ,‖u‖=rk


λ(u) < , ∀λ ∈ [, ],

dk(λ) = inf
u∈Zk ,‖u‖≤ρk


λ(u) →  as k → ∞ uniformly λ ∈ [, ].

Then there exist λn → , un(λn) ∈ Wn such that


′
λn

(
u(λn)

)|Wn =  and 
λn

(
u(λn)

) → ck as n → ∞,
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where ck ∈ [dk(), bk()]. In particular, if {u(λn)} has a convergent subsequence for every k,
then 
 has infinitely many nontrivial critical points {uk} ∈ X \ {} satisfying 
(uk) → –

as n → ∞.

Lemma . Assume that the functional 
λ defined above satisfies:

(B) 
λ maps bounded sets into bounded sets uniformly for λ ∈ [, ], and 
λ(–u) = 
λ(u)
for all (λ, u) ∈ [, ] × X ;

(B) B(u) ≥  for all u ∈ X , A(u) → ∞ or B(u) → ∞ as ‖u‖ → ∞; or
(B) B(u) ≤  for all u ∈ X , B(u) → –∞ as ‖u‖ → ∞;
(B) there exists ρk > rk >  such that

bk(λ) = inf
u∈Zk ,‖u‖=rk


λ(u) > ak(λ) = max
u∈Wk ,‖u‖=ρk


λ(u), ∀λ ∈ [, ].

Then

bk(λ) ≤ ck(λ) = inf
γ∈�k

max
u∈Bk


λ

(
γ (u)

)
, ∀λ ∈ [, ],

where �k = {γ ∈ C(Bk , X) : γ is odd,γ |∂Bk = id} (k ≥ ). Moreover, for almost every λ ∈
[, ], there exists a sequence {uk

n(λ)} such that

sup
n

∥∥uk
n(λ)

∥∥ < ∞, 
′
λ

(
uk

n(λ)
) →  and 
λ

(
uk

n(λ)
) → ck(λ) as n → ∞.

Remark . Carefully analyzing the proof of Lemma . and Lemma . in [, ], we
can find that the condition (A) in Lemma . and the condition (B) may be slightly weak
compared to the condition (A)′ and condition (B)′, respectively, as follows:

(A)′ There exist a k >  and ρk > rk >  such that for k ≥ k the following relations hold:

ak(λ) = inf
u∈Zk ,‖u‖=ρk


λ(u) ≥ ,

bk(λ) = max
u∈Wk ,‖u‖=rk


λ(u) < , ∀λ ∈ [, ],

dk(λ) = inf
u∈Zk ,‖u‖≤ρk


λ(u) →  as k → ∞ uniformly λ ∈ [, ].

(B)′ There exist a k >  and ρk > rk >  such that for k ≥ k, the following relation holds:

bk(λ) = inf
u∈Zk ,‖u‖=rk


λ(u) > ak(λ) = max
u∈Wk ,‖u‖=ρk


λ(u), ∀λ ∈ [, ].

Then the conclusions in Lemma . and Lemma . still hold for k ≥ k.

3 Main results
We define a family of functionals 
λ : Eα →R as follows:


λ(u) = Au – λBu, λ ∈ [, ], (.)
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where

Au = –



∫ T



(c
Dα

t u(t), c
t Dα

T u(t)
)

dt, Bu =
∫ T


F
(
t, u(t)

)
dt. (.)

In view of [], we know that under the condition (H), 
λ is continuously differential and

〈

′

λ(u), v
〉

= –



∫ T



[(c
Dα

t u(t), c
t Dα

T v(t)
)

+
(c

t Dα
T u(t), c

Dα
t v(t)

)]
dt

– λ

∫ T



(∇F
(
t, u(t)

)
, v(t)

)
dt (.)

for any u, v ∈ Eα .

Definition . A function u ∈ Eα is called a weak solution of BVP (.) if




∫ T



[(c
Dα

t u(t), c
t Dα

T v(t)
)

+
(c

t Dα
T u(t), c

Dα
t v(t)

)]
dt

+
∫ T



(∇F
(
t, u(t)

)
, v(t)

)
dt =  (.)

for any v ∈ Eα .

By Theorem . in [], we have the following lemma.

Lemma . If u ∈ Eα is a weak solution of BVP (.), then u is a solution of BVP (.).

Hence, by Remark ., and (.)-(.), we may concentrate our attention on finding crit-
ical points of the functional 
 in Eα to obtain some solutions of BVP (.).

Since Eα is a separable Hilbert space in terms of Remark ., we can choose a completely
orthonormal basis {ei}∞ of Eα and define Xj = Rej. Then Wk , Zk can be defined as before.

We give a list of assumptions which will be used in the sequel.

(H) F(t, x) ≥ , F(t, –x) = F(t, x), for all x ∈R
N and a.e. t ∈ [, T].

(H) There exist constants σ , d >  such that

lim|x|→∞
F(t, x)
|x|σ > d for a.e. t ∈ [, T].

(H) There exist constants  < τ ,η < , and δ > , function l ∈ Lp[, T] (p = /( – η)) with
l(t) ≥  for a.e. t ∈ [, T], and function c satisfying that c(t) >  a.e. t ∈ [, ],  <∫ T

 c–r(t) dt < ∞ for some r >  such that

c(t)|x|τ ≤ F(t, x) ≤ l(t)|x|η (.)

for all x ∈R
N with |x| ≤ δ and a.e. t ∈ [, T].

(H) There exist constants γ , μ with γ ∈ (, ), μ < / and a function d ∈ L/(–γ ) such
that

F(t, x) – μ
(∇F(t, x), x

) ≤ d(t)|x|γ for all x ∈R
N and a.e. t ∈ [, T].
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We give several lemmas below which will be used in the proof of our main results.

Lemma . Let E be any finite-dimensional subspace of Eα . Then there exists a constant
ε >  such that

meas
{

t ∈ [, T]|∣∣u(t)
∣∣ ≥ ε‖u‖} ≥ ε

for all u ∈ E \ {}.

Proof On the contrary, suppose that there exists a sequence {un} ⊂ E \ {} such that

meas

{
t ∈ [, T]

∣∣∣∣∣un(t)
∣∣ ≥ 

n
‖u‖

}
<


n

, ∀n ∈N.

Let vn = un
‖un‖ , n ∈N. Then ‖vn‖ =  and

meas

{
t ∈ [, T]

∣∣∣∣∣vn(t)
∣∣ ≥ 

n

}
<


n

, ∀n ∈ N. (.)

By the boundedness of {vn}, passing to a subsequence, if necessary, we may assume that
vn → v with ‖v‖ =  in E for some v ∈ E. From the equivalence of any norm in finite-
dimensional space, it follows that

∫ T



∣∣vn(t) – v(t)
∣∣ dt →  as n → ∞. (.)

Since v �= , there exists a constant δ >  such that

meas
{

t ∈ [, T]|∣∣v(t)
∣∣ ≥ δ

} ≥ δ. (.)

Let �n = {t ∈ [, T] : |vn(t)| < 
n }, �c

n = {t ∈ [, T] : |vn(t)| ≥ 
n }, and � = {t ∈ [, T]||v(t)| ≥

δ}. Then for n large enough, from (.), (.), it follows that

meas(�n ∩ �) ≥ meas(�) – meas
(
�c

n
) ≥ 


δ,

and therefore

∫ T



∣∣vn(t) – v(t)
∣∣ dt ≥

∫
�n∩�

∣∣vn(t) – v(t)
∣∣ dt

≥
∫

�n∩�

(∣∣v(t)
∣∣ – 

∣∣vn(t)
∣∣∣∣v(t)

∣∣)dt

≥ δ

(
δ –


n

)
meas(�n ∩ �) ≥ 


δ

 > 

for n large enough. This is in contradiction with (.), and the proof is complete. �

By an argument similar to the proof of Lemma  in [], we can obtain the following
lemma.
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Lemma . Assume that the function G(t, x) satisfies the following requirements: (i) G(t, x)
is measurable in t ∈ E for every x ∈ R

N and continuous in x for a.e. t ∈ E, where
 < meas E < ∞. (ii) There exists a constant d >  such that lim|x|→∞ G(t, x) > d, for a.e.
t ∈ E. Then, for every  < d < d, and δ > , there exists a subset Eδ ⊂ E with meas(E \Eδ) < δ

such that lim|x|→∞ G(t, x) > d uniformly for all t ∈ Eδ .

Proof First, we show that the following conclusion is true.

Conclusion Assume that the function sequence {gn} satisfies the following: (i) gn(t) is
measurable in t ∈ E. (ii) There exists constant d >  such that limn→∞ gn(t) > d, for a.e.
t ∈ E. Then, for every δ > , there exists a subset Eδ ⊂ E with meas(E \ Eδ) < δ such that
limn→∞ gn(t) > d uniformly for all t ∈ Eδ .

In fact, without loss of generality, we may assume that limn→∞ gn(t) > d for all t ∈ E.
Define En =

⋂∞
k=n {t ∈ E|gk(t) > d}. Then En is measurable and En ⊂ Em if n < m. Thus, E =⋃∞

n= En and meas E = limn→∞ meas En, which implies that limn→∞ meas(E\En) = . Hence,
for every δ > , there exists n such that meas(E \ En ) < δ. Let Eδ = En , then meas(E \
Eδ) < δ, and there exists n such that gn(t) > d for all t ∈ Eδ as n ≥ n, i.e. limn→∞ gn(t) > d
uniformly for t ∈ Eδ .

Now, let gn(t) = inf|x|≥n G(t, x). Then by the continuity of G(t, x) in x for a.e. t ∈ E, we
know that gn(t) is measurable for all n. Also, limn→∞ gn(t) ≥ d for a.e. t ∈ E. Thus, for
every  < d < d, and δ > , by the above conclusion, there exists a subset Eδ ⊂ E such that
limn→∞ gn(t) > d uniformly for t ∈ Eδ , and so, lim|x|→∞ G(t, x) > d uniformly for t ∈ Eδ .

�

Lemma . Assume that (H), (H), and (H) hold. Then B(u) ≥  for all u ∈ Eα and
B(u) → ∞ as ‖u‖ → ∞ on any finite-dimensional subspace of Eα .

Proof It is obvious that B(u) ≥  for all u ∈ Eσ by (H) and (.).
Let E be any finite-dimensional subspace of Eα . We claim that B(u) → ∞ as ‖u‖ →

∞ on E. In fact, for any u ∈ E, set Du = {t ∈ [, T]||u(t)| ≥ ε‖u‖}, where ε is given in
Lemma .. Then meas Du ≥ ε by Lemma .. In terms of Lemma . combined with
condition (H), we know that for δ = ε/, and  < d < d, there exist R >  and a subset
Eδ ⊂ [, T] with meas([, T] \ Eδ) < δ such that

F(t, x) > d|x|σ as |x| ≥ R for all t ∈ Eδ . (.)

Now, for any u ∈ E, denote Eu = Du ∩ Eδ , from

T – meas Eu = meas
(
[, T] \ Eu

)
= meas

((
[, T] \ Du

) ∪ (
[, T] \ Eδ

))
≤ T – meas Du + meas

(
[, T] \ Eδ

)
< T – ε/,

we get meas Eu > ε/. Thus, for any u ∈ E with ‖u‖ ≥ R
ε

, by (.) we have

F
(
t, u(t)

)
> d

∣∣u(t)
∣∣σ ≥ dε

σ
 ‖u‖σ for all t ∈ Eu,
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and therefore

B(u) =
∫ T


F
(
t, u(t)

)
dt ≥

∫
Eu

F
(
t, u(t)

)
dt ≥ 


dε

σ+
 ‖u‖σ .

This shows that B(u) → ∞ as ‖u‖ → ∞ on E. The proof is complete. �

Lemma . Assume (H), (H), and (H) hold. Then there exist a k >  and two sequences
 < rk < ρk →  as k → ∞ such that for k ≥ k, the following relations hold:

ak(λ) = inf
u∈Zk ,‖u‖=ρk


λ(u) > , bk(λ) = max
u∈Wk ,‖u‖=rk


λ(u) < , ∀λ ∈ [, ];

dk(λ) = inf
u∈Zk ,‖u‖≤ρk


λ(u) →  as k → ∞ uniformly for λ ∈ [, ].

Proof Let αk = supu∈Zk ,‖u‖= ‖u‖, we claim that αk →  as k → ∞. Indeed, if not, then
there exist a constant ε and a sequence {uj} ⊂ Eα with uj ⊥ Wkj– such that ‖uj‖ =  and
‖uj‖ ≥ ε, where kj ≥ , kj → ∞ asj → ∞.

For any v ∈ Eα , we may choose wj ∈ Wkj– such that wj → v on Eα noting that Eα =⊕∞
j= Xj. From

∣∣〈uj, v〉∣∣ =
∣∣〈uj, wj – v〉∣∣ ≤ ‖uj‖‖wj – v‖ = ‖wj – v‖ →  as j → ∞,

we know that uj ⇀  in Eα , and therefore uj →  in C[, T] in view of Lemma .. Con-
sequently, ‖uj‖ →  as j → ∞. This contradicts the fact that ‖uj‖ ≥ ε.

Now, take δ = �(α)(α–)/

Tα–/ δ, where δ is described in (H). Then for any u ∈ Eα with ‖u‖ ≤
δ, it follows from Lemma . that |u(t)| ≤ δ, for any t ∈ [, T]. Hence, according to (H),
we get

c(t)
∣∣u(t)

∣∣τ ≤ F
(
t, u(t)

) ≤ l(t)
∣∣u(t)

∣∣η, a.e. t ∈ [, T]

for any u ∈ Eα with ‖u‖ ≤ δ, and therefore

∫ T


c(t)

∣∣u(t)
∣∣τ dt ≤

∫ T


F
(
t, u(t)

)
dt ≤ ∥∥l(t)

∥∥
p

∥∥u(t)
∥∥η

 (.)

by the Hölder inequality. Thus, by Lemma . together with (.)-(.), we obtain


λ(u) ≥ 

∣∣cos(απ )

∣∣‖u‖ – ‖l‖p‖u‖η
 (.)

for any u ∈ Eα with ‖u‖ ≤ δ and all λ ∈ [, ]. In view of the definition of αk , we know that
‖u‖ ≤ αk‖u‖ for any u ∈ Zk . Then (.) implies that


λ(u) ≥ 

∣∣cos(απ )

∣∣‖u‖ – ‖l‖pα
η

k ‖u‖η (.)

for any u ∈ Zk with ‖u‖ ≤ δ. Set c = 
 | cos(απ )|, c = ‖l‖p. Then (.) is reduced to the

form


λ(u) ≥ c‖u‖ – cα
η

k ‖u‖η (.)
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for any u ∈ Zk with ‖u‖ ≤ δ. Let θk = c
c

α
η

k . Obviously, θk →  as k → ∞ since αk →  as

k → ∞. Let ρk = θ


–η

k , then ρk →  as k → ∞, and therefore, there exists a k >  such that
ρk ≤ δ as k ≥ k. Hence, for any k ≥ k and u ∈ Zk with ‖u‖ = ρk , from (.), it follows
that


λ(u) ≥ cρ

k – cα

η

k ρ
η

k =
c


ρ

k > . (.)

So,

ak(λ) = inf
u∈Zk ,‖u‖=ρk


λ(u) ≥ c


ρ

k > .

In addition, for any k ≥ k, all λ ∈ [, ] and u ∈ Zk with ‖u‖ ≤ ρk , noting that


λ(u) ≥ –cα
η

k ‖u‖η ≥ –cα
η

k ρ
η

k →  as k → ∞,

we have

dk(λ) = inf
u∈Zk ,‖u‖≤ρk


λ(u) ≥ –cα
η

k ρ
η

k →  as k → ∞.

This means that

lim
k→∞

inf dk(λ) ≥ . (.)

Again, according to the fact that F ≥  on [, T] ×R
N , by applying Lemma ., we obtain


λ(u) ≤ –



∫ T



(c
Dα

t u(t), c
t Dα

T u(t)
)

dt

≤ 
| cos(απ )| ‖u‖ ≤ 

| cos(απ )|ρ

k (.)

for any u ∈ Zk with ‖u‖ ≤ ρk , and all λ ∈ [, ]. Combining (.) with (.), we get
dk(λ) →  as k → ∞ uniformly for all λ ∈ [, ].

On the other hand, once again using (.), and applying the reverse Hölder inequality,
for any u ∈ Eα with ‖u‖ ≤ δ, we have

∫ T


F
(
t, u(t)

)
dt ≥

∫ T


c(t)

∣∣u(t)
∣∣τ dτ

≥
(∫ T


c(t)–r dt

)–/r(∫ T



∣∣u(t)
∣∣sτ dt

)/s

= c‖u‖τ
sτ , (.)

where c = (
∫ T

 c(t)–r dt)–/r , s = r
+r . In terms of the equivalence of any norm on finite-

dimensional space, we know that for any fixed k ∈ N, there exists a constant bk >  such
that ‖u‖sτ ≥ bk‖u‖ for any u ∈ Wk . Thus, by Lemma ., (.)-(.) and (.), we get


λ(u) ≤ 
| cos(απ )| ‖u‖ – cbτ

k‖u‖τ (.)
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for any u ∈ Wk , and all λ ∈ [, ]. Since  < τ < , we may choose  < rk < min{δ,ρk} small
enough so that


| cos(απ )| r

k – cbτ
k rτ

k < ,

and therefore (.) implies

bk(λ) = max
u∈Wk ,‖u‖=rk


λ(u) < 

for all λ ∈ [, ]. The proof is complete. �

Now, we are in a position to state our first result in the present paper.

Theorem . Assume that (H), (H)-(H) hold. Then BVP (.) has infinitely many small
energy solutions uk ∈ Eα \ {} satisfying

–



∫ T



(c
Dα

t u(t), c
t Dα

T u(t)
)

dt –
∫ T


F
(
t, u(t)

)
dt → – as k → ∞.

Proof By Lemma . and Lemma . combined with assumption (H), it is easy to see that

λ maps bounded sets into bounded sets in Eα uniformly for λ ∈ [, ]. Also, evidently,

λ(u) = 
λ(–u) for all λ ∈ [, ] and u ∈ Eα observing that condition (H) holds. Now, in
terms of Lemma . together with Lemmas .-. and Remark ., we conclude that, for
every fixed k ≥ k, there exists {λk

n} with λk
n →  as n → ∞, and u(λk

n) ∈ Wn such that


′
λk

n

(
u
(
λk

n
))|Wn = , 
λn

(
u
(
λk

n
)) → ck ∈ [

dk(), bk()
]

as n → ∞.

We claim that the {u(λk
n)} is bounded in Eα . For simplicity, we still denote λk

n as λn in the
following.

In fact, by Lemma . and Lemma . together with (H), we have

(



– μ

)∣∣cos(απ )
∣∣∥∥u(λn)

∥∥

≤ –
(




– μ

)∫ T



(c
Dα

t u(λn)(t), c
t Dα

T u(λn)(t)
)

dt

= 
λn

(
u(λn)

)
– μ

〈

′

λn

(
u(λn)

)
, u(λn)

〉

+ λn

∫ T



[
F
(
t, u(λn)(t)

)
– μ

(∇F
(
t, u(λn)(t)

)
, u(λn)(t)

)]
dt

≤ ck + o() + 
∫ T



∣∣d(t)
∣∣∣∣u(λn)(t)

∣∣γ dt

≤ ck + o() + ‖d‖/(–γ )
∥∥u(λn)

∥∥γ



≤ ck + o() +
‖d‖/(–γ )Tαγ

(�(α + ))γ
∥∥u(λn)

∥∥γ , (.)

noting that 
λn (u(λn)) → ck as n → ∞ and 
′
λn (u(λn))|Wn = . Thus, it follows from (.)

that the sequence {u(λn)} is bounded.
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Now, we show that {u(λn)} has a convergent subsequence for every fixed k ≥ k.
In fact, owing to the fact that the sequence {u(λn)} is bounded, and Eα is reflexive, we

know that there exists u ∈ Eα such that, up to a subsequence, u(λn) ⇀ u in Eα . Keep-
ing in mind that {ej} is the completely orthonormal basis of Eα , Wn = L(e, e, . . . , en),
u =

∑∞
j= 〈ej, u〉ej, and letting Pn : Eα → Wn be the orthogonal projection operator, we know

that Pnu =
∑n

j= 〈ej, u〉ej and Pnu → u in Eα as n → ∞. Therefore, u(λn) – Pnu ⇀  in Eα

as n → ∞. Thus u(λn) – Pnu →  in C[, T] as n → ∞. Also, by u(λn) – Pnu ⇀ , there
exists a constant M >  such that ‖u(λn) – Pnu‖ ≤ M for all n ∈ N. Moreover, from the
fact that 
′

(u) ∈ (Eα)∗, it follows that

〈

′

(u), u(λn) – Pnu
〉 →  as n → ∞. (.)

Also, since 
′
 ∈ C(Eα → (Eα)∗), we have

∣∣〈
′
(Pnu) – 
′

(u), u(λn) – Pnu
〉∣∣ ≤ ∣∣
′

(Pnu) – 
′
(u)

∣∣∥∥u(λn) – Pnu
∥∥

≤ M
∣∣
′

(Pnu) – 
′
(u)

∣∣ →  as n → ∞, (.)

observing that Pnu → u in Eα . Therefore, by (.), (.), we have

∣∣〈
′
(Pnu), u(λn) – Pnu

〉∣∣ ≤ ∣∣〈
′
(Pnu) – 
′

(u), u(λn) – Pnu
〉∣∣

+
∣∣〈
′

(u), u(λn) – Pnu
〉∣∣ →  (.)

as n → ∞.
Now, by (.) and applying Lemma ., we have

∣∣cos(απ )
∣∣∥∥Pn

(
u(λn) – u

)∥∥

≤ –
∫ T



(c
Dα

t Pn
(
u(λn) – u

)
(t), c

t Dα
T Pn

(
u(λn) – u

)
(t)

)
dt

=
〈

′

λn

(
Pnu(λn)

)
, Pn

(
u(λn) – u

)〉
–

〈

′

(Pnu), Pn
(
u(λn) – u

)〉

+ λn

∫ T



(∇F
(
t, Pnu(λn)

)
, Pn

(
u(λn) – u

))
dt –

∫ T



(∇F(t, Pnu), Pn
(
u(λn) – u

))
dt

= –
〈

′

(Pnu), u(λn) – Pnu
〉
+ λn

∫ T



(∇F
(
t, u(λn)(t)

)
, u(λn)(t) – (Pnu)(t)

)
dt

–
∫ T



(∇F
(
t, (Pnu)(t)

)
, u(λn)(t) – (Pnu)(t)

)
dt

≤ ∣∣〈
′
(Pnu), u(λn) – Pnu

〉∣∣ + 
∫ T



∣∣∇F
(
t, u(λn)(t)

)∣∣∣∣u(λn)(t) – (Pnu)(t)
∣∣dt

+
∫ T



∣∣∇F
(
t, (Pnu)(t)

)∣∣∣∣u(λn)(t) – (Pnu)(t)
∣∣dt := Qn (.)

noting that Pnu(λn) = u(λn) since u(λn) ∈ Wn and 〈
′
λn (u(λn)), Pn(u(λn) – u)〉 =  since


′
λn (u(λn))|Wn = . Also, according to u(λn) ⇀ u, Pnu → u in Eα as n → ∞, there ex-

ists M >  such that ‖u(λn)‖ ≤ M, ‖Pnu‖ ≤ M for all n ∈ N. Therefore, it follows from
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Lemma . that |u(λn)|∞ ≤ M, |Pnu|∞ ≤ M for all n ∈N for some M > . Then, by (H),
we immediately obtain

∣∣∇F
(
t, u(λn)(t)

)∣∣ ≤ max
|x|≤M

a
(|x|)b(t),

∣∣∇F
(
t, (Pnu)(t)

)∣∣ ≤ max
|x|≤M

a
(|x|)b(t)

for all n ∈N. Thus,

∫ T



∣∣∇F
(
t, u(λn)(t)

)∣∣∣∣u(λn)(t) – (Pnu)(t)
∣∣dt

≤ max
|x|≤M

a
(|x|)∣∣u(λn) – Pnu

∣∣∞
∫ T


b(t) dt → 

as n → ∞, and

∫ T



∣∣∇F
(
t, (Pnu)(t)

)∣∣∣∣u(λn)(t) – (Pnu)(t)
∣∣dt

≤ max
|x|≤M

a
(|x|)∣∣u(λn) – Pnu

∣∣∞
∫ T


b(t) dt → 

as n → ∞, since u(λn) – Pnu →  in C[, T] as before. Thus, by (.) we know that Qn →
 as n → ∞ according to (.). Also, by (.), we have

∥∥u(λn) – Pnu
∥∥ =

∥∥Pn
(
u(λn) – u

)∥∥ ≤
( ‖Qn‖

| cos(απ )|
)/

(.)

for all n ∈ N. On the other hand, since Pnu – u →  in Eα as n → ∞, for arbitrary ε > ,
there exists a N >  such that ‖Pnu – u‖ < ε as n > N . Thus

∥∥u(λn) – Pnu
∥∥ ≥ ∥∥u(λn) – u

∥∥ – ‖u – Pnu‖ ≥ ∥∥u(λn) – u
∥∥ – ε (.)

as n ≥ N . Consequently, by (.) and (.), we have

∥∥u(λn) – u
∥∥ ≤

( ‖Qn‖
| cos(απ )|

)/

+ ε

as n ≥ N , and therefore,

lim
n→∞

∥∥u(λn) – u
∥∥ ≤ lim

n→∞

( ‖Qn‖
| cos(απ )|

)/

+ ε = ε,

which means that limn→∞ ‖u(λn) – u‖ =  because of the arbitrariness of ε; namely,
u(λn) → u in Eα . Hence, by Lemma . and Remark ., we know that Theorem . is
true. This completes the proof. �

Now, we establish another result in this paper. To this end, we first give some assump-
tions.

(H)′ There exist constants c > , p > , and  < q ≤ p such that

F(t, x) ≤ c
(|x|p + |x|q) for all x ∈R

N and a.e. t ∈ [, T].
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(H)′ lim|x|→ sup F(t,x)
|x| < (�(α+))

Tα |cos(απ )| uniformly for a.e. t ∈ [, T].
(H)′ lim|x|→∞ F(t,x)

|x| = ∞ for a.e. t ∈ [, T].
(H)′ There exist constants μ >  and d >  such that

μF(t, x) –
(∇F(t, x), x

) ≤ d
(
 + |x|) for all x ∈R, and a.e. t ∈ [, T].

By Lemma  in [], we can easily see that the following lemma is true.

Lemma . Assume that (H), (H)′ hold. Then for every δ >  there exists a subset Eδ ⊂
[, T] with meas([, T] \ Eδ) < δ such that

lim|x|→∞
F(t, x)
|x| = ∞ uniformly for t ∈ Eδ .

We establish the following lemma to obtain the second result in this paper.

Lemma . Let (H), (H), (H)′-(H)′ be satisfied. Then there exist two sequences ρk > rk >
 such that

bk = inf
u∈Zk ,‖u‖=rk


λ(u) > ak(λ) = max
u∈Wk ,‖u‖=ρk


λ(u), ∀λ ∈ [, ].

Proof We divide the proof into two parts.
Part I. In this part, we will prove that there exists a sequence rk >  such that

bk = inf
u∈Zk ,‖u‖=rk


λ(u) > , ∀λ ∈ [, ].

In fact, by (H)′, there exists a subset E ⊂ [, T] with meas E = T such that d <
(�(α+))

Tα |cos(απ )|, where d = supt∈E (lim|x|→ sup F(t,x)
|x| ). Taking ε >  such that d <

(�(α+))

Tα | cos(απ )| – ε/, it follows that there exists δ >  such that

∣∣F(t, x)
∣∣ <

(
(�(α + ))

Tα

∣∣cos(απ )
∣∣ – ε/

)
|x| (.)

as |x| ≤ δ for t ∈ E. By (H)′ together with (.), we know that there exists a constant
cε >  such that

∣∣F(t, x)
∣∣ ≤

(
(�(α + ))

Tα

∣∣cos(απ )
∣∣ – ε/

)
|x| + cε|x|p (.)

for all x ∈R
N and a.e. t ∈ [, T].

Let αk = supu∈Zk ,‖u‖= ‖u‖p. Using the method as in the proof of Lemma ., we can
deduce that αk →  as k → ∞. Thus for any u ∈ Zk , by (.), (.), Lemma ., and
Lemma ., we have


λ(u) ≥ 

∣∣cos(απ )

∣∣‖u‖ – 
∫ T


F
(
t, u(t)

)
dt

≥ 

∣∣cos(απ )

∣∣‖u‖ – 
(

(�(α + ))

Tα

∣∣cos(απ )
∣∣ –

ε



)∫ T



∣∣u(t)
∣∣ dt
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– cε

∫ T



∣∣u(t)
∣∣p dt

≥ 

∣∣cos(απ )

∣∣‖u‖ –
(



∣∣cos(απ )

∣∣ –
εTα

(�(α + ))

)
‖u‖ – cεα

p
k ‖u‖p

=
εTα

(�(α + )) ‖u‖ – cεα
p
k ‖u‖p.

According to p >  and αk →  as k → ∞, if we take rk = ( εTα

cε(�(α+)) )


p– α
p

–p
k , then rk → ∞

as k → ∞, and


λ(u) ≥ c


–p
ε

(
εTα

(�(α + ))

) p
p–

α
p

–p
k > , ∀λ ∈ [, ]

for any u ∈ Zk with ‖u‖ = rk . Thus,

bk(λ) = inf
u∈Zk ,‖u‖=rk


λ(u) ≥ c


–p
ε

(
εTα

(�(α + ))

) p
p–

α
p

–p
k > , ∀λ ∈ [, ].

Part II. In this part, we will show that there exists a sequence {ρk} with ρk > rk such that

ak(λ) = max
u∈Wk ,‖u‖=ρk


λ(u) < , ∀λ ∈ [, ].

In fact, for any fixed k ∈ N, by Lemma ., we know that there exists a constant εk > 
such that

meas
{

t ∈ [, T] :
∣∣u(t)

∣∣ ≥ εk‖u‖} ≥ εk (.)

for any u ∈ Wk . By Lemma ., for  < δk < εk/, there exists Ek ⊂ [, T] with meas([, T] \
Ek) < δk such that

lim|x|→∞
F(t, x)
|x| = ∞ uniformly for t ∈ Ek .

Thus, for Mk = 
| cos(απ )|ε

k
, it follows that there exists Rk >  such that

F(t, x) > Mk|x| for all t ∈ Ek (.)

as |x| ≥ Rk . Take Sk = Rk/εk and let Du = {t ∈ [, T]||u(t)| ≥ εk‖u‖}. Then, for any u ∈ Wk

with ‖u‖ ≥ Sk , we have

u(t) ≥ εk‖u‖ ≥ Rk for t ∈ Du. (.)

Let Eu = Du ∩ Ek . Then it follows from (.)-(.) that

F
(
t, u(t)

)
> Mk

∣∣u(t)
∣∣ for all t ∈ Eu (.)

for any u ∈ Wk with ‖u‖ ≥ Sk .
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Since

T – meas Eu = meas
(
[, T] \ Eu

)
= meas

((
[, T] \ Du

) ∪ (
[, T] \ Ek

))
≤ T – meas Du + meas

(
[, T] \ Ek

)
< T – εk/,

we know that meas Eu > εk/.
Thus, by (.), (.)-(.), and Lemma ., for any u ∈ Wk with ‖u‖ ≥ Sk , we have


λ(u) ≤ 
| cos(απ )| ‖u‖ –

∫ T


F
(
t, u(t)

)
dt

≤ 
| cos(απ )| ‖u‖ –

∫
Eu

F
(
t, u(t)

)
dt

≤ 
| cos(απ )| ‖u‖ – Mk

∫
Eu

∣∣u(t)
∣∣ dt

≤ 
| cos(απ )| ‖u‖ –




Mkε

k‖u‖

= –


| cos(απ )| ‖u‖. (.)

So, choosing ρk > max{Sk , rk}, it follows from (.) that


λ(u) ≤ –


| cos(απ )|ρ

k

for any u ∈ Wk with ‖u‖ = ρk . Hence

ak(λ) = max
u∈Wk ,‖u‖=ρk


λ(u) < , ∀λ ∈ [, ], and ρk > rk .

Consequently, from Part I and Part II we conclude that Lemma . is true. �

Now, we state another result in this paper.

Theorem . Assume that (H), (H), (H)′-(H)′ hold. Then BVP (.) has infinitely many
high energy solutions uk ∈ Eα \ {} satisfying

–



∫ T



(c
Dα

t uk(t), c
t Dα

T uk(t)
)

dt –
∫ T


F
(
t, uk(t)

)
dt → ∞ as k → ∞.

Proof As in the proof of Theorem ., it is easy to see that the conditions (B), (B), and
(B) of Lemma . hold under the assumptions (H) and (H) combined with the fact that
A(u) → ∞ as ‖u‖ → ∞, and applying Lemma .. Consequently, by Lemma ., we know
that for a.e. λ ∈ [, ], there exists a sequence {uk

n(λ)}∞n= such that

sup
n

∥∥uk
n(λ)

∥∥ < ∞, 
′
λ

(
uk

n(λ)
) →  and 
λ

(
uk

n(λ)
) → ck(λ) (.)

as n → ∞.
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Owing to the fact that p > , it follows that

ck(λ) ≥ bk(λ) ≥ c


–p
ε

(
εTα

(�(α + ))

) p
p–

α
p

–p
k := b̄k → ∞

as k → ∞ because αk →  as k → ∞. Also since

ck(λ) = inf
γ∈�k

max
u∈Bk


λ

(
γ (u)

) ≤ max
u∈Bk


λ(u) ≤ max
u∈Bk


(u) := c̄k ,

we have

b̄k ≤ ck(λ) ≤ c̄k for all λ ∈ [, ]. (.)

We choose a sequence λm →  as m → ∞ with λm ∈ [, ] such that (.) holds for
all λm (m = , , . . .). Using arguments similar to the proof of Theorem ., we can prove
that the sequence {uk

n(λm)}∞n= has a strongly convergent subsequence. Now, we show this
simply as follows.

In fact, since {uk
n(λm)}∞n= is bounded, there exists a uk(λm) ∈ Eα , up to a subsequence,

such that uk
n(λm) ⇀ uk(λm) as n → ∞, and therefore, uk

n(λm) → uk(λm) in C[, T] as n →
∞, keeping in mind Lemma .. Let M >  be a constant such that ‖uk

n(λm) – uk(λm)‖ ≤ M,
‖uk

n(λm)‖ ≤ M, ∀n ≥ . Then there exists M such that |uk
n(λm)(t)| ≤ M, ∀n ≥ , for all

t ∈ [, T], |uk(λm)(t)| ≤ M, for all t ∈ [, T] by Lemma .. Moreover, by uk
n(λm) ⇀ uk(λm),

and 
′
(uk(λm)) ∈ (Eα)∗, we know that 〈
′

(uk(λm)), uk
n(λm) – uk(λm)〉 →  as n → ∞.

Also from 
′
λm (uk

n(λm)) →  as n → ∞ and ‖uk
n(λm) – uk(λm)‖ ≤ M, it follows that

〈
′
λm (uk

n(λm)), uk
n(λm) – uk(λm)〉 →  as n → ∞. Hence, by Lemma . and conditions (H)

and (H), we get

∣∣cos(απ )
∣∣∥∥uk

n(λm) – uk(λm)
∥∥

≤ –
∫ T



(c
Dα

t
(
uk

n(λm) – uk(λm)
)
, c

t Dα
T
(
uk

n(λm) – uk(λm)
))

dt

=
〈

′

λm

(
uk

n(λm)
)
, uk

n(λm) – uk(λm)
〉
–

〈

′


(
uk(λm)

)
, uk

n(λm) – uk(λm)
〉

+ λm

∫ T



(∇F
(
t, uk

n(λm)(t)
)
, uk

n(λm)(t) – uk(λm)(t)
)

dt

–
∫ T



(∇F
(
t, uk(λm)(t)

)
, uk

n(λm)(t) – uk(λm)(t)
)

dt

≤ o() + 
∣∣uk

n(λm) – uk(λm)
∣∣∞

∫ T



∣∣∇F
(
t, uk

n(λm)(t)
)∣∣dt

+
∣∣uk

n(λm) – uk(λm)
∣∣∞

∫ T



∣∣∇F
(
t, uk(λm)(t)

)∣∣dt

≤ o() + 
∣∣uk

n(λm) – uk(λm)
∣∣∞ max

|x|≤M
a
(|x|)

∫ T


b(t) dt → 

as n → ∞. Thus, we conclude that uk
n(λm) → uk(λm) as n → ∞ in Eα . Hence, it follows

from (.)-(.) that


′
λm

(
uk(λm)

)
=  and 
λm

(
uk(λm)

) ∈ [b̄k , c̄k].
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We claim that the sequence {uk(λm)}∞m= is bounded.
In fact, if not, then there exists a subsequence of {uk(λm)}∞m=, still denoted by

{uk(λm)}∞m=, such that ‖uk(λm)‖ → ∞ as m → ∞. Let vm = uk (λm)
‖uk (λm)‖ . Then there exists

a v ∈ Eα , up to a subsequence, such that vm ⇀ v in Eα , and therefore vm → v in C[, T] by
Lemma ..

Case . If v �=  in Eα , then meas E > , where E = {t ∈ [, T]|v(t) �= }. By Lemma .,
condition (H), and the fact that 
λm (uk(λm)) ∈ [b̄k , c̄k], we have


| cos(απ )| + o()

=


| cos(απ )| +
|
λm (uk(λm))|

‖uk(λm)‖

≥ –


‖uk(λm)‖

∫ T



(c
Dα

t uk(λm)(t), c
t Dα

T uk(λm)(t)
)

dt –

λm (uk(λm))
‖uk(λm)‖

= λm

∫ T



F(t, uk(λm)(t))
‖uk(λm)‖ dt

≥
∫

E

F(t, uk(λm)(t))
‖uk(λm)‖ dt

=
∫

E

∣∣vm(t)
∣∣ F(t, uk(λm)(t))

|uk(λm)| dt. (.)

Since |uk(λm)(t)| = |vm(t)|‖uk(λm)‖ → ∞ as m → ∞ for all t ∈ E, by (H)′ we see that

F(t, uk(λm)(t))
|uk(λm)(t)|

∣∣vm(t)
∣∣ → ∞ for a.e. t ∈ E.

Thus, using Fatou’s result, we obtain limm→∞
∫

E
|vm(t)| F(t,uk (λm)(t))

|uk (λm)(t)| dt = ∞, which contra-
dicts (.).

Case . If v =  in Eα , then v(t) =  for all t ∈ [, T] by Lemma .. Thus, by condition
(H)′ together with Lemma ., we have

(
μ


– 

)∣∣cos(απ )
∣∣

≤
(

 –
μ



)


‖uk(λm)‖

∫ T



(c
Dα

t uk(λm)(t), c
t Dα

T uk(λm)(t)
)

dt

=


‖uk(λm)‖

[
μ
λm

(
uk(λm)

)
–

〈

′

λm

(
uk(λm)

)
, uk(λm)

〉]

+
λm

‖uk(λm)‖

∫ T



(
μF

(
t, uk(λm)(t)

)
– ∇F

(
t, uk(λm)(t)

)
, uk(λm)(t)

)
dt

≤ o() +
d

‖uk(λm)‖

∫ T



(
 +

∣∣uk(λm)(t)
∣∣)dt

= o() +
dT

‖uk(λm)‖ + d
∫ T



∣∣vm(t)
∣∣ dt, (.)

noting that 
′
λm (uk(λm)) =  and 
λm (uk(λm)) ∈ [b̄k , c̄k]. Thus letting m → ∞ in (.), we

obtain ( μ

 – )| cos(απ )| ≤ , which contradicts the fact that μ > .
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So, summing up the above analysis on Case  and Case , we know that the sequence
{uk(λm)}∞m= is bounded in Eα . Hence, there exists a uk ∈ Eα , up to a subsequence, such that
uk(λm) ⇀ uk in Eα as m → ∞, and therefore, uk(λm) → uk in C[, T] as m → ∞. By the
standard method, we can prove that uk is a critical point of 
. Taking into account the
fact that 
(uk) ≥ b̄k → ∞ as k → ∞, we know that BVP (.), i.e., BVP (.) has infinitely
many high energy solutions. The proof is complete. �

Let us draw a conclusion for this paper. Because of applying the variant fountain theo-
rems, the results for the existence of infinitely many small or high energy solutions to BVP
(.) are obtained without the assumption for the Ambrosetti-Rabinowitz condition, while
the A.R. condition is usually assumed in the literature. On the other hand, the assumed
conditions in this paper are easy to verify, especially such as conditions (H) and (H)′. In
general, some conditions corresponding to (H) and (H)′ are required to hold uniformly
for some variable on some interval, while the formulas in (H) and (H)′ only need to hold
for a.t. t ∈ [, T] due to applying Lemma . and Lemma . in this paper. So, it can be
expected that Lemma . and Lemma . may be applied conveniently to some problems
in the future to weaken some conditions. Finally, to show the effectiveness of the results
obtained, two examples are given as follows.

Example . Consider the following boundary value problem:

{
d
dt ( 

 D–β
t (u′(t)) + 

 tD–β

T (u′(t))) + ∇F(t, u(t)) = , a.e. t ∈ [, T],
u() = u(T) = ,

(.)

where D–β
t and tD–β

T are the left and right Riemann-Liouville fractional integrals of order
 ≤ β < , respectively, F(t, x) = (sin π

T t)|x|τ + c|x|θ + et ln( + x), t ∈ [, T], x ∈ R, and
τ ∈ (, ), θ > , c > .

It is easy to see that F satisfies the following conditions:
() F(t, x) ≥ , F(t, –x) = F(t, x), t ∈ [, T], x ∈R.
() F(t, x), |Fx(t, x)| ≤ a(|x|)b(t), t ∈ [, T], x ∈ R, where a(x) = xτ + xθ + x + xτ– + xθ– + x,

b(t) = τ sin π
T t + cθ + et .

() lim|x|→∞ inft∈[,T]
F(t,x)
|x|θ = c > , t ∈ [, T].

() F(t, x) ≥ (sin π
T t)|x|τ with τ ∈ (, ) for t ∈ [, T], x ∈R, and  <

∫ T
 (sin π

T t)– 
 dt < ∞.

Also,

F(t, x) ≤ |x|τ + c|x|θ + eT x ≤ (
 + c + eT)|x|τ

as |x| ≤ , t ∈ [, T], noting that θ > , and τ ∈ (, ).
() Take μ ∈ ( 

θ
, 

 ). Then  < μτ < ,  < μθ , and therefore,

F(t, x) – μ
(
Fx(t, x), x

)

=
(

sin
π

T
t
)

( – μτ )|x|τ + c( – μθ )|x|θ + et
(

ln
(
 + x) –

μ

 + x x
)

≤
(

sin
π

T
t
)

( – μτ )|x|τ + eT ln
(
 + x), t ∈ [, T], x ∈ R.



Chai Advances in Difference Equations  (2016) 2016:213 Page 22 of 23

Owing to lim|x|→
ln(+x)

|x|τ = , lim|x|→∞ ln(+x)
|x|τ = , there exists a M >  such that ln(+x) ≤

M|x|τ , for all x ∈R. Hence,

F(t, x) – μ
(
Fx(t, x), x

) ≤ (
 + MeT)|x|τ , t ∈ [, T], x ∈ R.

So, all the assumptions of Theorem . are satisfied, and therefore, BVP (.) has infinitely
many small energy solutions.

Example . Consider the following boundary value problem:

{
d
dt ( 

 D–β
t (u′(t)) + 

 tD–β

T (u′(t))) + ∇F(t, u(t)) = , a.e. t ∈ [, T],
u() = u(T) = ,

(.)

where D–β
t and tD–β

T are the left and right Riemann-Liouville fractional integrals of order
 ≤ β < , respectively, F(t, x) = et|x|p + η ln( + x sin t), t ∈ [, T], x ∈ R, p > , and η

satisfying  < η < �(α+)

Tα cos(απ ). It is easy to see that F satisfies the following conditions:
() F(t, x) ≥ , F(t, –x) = F(t, x), t ∈ [, T], x ∈R.
() F(t, x), |Fx(t, x)| ≤ a(|x|)b(t), t ∈ [, T], x ∈ R, where a(x) = xp + xp– + x + x, b(t) =

pet + η sin t, noting that ln( + x) ≤ x for all x ≥ .
() F(t, x) ≤ (eT + η)(|x|p + |x|) for all t ∈ [, T], x ∈R.
() lim|x|→

F(t,x)
|x| ≤ lim|x|→ eT |x|p– + lim|x|→ η

ln(+x sin t)
|x| = η sin t ≤ η, t ∈ [, T].

() lim|x|→∞ F(t,x)
|x| ≥ lim|x|→∞ |x|p– = ∞.

() Take μ ∈ (, p). Then

μF(t, x) –
(
Fx(t, x), x

)
= (μ – p)et|x|p + μη ln

(
 + x sin t

)
–

ηx sin t
 + x sin t

≤ μη ln
(
 + x sin t

)
≤ μη

(
 + x)

for all t ∈ [, T], x ∈R. Hence, all the assumptions of Theorem . are satisfied and there-
fore BVP (.) has infinitely many high energy solutions.

Competing interests
The author declares that he has no competing interests.

Author’s contributions
The author declares that he carried out all the work in this manuscript and read and approved the final manuscript.

Acknowledgements
The author sincerely thanks the anonymous referees for their valuable suggestions and comments which have greatly
helped improve this article. This research is supported by the National Nature Science Foundation of China under grant
11601139.

Received: 19 February 2016 Accepted: 3 July 2016

References
1. Diethelm, K, Freed, AD: On the solution of nonlinear fractional order differential equations used in the modeling of

viscoelasticity. In: Keil, F, Mackens, W, Voss, H, Werther, J (eds.) Scientific Computing in Chemical Engineering II -
Computational Fluid Dynamics, Reaction Engineering and Molecular Properties, pp. 217-224. Springer, Heidelberg
(1999)

2. Lundstrom, BN, Higgs, MH, Spain, WJ, Fairhall, AL: Fractional differentiation by neocortical pyramidal neurons. Nat.
Neurosci. 11, 1335-1342 (2008)



Chai Advances in Difference Equations  (2016) 2016:213 Page 23 of 23

3. Glockle, WG, Nonnenmacher, TF: A fractional calculus approach of self-similar protein dynamics. Biophys. J. 68, 46-53
(1995)

4. Hilfer, R: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)
5. Mainardi, F: Fractional calculus: some basic problem in continuum and statistical mechanics. In: Carpinteri, A,

Mainardi, F (eds.) Fractals and Fractional Calculus in Continuum Mechanics, pp. 290-349. Springer, Wien (1997)
6. Kilbas, AA, Srivastava, HM, Trujillo, JJ: Theory and Applications of Fractional Differential Equations. North-Holland

Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)
7. Jiao, F, Zhou, Y: Existence of solutions for a class of fractional boundary value problems via critical point theory.

Comput. Math. Appl. 62, 1181-1199 (2011)
8. Chen, J, Tang, X: Existence and multiplicity of solutions for some fractional boundary value problem via critical point

theory. Abstr. Appl. Anal. 2012, Article ID 648635 (2012)
9. Chen, J, Tang, X: Infinitely many solutions for a class of fractional boundary value problem. Bull. Malays. Math. Sci. Soc.

36, 1083-1097 (2013)
10. Kong, L: Existence of solutions to boundary value problems arising from the fractional advection dispersion equation.

Electron. J. Differ. Equ. 2013, 106 (2013)
11. Bin, G: Multiple solutions for a class of fractional boundary value problems. Abstr. Appl. Anal. 2012, Article ID 468980

(2012)
12. Zhang, X, Liu, L, Wu, Y: Variational structure and multiple solutions for a fractional advection-dispersion equation.

Comput. Math. Appl. 68, 1794-1805 (2014)
13. Bai, C: Existence of three solutions for a nonlinear fractional boundary value problem via a critical points theorem.

Abstr. Appl. Anal. 2012, Article ID 963105 (2012)
14. Li, Y, Sun, H, Zhang, Q: Existence of solutions to fractional boundary value problems with a parameter. Electron.

J. Differ. Equ. 2013, 141 (2013)
15. Sun, H, Zhang, Q: Existence of solutions for a fractional boundary value problem via the mountain pass method and

an iterative technique. Comput. Math. Appl. 64, 3436-3443 (2012)
16. Ferrara, M, Hadjian, A: Variational approach to fractional boundary value problems with two control parameters.

Electron. J. Differ. Equ. 2015, 130 (2015)
17. Jiao, F, Zhou, Y: Existence results for fractional boundary value problems via critical point theory. Int. J. Bifurc. Chaos

22, 1250086 (2012)
18. Xie, W, Xiao, J, Luo, Z: Existence of solutions for fractional boundary value problem with nonlinear derivative

dependence. Abstr. Appl. Anal. 2014, Article ID 812910 (2014)
19. Zhao, Y, Chen, H, Qin, B: Multiple solutions for a coupled system of nonlinear fractional differential equations via

variational methods. Appl. Math. Comput. 257, 417-427 (2015)
20. Torres, C: Mountain pass solution for a fractional boundary value problem. J. Fract. Calc. Appl. 5, 1-10 (2014)
21. Benson, DA, Schumer, R, Meerschaert, MM, Wheatcraft, SW: Fractional dispersion, Lévy motion, and the MADE tracer

test. Transp. Porous Media 42, 211-240 (2001)
22. Benson, DA, Wheatcraft, SW, Meerschaert, MM: Application of a fractional advection-dispersion equation. Water

Resour. Res. 36, 1403-1412 (2000)
23. Benson, DA, Wheatcraft, SW, Meerschaert, MM: The fractional-order governing equation of Lévy motion. Water

Resour. Res. 36, 1413-1423 (2000)
24. Zou, W: Variant fountain theorems and their applications. Manuscr. Math. 104, 343-358 (2001)
25. Zou, W, Schechter, M: Critical Point Theory and Its Applications. Springer, New York (2006)
26. Tang, C, Wu, X: Periodic solutions for second order systems with not uniformly coercive potential. J. Math. Anal. Appl.

259, 386-397 (2001)


	Inﬁnitely many solutions for nonlinear fractional boundary value problems via variational methods
	Abstract
	Keywords

	Introduction
	Preliminaries
	Main results
	Competing interests
	Author's contributions
	Acknowledgements
	References


