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1 Introduction
This paper aims at ensuring the existence of infinitely many classical solutions for the
following impulsive nonlinear fractional boundary value problem:

tDα
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t u(t)

)
+ a(t)u(t) = λf

(
t, u(t)

)
+ h

(
u(t)

)
, t �= tj, a.e. t ∈ [, T],

(Dλ,μ) �
(

tDα–
T
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))

(tj) = μIj
(
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)
, j = , . . . n,

u() = u(T) = ,

where α ∈ (/, ], a ∈ C([, T]) such that there are two positive constants a and a such
that  < a ≤ a(t) ≤ a, λ > , μ ≥ , f : [, T] × R → R is an L-Carathéodory function,
h : R→R is a Lipschitz continuous function with the Lipschitz constant L > , i.e.,
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t u)(t–
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t u)(t+

j ) = limt→t+
j

(tDα–
T (c

Dα
t u)(t)) and

tDα–
T (c

Dα
t u)(t–

j ) = limt→t–
j

(tDα–
T (c

Dα
t u)(t)) and Ij : R →R, j = , . . . , n, are continuous func-

tions.
Fractional differential equations (FDEs) are a simplification of ordinary differential equa-

tions and integration to arbitrary non-integer orders. FDEs have recently established
themselves as precious tools in modeling many events in different fields of science and
engineering. We can also observe plentiful applications in such fields as electrochemistry,
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chemistry, electromagnetic, mechanics, biology, electricity, economics, polymer rheology,
control theory, regular variation in thermodynamics, signal and image processing, wave
propagation, aerodynamics, electrodynamics of complex medium, blood flow phenom-
ena, biophysics, viscoelasticity and damping, etc. (see [–]). There have also been impor-
tant advances in the theory of fractional calculus and fractional ordinary and partial dif-
ferential equations recently; for instance see [–]. Many researchers have explored the
existence of solutions for nonlinear FDEs with various tools such as fixed-point theorems,
the method of upper and lower solutions, critical point theory, the topological degree the-
ory, and variational methods, for instance see [–]. We also cite [], in which, Zhou
and Peng were concerned with the Navier-Stokes equations with time-fractional deriva-
tive of order α ∈ (, ). This type of equations can be used to simulate anomalous diffusion
in fractal media. They established the existence and uniqueness of local and global mild
solutions and proved the existence and regularity of classical solutions.

On the other hand, impulsive differential equations have become important in recent
years as mathematical models of phenomena in both the physical and the social sciences.
For example, many biological phenomena involving thresholds, bursting rhythm mod-
els in medicine and biology, optimal control models in economics, and frequency mod-
ulated systems, do exhibit impulsive effects. For the background and applications of the
theory of impulsive differential equations to different areas, we refer the reader to the
classical monograph []. For the general aspects of impulsive differential equations, we
refer the reader to [–]. The existence of multiple solutions of impulsive problems has
been studied also using the variational methods and critical point theory (see []). Both
FDEs and impulsive differential equations have drawn intense attention from researchers
in the last decades due to the numerous applications. The idea that combining these two
classes of differential equations may yield an interesting and promising object of investi-
gation, viz., impulsive FDEs, prompted numerous papers. For the recent developments in
theory and applications of impulsive FDEs, we refer the reader to [–] and the refer-
ences therein. Impulsive problems for fractional equations have been treated by topologi-
cal methods in [–]. In [, ], based on variational methods and critical point theory
the authors studied the existence and multiplicity of solutions for the problem (Dλ,μ), in
the case h(x) =  for all x ∈R.

We also cite [–] in which fractional systems have been studied. In [, ] through
variational methods and critical point theory the existence of multiple solutions for cou-
pled systems of nonlinear fractional differential equations was analyzed. In [], using
Ricceri’s variational principle, the existence of one weak solution for a class of fractional
differential systems was argued. In [] employing Ricceri’s variational principle, the exis-
tence of an infinite number of weak solutions for a class of impulsive fractional differential
systems was guaranteed. In [] using variational methods and critical point theory, the
multiplicity results of solutions for a class of impulsive fractional differential systems was
established.

Motivated by the researches above, this paper employs a smooth version of [], Theo-
rem ., which is a more precise version of Ricceri’s variational principle [], Theorem ..
This is undertaken under several hypotheses on the behavior of nonlinear terms at infinity,
under conditions on f and impulsive terms Ij, j = , . . . , n, where we demonstrate the exis-
tence of definite intervals about λ and μ in which the problem (Dλ,μ) admits a sequence
of classical solutions which is unbounded in the space Eα that will be introduced in the
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next section. Moreover, some of the consequences of Theorem . are outlined. Replacing
the conditions at infinity of the nonlinear terms, by a similar one at zero, the same find-
ings hold, and, besides, the sequence of classical solutions strongly converges to zero; see
Theorem .. Two examples of applications are pointed out (see Examples . and .).

For an argument regarding the existence of infinitely many solutions for boundary value
problems through Ricceri’s variational principle [], the reader may refer to [–]. We
also refer the reader to [–] in which the existence of solutions to boundary value
problems for FDEs has been studied.

2 Preliminaries
In this section, we will introduce several basic definitions, notations, lemmas, and propo-
sitions used throughout this paper.

Definition . ([]) For a function f defined on [a, b] and α > , the left and right
Riemann-Liouville fractional integrals of order α for the function f are defined by

aD–α
t f (t) =


�(α)

∫ t

a
(t – s)α–f (s) ds, t ∈ [a, b],

tD–α
b f (t) =


�(α)

∫ b

t
(s – t)α–f (s) ds, t ∈ [a, b],

while the right-hand sides are point-wise defined on [a, b], where �(α) is the gamma func-
tion.

Definition . ([]) Let a, b ∈ R and AC([a, b]) be the space of absolutely continuous
functions on [a, b]. For  < α ≤ , f ∈ AC([a, b]) left and right Riemann-Liouville and Ca-
puto fractional derivatives are defined by

aDα
t f (t) ≡ d

dt aDα–
t f (t) =


�( – α)

d
dt

∫ t

a
(t – s)–αf (s) ds,

tDα
b f (t) ≡ –

d
dt tDα–

b f (t) = –


�( – α)

∫ b

t
(s – t)–αf (s) ds,

c
aDα

t f (t) ≡ cDα
a+ f (t) := aDα–

t f ′(t) =


�( – α)

∫ t

a
(t – s)–αf ′(s) ds,

and

c
t Dα

b f (t) ≡ cDα
b–f (t) := –tDα–

b f ′(t) = –


�( – α)

∫ b

t
(s – t)–αf ′(s) ds,

where �(α) is the gamma function. Note that when α = , c
aD

t f (t) = f ′(t) and c
t D

bf (t) =
–f ′(t)

We have the following property of fractional integration.

Proposition . ([, ]) We have the following property of fractional integration:

∫ b

a

[
aD–γ

t f (t)
]
g(t) dt =

∫ b

a

[
tD–γ

b g(t)
]
f (t) dt, γ > ,
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provided that f ∈ Lp([a, b],RN ), g ∈ Lq([a, b],RN ) and p ≥ , q ≥ , /p + /q ≤  + γ or
p �= , q �= , /p + /q =  + γ .

To create suitable function spaces and apply critical point theory to explore the exis-
tence of solutions for the problem (Dλ,μ), we require the following essential notations and
findings which will be used in establishing our main results.

Let  < α ≤ ,  < p < ∞, and Eα,p
 (, T) be the Banach space, which has closure of

C∞
 ([, T]) with respect to the norm ‖u‖p

Eα,p
 (,T)

= ‖c
aDα

t u(t)‖p
Lp(,T) + ‖u‖p

Lp(,T). It is an es-

tablished fact that Eα,p
 (, T) is a reflexive and separable Banach space (see [], Proposi-

tion .). In short Eα,
,T = Eα , and by ‖ · ‖ and ‖.‖∞ the norms in L(, T) and C([, T]):

‖u‖ =
∫ T



∣∣u(t)
∣∣ dt, u ∈ L(, T),

‖u‖∞ = max
t∈[,T]

∣∣u(t)
∣∣, u ∈ C

(
[, T]

)
.

Eα is a Hilbert space with inner product (u, v)α =
∫ T

 (c
Dα

t u(t)c
Dα

t v(t) + u(t)v(t)) dt and the
norm ‖u‖

α =
∫ T

 (|cDα
t u(t)| + |u(t)|) dt. Note that if a ∈ C([, T]) and there are two posi-

tive constants a and a, so that  < a ≤ a(t) ≤ a, an equivalent norm in Eα is

‖u‖
a,α =

∫ T



(∣∣c
Dα

t u(t)
∣∣ dt + a(t)

∣∣u(t)
∣∣)dt.

Proposition . ([]) Let  < α ≤ . For u ∈ Eα , we have

‖u‖ ≤ Tα

�(α + )
∥∥c

Dα
t u

∥∥. ()

In addition, for 
 < α ≤ ,

‖u‖∞ ≤ Tα–/

�(α)(α – )/

∥∥c
Dα

t u
∥∥.

By (), we can take Eα with the norm

‖u‖,α =
(∫ T



∣
∣c
Dα

t u(t)
∣
∣ dt

)/

=
∥
∥c

Dα
t u

∥
∥, ∀u ∈ Eα ,

in the following.
By Proposition ., when α > /, for every u ∈ Eα we have

‖u‖∞ ≤ k
(∫ T



∣∣c
Dα

t u(t)
∣∣ dt

)/

= k‖u‖,α < k‖u‖a,α , ()

where

k =
Tα– 



�(α)
√

α – 
.
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Now, we put

C :=


(
 – LTk),

C :=


(
 + LTk).

()

We suppose that the Lipschitz constant L >  of the function h satisfies the condition
LTk < .

Definition . A function

u ∈
{

u ∈ AC
(
[, T]

)
:
∫ tj+

tj

(∣∣c
Dα

t u(t)
∣∣ +

∣∣u(t)
∣∣)dt < ∞, j = , . . . n

}

is said to be a classical solution of problem (Dλ,μ) if

tDα
T
(c

Dα
t u(t)

)
+ a(t)u(t) = λf

(
t, u(t)

)
+ h

(
u(t)

)
, a.e. t ∈ [, T]\{t, . . . , tn},

the limits tDα–
T (c

Dα
t u)(t+

j ) and tDα–
T (c

Dα
t u)(t–

j ) exist, �(tDα–
T (c

Dα
t u))(tj) = μIj(u(tj)) and

u() = u(T) = .

We have the following definition of a weak solution for the problem (Dλ,μ).

Definition . A function u ∈ Eα is said to be a weak solution of the problem (Dλ,μ), if
for every v ∈ Eα ,

∫ T



[(c
Dα

t u(t)
)(c

Dα
t v(t)

)
+ a(t)u(t)v(t)

]
dt + μ

n∑

j=

Ij
(
u(tj)

)
v(tj)

= λ

∫ T


f
(
t, u(t)

)
v(t) dt +

∫ T


h
(
u(t)

)
v(t) dt.

Lemma . ([], Lemma .) The function u ∈ Eα is a weak solution of (Dλ,μ) if and only
if u is a classical solution of (Dλ,μ).

Our basic tool to guarantee the existence of infinitely many classical solutions for the
problem (Dλ,μ) is a smooth version of Theorem . of [], which is a more precise version
of Ricceri’s variational principle [], which we recall here. This result has relevance for
the celebrated three critical points theorem of Pucci and Serrin [, ].

Theorem . Let X be a reflexive real Banach space, let �,� : X →R be two Gâteaux dif-
ferentiable functionals such that � is sequentially weakly lower semi-continuous, strongly
continuous, and coercive, and � is sequentially weakly upper semi-continuous. For every
r > infX �, let us put

ϕ(r) := inf
u∈�–(–∞,r)

supv∈�–(–∞,r) �(v) – �(u)
r – �(u)
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and

γ := lim inf
r→+∞ ϕ(r), δ := lim inf

r→(infX �)+
ϕ(r).

Then one has:
(a) For every r > infX � and every λ ∈ ], 

ϕ(r) [, the restriction of the functional
Iλ = � – λ� to �–(]–∞, r[) admits a global minimum, which is a critical point
(local minimum) of Iλ in X .

(b) If γ < +∞ then, for each λ ∈ ], 
γ

[, the following alternative holds:
either

(b) Iλ possesses a global minimum, or
(b) there is a sequence {un} of critical points (local minima) of Iλ such that

lim
n→+∞�(un) = +∞.

(c) If δ < +∞ then, for each λ ∈ ], 
δ
[, the following alternative holds:

either

(c) there is a global minimum of � which is a local minimum of Iλ, or
(c) there is a sequence of pairwise distinct critical points (local minima) of Iλ which

weakly converges to a global minimum of �.

Corresponding to the functions f , h, and Ij, j = , . . . , n, we introduce the functions F :
[, T] ×R−→ R, H : R−→ R, and Jj : [, T] ×R−→ R, j = , . . . , n, respectively, as follows:

F(t, ξ ) :=
∫ ξ


f (t, x) dx, for all ξ ∈R,

H(ξ ) :=
∫ ξ


h(x) dx, for all ξ ∈ R,

and

Jj(x) =
∫ x


Ij(ξ ) dξ , j = , . . . , n, for every x ∈R.

A specific case of our main result is the following theorem.

Theorem . Let α ∈ (/, ], t ∈ (, ), and let f : R −→ R be a non-negative continuous
function and put F(x) =

∫ x
 f (ξ ) dξ for all x ∈R. Assume that

lim inf
ξ−→+∞

F(ξ )
ξ  =  and lim sup

ξ−→+∞
F(ξ )
ξ  = +∞.

Then, for every continuous function I : R −→R whose J(x) =
∫ x

 I(ξ ) dξ for every x ∈R, is a
non-positive function and satisfying the condition

J� := lim
ξ−→∞

sup|x|≤ξ (–J(x))
ξ  < +∞,
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and for every μ ∈ [,μ�[ where μ� := C
kJ�

( – k

C
lim infξ→+∞ F(ξ )

ξ ), the problem

tDα
T
(c

Dα
t u(t)

)
+ u(t) = f

(
u(t)

)
+ h

(
u(t)

)
, t �= t, a.e. t ∈ [, ],

�
(

tDα–
T

(c
Dα

t u
))

(t) = μI
(
u(t)

)
,

u() = u() = ,

has an unbounded sequence of classical solutions.

3 Main results
First we set

A(α) :=


�( – α)

(
T


)–α α – α + 
( – α)( – α)( – α)

.

Now we formulate our main result as follows.

Theorem . Assume that
(A) F(t, x) ≥  for all t ∈ [, T

 ] ∪ [ T
 , T] and x ∈R;

(A) lim infξ−→+∞
∫ T

 sup|x|≤ξ F(t,x) dt
ξ < C

(A(α)+ T‖a‖∞
 )kC

lim supξ−→+∞

∫ T


T


F(t,ξ ) dt

ξ .
Then, for each λ ∈ ]λ,λ[ where

λ :=
(A(α) + T‖a‖∞

 )C

lim supξ−→+∞

∫ T


T


F(t,ξ ) dt

ξ

and

λ :=
C

k lim infξ−→+∞
∫ T

 sup|x|≤ξ F(t,x) dt
ξ

,

for all continuous functions Ij : R −→ R, j = , . . . , n, for which Jj(x) =
∫ x

 Ij(ξ ) dξ , j = , . . . , n,
for every x ∈R, are non-positive functions and satisfying the condition

J∞ := lim
ξ−→∞

sup|x|≤ξ

∑n
j= –Jj(x)

ξ  < ∞, ()

and for every μ ∈ [,μJ ,λ[ where μJ ,λ := C
TkJ∞ ( – λ

λ
), the problem (Dλ,μ) has an unbounded

sequence of classical solutions.

Proof Fix λ ∈ ]λ,λ[ and assume that Ij, j = , . . . , n, are the functions satisfying the con-
dition (). Since λ < λ, one has μJ ,λ > . Fix μ ∈ [,μJ ,λ[ and put ν := λ and ν :=

Cλ
C+ μ

λ
λTkJ∞

. If J∞ = , clearly, ν = λ and ν = λ, and λ ∈ ]ν,ν[. If J∞ �= , since μ < μJ ,λ,

we obtain λ
λ

+ μTkJ∞
C

< , and so Cλ
C+ μ

λ
λTkJ∞

> λ, namely, λ < ν. Hence, since λ > λ = ν,

one has λ ∈ ]ν,ν[. Now, set Q(t, x) = F(t, x) – μ

λ

∑n
j= Jj(x) for all (t, x) ∈ [, T] × R. Take
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X = Eα and define on X two functionals � and � by setting, for each u ∈ X,

�(u) :=


‖u‖

a,α –
∫ T


H

(
u(t)

)
dt

and

�(u) =
∫ T


F
(
t, u(t)

)
dt –

μ

λ

n∑

j=

Jj
(
u(tj)

)
.

It is clear that � is a Gâteaux differentiable functional, sequentially weakly upper semi-
continuous, whose Gâteaux derivative at the point u ∈ X is the functional � ′(u) ∈ X∗,
given by

� ′(u)v =
∫ T


f
(
t, u(t)

)
v(t) dt –

μ

λ

n∑

j=

Ij
(
u(tj)

)
v(tj)

for every v ∈ X, and � ′ : X → X∗ is a compact operator (see []). Moreover, � is a Gâteaux
differentiable functional of which the Gâteaux derivative at the point u ∈ X is the func-
tional �′(u) ∈ X∗, given by

�′(u)v =
∫ T



[(c
Dα

t u(t)
)(c

Dα
t v(t)

)
+ a(t)u(t)v(t)

]
dt –

∫ T


h
(
u(t)

)
v(t) dt

for every v ∈ X. Moreover, by the sequentially weakly lower semi-continuity of ‖u‖a,α and
the continuity of H , � is sequentially weakly lower semi-continuous in X. Now from the
facts –L|ξ | ≤ h(ξ ) ≤ L|ξ | for every ξ ∈ R, and taking () and () into account, for every
u ∈ X we have

C‖u‖
a,α ≤ �(u) ≤ C‖u‖

a,α . ()

Put Iλ := � – λ� . Now, we are to demonstrate that γ < +∞, where γ has been defined in
Theorem .. Let {ξn} be a real sequence such that ξn >  for all n ∈ N and ξn → +∞ as
n → ∞ and

lim
n→∞

∫ T
 sup|x|≤ξn Q(t, x) dt

ξ 
n

= lim inf
ξ→+∞

∫ T
 sup|x|≤ξ Q(t, x) dt

ξ  .

Put rn = Cξ
n

k for all n ∈N. Since ξn > , rn >  for all n ∈ N. Now let u ∈ �–(–∞, rn), owing
to (), we have

C‖u‖
a,α ≤ �(u) < rn. ()

By () and () we have ‖u‖∞ ≤ ξn. Thus

�–(–∞, rn) ⊆ {
u : ‖u‖∞ ≤ ξn

}
.
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Hence, since �() = �() = , for every n large enough, one has

ϕ(rn) = inf
u∈�–(–∞,rn)

(supv∈�–(–∞,rn) �(v)) – �(u)
rn – �(u)

≤ supv∈�–(–∞,rn) �(v)
rn

≤
∫ T

 sup|x|≤ξn Q(t, x) dt
Cξ

n
k

=

∫ T
 sup|x|≤ξn (F(t, x) – μ

λ

∑n
j= Jj(x)) dt

Cξ
n

k

≤
∫ T

 sup|x|≤ξn F(t, x) dt
Cξ

n
k

+
μ

λ

T sup|x|≤ξn

∑n
j= –Jj(x)

Cξ
n

k

.

Moreover, by Assumption (A) one has

lim inf
ξ−→+∞

∫ T
 sup|x|≤ξ F(t, x) dt

Cξ

k

< +∞,

which implies

lim
n→∞

∫ T
 sup|x|≤ξn F(t, x) dt

Cξ
n

k

< +∞. ()

Then, regarding () and (), we have

lim
n→∞

∫ T
 sup|x|≤ξn F(t, x) dt

Cξ
n

k

+ lim
n→∞

μ

λ

T sup|x|≤ξn

∑n
j= –Jj(x)

Cξ
n

k

< +∞,

from which follows

lim
n→∞

∫ T
 sup|x|≤ξn (F(t, x) – μ

λ

∑n
j= Jj(x)) dt

Cξ
n

k

< +∞.

Therefore,

γ ≤ lim inf
n→+∞ ϕ(rn) ≤ lim

n→∞

∫ T
 sup|x|≤ξn (F(t, x) – μ

λ

∑n
j= Jj(x)) dt

Cξ
n

k

< +∞. ()

Since

∫ T
 sup|x|≤ξn Q(t, x) dt

ξ 
n

≤
∫ T

 sup|x|≤ξn F(t, x) dt
ξ 

n
+

μ

λ

T sup|x|≤ξn

∑n
j= –Jj(x)

ξ 
n

,

taking () into account, one has

lim inf
ξ→+∞

∫ T
 sup|x|≤ξ Q(t, x) dt

ξ  ≤ lim inf
ξ→+∞

∫ T
 sup|x|≤ξ F(t, x) dt

ξ  +
μT
λ

J∞. ()
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Moreover, Jj, j = , . . . , n, are non-positive, we have

lim sup
|ξ |→+∞

∫ T


T


Q(t, ξ ) dt

ξ  ≥ lim sup
|ξ |→+∞

∫ T


T


F(t, ξ ) dt

ξ  . ()

Therefore, from () and (), and from Assumption (A) and (), one has

λ ∈ ]ν,ν[ ⊆
]

(A(α) + T‖a‖∞
 )C

lim sup|ξ |−→+∞

∫ T


T


F(t,ξ ) dt

ξ

,
C

k lim infξ−→+∞
∫ T

 sup|x|≤ξ F(t,x) dt
ξ

[

⊆
]

,

γ

[
.

For the fixed λ, the inequality () guarantees that the condition (b) of Theorem . can be
used and either Iλ has a global minimum or there is a series {un} of weak solutions of the
problem (Dλ,μ), so that limn→∞ ‖u‖a,α = +∞.

The other step is to investigate that the functional Iλ has no global minimum. Since


λ

< lim sup
|ξ |→+∞

∫ T


T


F(t, ξ ) dt

(A(α) + T‖a‖∞
 )Cξ 

,

we can consider a real sequence {γn} and a positive constant τ so that γn → +∞ as n → ∞
and


λ

< τ <

∫ T


T


F(t,γn) dt

(A(α) + T‖a‖∞
 )Cγ 

n
()

for each n ∈ N large enough. Let {wn} be a sequence in X defined by

wn(t) =

⎧
⎪⎨

⎪⎩

γn
T t, if t ∈ [, T

 ),
γn, if t ∈ [ T

 , T
 ],

γn
T (T – t), if t ∈ ( T

 , T].
()

Obviously, one has

w′
n(t) =

⎧
⎪⎨

⎪⎩

γn
T , if t ∈ (, T

 ),
, if t ∈ ( T

 , T
 ),

– γn
T , if t ∈ ( T

 , T),

and

∣
∣c
Dα

t w(t)
∣
∣ =


�( – α)

(∫ T


(t – s)–αw′(s) ds

)

=


�( – α)

⎧
⎪⎨

⎪⎩

γn
T

t–α

–α
, if t ∈ [, T

 ),
γn
T

( T
 )–α

–α
, if t ∈ [ T

 , T
 ],

γn
T


–α

[( T
 )–α – (t – ( T

 ))–α], if t ∈ ( T
 , T],
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so that

‖wn‖
a,α = A(α)γ 

n +
∫ T


a(t)

∣∣wn(t)
∣∣ dt ≤

(
A(α) +

T‖a‖∞


)
γ 

n ,

and particularly, considering (), it follows that

�(wn) ≤
(

A(α) +
T‖a‖∞



)
Cγ


n . ()

On the other hand, based on the non-positivity of Jj, j = , . . . , n, we observe that

�(wn) ≥
∫ T



T


F(t,γn) dt. ()

So, from (), (), and () we have

Iλ(wn) = �(wn) – λ�(wn) ≤
(

A(α) +
T‖a‖∞



)
Cγ


n – λ

(∫ T


T


F(t,γn) dt
)

< ( – λτ )
(

A(α) +
T‖a‖∞



)
Cγ


n ,

for every n ∈ N large enough. Hence, the functional Iλ is unbounded from below, and
it shows that Iλ has no global minimum. Therefore, Theorem . ensures that there is
a sequence {un} ⊂ X of critical points of Iλ so that limn→∞ �(un) = +∞, which from ()
shows that limn→∞ ‖un‖a,α = +∞. Since the critical points of Iλ are the weak solutions
of the problem (Dλ,μ), and thanks to Lemma ., and considering that they are classical
solutions, we have the conclusion. �

Remark . The condition non-positivity of Jj, j = , . . . , n, can be replaced by the follow-
ing one:

(I) Ij() =  and Ij(s)s <  for all j = , . . . , n.
In fact, by this assumption for every j = , . . . , n we have Jj(x) =

∫ x
 Ij(ξ ) dξ ≤  for x ∈R.

Remark . Under the conditions

lim inf
ξ−→+∞

∫ T
 sup|x|≤ξ F(t, x) dt

ξ  =  and lim sup
ξ−→+∞

∫ T


T


F(t, ξ ) dt

ξ  = ∞,

Theorem . ensures that for every λ >  and for each μ ∈ [, 
J∞ [ the problem (Dλ,μ) ad-

mits infinitely many classical solutions. Moreover, if J∞ = , the result holds for every λ > 
and μ ≥ .

Now, we give an application of Theorem ..

Example . Let α = 
 , T = , n = , t = 

 , and put

an :=
n!(n + )! – 

(n + )!
, bn :=

n!(n + )! + 
(n + )!
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for every n ∈N. Consider the problem

tD



(c

D


t u(t)

)
+ a(t)u(t) = λf

(
t, u(t)

)
+ h

(
u(t)

)
, t �= t, a.e. t ∈ [, ],

�
(

tD
– 




(c
D



t u

))( 


)
= μI

(
u
(




))
,

u() = u() = ,

()

where a(t) =  + cos t for all t ∈ [, ],

f (t, x) =

{
t(n+)![(n+)!–n!]

π

√


(n+)! – (x – n!(n+)
 ) if (t, x) ∈ [, ] × ⋃

n∈N[an, bn],
 elsewhere,

h(x) = �( 
 )

 ln( + x), for all x ∈ R and I(x) = ex– (x–)( – x–) where x– = min{x, }, for all

x ∈ R. According to the data above we have k = �–( 
 ), ‖a‖∞ = , L = �( 

 )
 , C = .,

C = ., A( 
 ) = . √�–( 

 ), and
∫ (n+)!

n! f (, x) dx = (n + )! – n! for every n ∈ N.
Then one has limn−→+∞ F(,an)

a
n

=  and limn−→+∞ F(,bn)
b

n
= . So, lim infξ−→∞ F(,ξ )

ξ =  and

lim supξ−→∞
F(,ξ )

ξ = . Therefore,

lim inf
ξ−→+∞

∫ 
 sup|x|≤ξ F(t, x) dt

|ξ | = lim inf
ξ−→+∞

∫ 
 t sup|x|≤ξ F(, x) dt

|ξ | = 

and

C

(A( 
 ) + T‖a‖∞

 )kC
lim sup
ξ−→+∞

∫ 





F(t, ξ ) dt

|ξ |

=
�( 

 )
( + . √�–( 

 ))
lim sup
ξ−→+∞

F(, ξ )
|ξ |

=
�( 

 )
( + . √�–( 

 ))
.

Hence, using Theorem ., since

J∞ := lim
ξ−→∞

sup|x|≤ξ (–J(x))
ξ  =  < ∞,

the problem () for every λ > (+. √�–( 
 ))

�( 
 )

and μ ∈ [, +∞) has an unbounded
sequence of classical solutions.

Remark . The following condition:

(A′) there exist two sequence {θn} and {ηn} with ηn >  for every n ∈N and

(
A(α) +

T‖a‖∞


)
Cθ


n <

C

k η
n
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for all n ∈ N and limn→+∞ ηn = +∞ such that

lim
n→+∞

∫ T
 sup|x|≤ηn F(t, x) dt –

∫ T


T


F(t, θn) dt
C
k η

n – (A(α) + T‖a‖∞
 )Cθ

n
< lim sup

|ξ |−→+∞

∫ T


T


F(t, ξ ) dt

(A(α) + T‖a‖∞
 )Cξ 

is more general than condition (A) of Theorem .. In fact, by choosing θn =  for all
n ∈ N from (A′) we obtain (A). If we assume (A′) instead of (A) and choose rn = Cη

n
k

for all n ∈N, by the same arguing as for Theorem ., we obtain

ϕ(rn) ≤ supv∈�–(]–∞,rn]) �(v) –
∫ T

 F(t, wn(t)) dt

rn – 
‖wn‖

a,α +
∫ T

 H(wn(t)) dt

≤
∫ t

 sup|x|≤ηn F(t, x) dt –
∫ T


T


F(t, θn) dt
C
k η

n – (A(α) + T‖a‖∞
 )Cθ

n
,

where wn(t) is the same as () but γn replaced by θn, and we have the same conclusion as
in Theorem . with the interval ]λ,λ[ replaced by the interval

�′ =

]


lim sup|ξ |−→+∞

∫ T


T


F(t,ξ ) dt

(A(α)+ T‖a‖∞
 )Cξ

,


k limn→+∞

∫ T
 sup|x|≤ηn F(t,x) dt–

∫ T


T


F(t,θn) dt

Cη
n–(A(α)+ T‖a‖∞

 )kCθ
n

[

.

Here, we point out a simple consequence of Theorem ..

Corollary . Assume that Assumption (A) holds. Furthermore, suppose that

(B) lim infξ−→+∞
∫ T

 sup|x|≤ξ F(t,x) dt
ξ < C

k ;

(B) lim supξ−→+∞

∫ T


T


F(t,ξ ) dt

ξ > (A(α) + T‖a‖∞
 )C,

for all continuous functions Ij : R −→ R, j = , . . . , n, for which Jj(x) =
∫ x

 Ij(ξ ) dξ , j = , . . . , n,
for every x ∈ R are non-positive functions and satisfy the condition (), and for every μ ∈
[,μJ ,[ where

μJ , :=
C

TkJ∞

(
 –

k

C
lim inf
ξ→+∞

∫ T
 sup|x|≤ξ F(t, x) dt

ξ 

)
,

the problem

tDα
T
(c

Dα
t u(t)

)
+ a(t)u(t) = f

(
t, u(t)

)
+ h

(
u(t)

)
, t �= tj, a.e. t ∈ [, T],

�
(

tDα–
T

(c
Dα

t u
))

(tj) = μIj
(
u(tj)

)
, j = , . . . n,

u() = u(T) = ,

has an unbounded sequence of classical solutions.

Remark . Theorem . is an immediately consequence of Corollary . when μ = .

We here give the following consequence of the main result.
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Corollary . Let f : [, T] −→ R be a non-negative continuous function and let F(x) =
∫ x

 f(ξ ) dξ for all x ∈R. Assume that
(D) lim infξ−→+∞ F(ξ )

ξ < +∞;
(D) lim supξ−→+∞

F(ξ )
ξ = +∞.

Then, for every bi ∈ L([, T]) for  ≤ i ≤ n, with minx∈[,T]{bi(x),  ≤ i ≤ n} >  and with
b �= , and for any non-negative continuous functions fi : R →R with Fi(x) =

∫ x
 fi(ξ ) dξ for

all x ∈R for  ≤ i ≤ n, satisfying

max
{

sup
ξ∈R

Fi(ξ );  ≤ i ≤ n
}

≤ 

and

min

{
lim inf
ξ→+∞

Fi(ξ )
ξ  ;  ≤ i ≤ n

}
> –∞,

for each

λ ∈
]

,
C

k lim infξ→+∞ F(ξ )
ξ

[
,

for all continuous function Ij : R −→ R,  ≤ j ≤ n, for which Jj(x) =
∫ x

 Ij(ξ ) dξ ,  ≤ j ≤ n,
for every x ∈ R are non-positive functions and satisfy the condition (), and for every μ ∈
[,μJ ,λ[ where

μJ ,λ :=
C

TkJ∞

(
 –

λTk

C
lim inf
ξ→+∞

F(ξ )
ξ 

)
,

the problem

tDα
T
(c

Dα
t u(t)

)
+ a(t)u(t) = λ

n∑

i=

bi(t)fi
(
u(t)

)
+ h

(
u(t)

)
, t �= tj, a.e. t ∈ [, T],

�
(

tDα–
T

(c
Dα

t u
))

(tj) = μIj
(
u(tj)

)
, j = , . . . , n,

u() = u(T) = ,

has an unbounded sequence of classical solutions.

Proof Set F(ξ ) =
∑n

i= b(t)Fi(ξ ) for all ξ ∈R. Assumption (D) along with the condition

min

{
lim inf

ξ→R

Fi(ξ )
ξ  ;  ≤ i ≤ n

}
> –∞

ensures

lim sup
ξ−→+∞

∫ T


T


F(t, ξ ) dt

ξ  = lim sup
ξ→+∞

∑n
i= Fi(ξ )

∫ T


T


bi(t) dt

ξ  = +∞.

Moreover, from the assumption (D) and the condition

max
{

sup
ξ∈R

Fi(ξ );  ≤ i ≤ n
}

≤ ,



Heidarkhani et al. Advances in Difference Equations  (2016) 2016:196 Page 15 of 19

we obtain

lim inf
ξ−→+∞

∫ T
 sup|x|≤ξ F(t, x) dt

ξ  ≤
(∫ T


b(t) dt

)
lim inf
ξ−→+∞

F(ξ )
ξ  < +∞.

Hence, the conclusion follows from Theorem .. �

Arguing as in the proof of Theorem ., but using conclusion (c) of Theorem . instead
of (b), one establishes the following result.

Theorem . Assume that Assumption (A) holds. Furthermore, suppose that

(E) lim infξ−→+

∫ T
 sup|x|≤ξ F(t,x) dt

ξ < C
(A(α)+ T‖a‖∞

 )kC
lim supξ−→+

∫ T


T


F(t,ξ ) dt

ξ .
Then, for each λ ∈ ]λ,λ[ where

λ :=
(A(α) + T‖a‖∞

 )C

lim supξ−→+

∫ T


T


F(t,ξ ) dt

ξ

and

λ :=
C

k lim infξ−→+

∫ T
 sup|x|≤ξ F(t,x) dt

ξ

,

for all continuous functions Ij : R −→ R, j = , . . . , n, for which Jj(x) =
∫ x

 Ij(ξ ) dξ , j = , . . . , n,
for every x ∈R are non-positive functions and satisfy the condition

J := lim
ξ−→+

∫ T
 sup|x|≤ξ G(t, x) dt

ξ  < +∞, ()

and for every μ ∈ [,μJ ,λ[ where μJ ,λ := C
TkJ

( – λk

C
lim infξ→+

∫ T
 sup|x|≤ξ F(t,x) dt

ξ ), the prob-
lem (Dλ,μ) has a sequence of pairwise distinct classical solutions which strongly converges
to  in Eα .

Proof Fix λ ∈ ]λ,λ[ and let Ij, j = , . . . n, are the functions satisfying the condition ().
Since λ < λ, one has μJ ,λ > . Fix μ ∈ ],μJ ,λ[ and set ν := λ and ν := λC

C+ μ

λ
λTkJ

. If

J = , clearly, ν = λ, ν = λ, and λ ∈ ]ν,ν[. If J �= , since μ < μJ ,λ, one has

λ

λ
+

μTkJ

C
< ,

and so

Cλ

C + μ

λ
λTkJ

> λ,

namely, λ < ν. Hence, recalling that λ > λ = ν, one has λ ∈ ]ν,ν[.
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Now, put Q(t, x) = F(t, x) – μ

λ

∑n
j= Jj(x) for all x ∈R and t ∈ [, T]. Since

∫ T
 sup|x|≤ξ Q(t, x) dt

ξ  ≤
∫ T

 sup|x|≤ξ F(t, x) dt
ξ  +

μ

λ

T sup|x|≤ξ

∑n
j= –Jj(x)

ξ  ,

taking () into account, one has

lim inf
ξ→+

∫ T
 sup|x|≤ξ Q(t, x) dt

ξ  ≤ lim inf
ξ→+

∫ T
 sup|x|≤ξ F(t, x) dt

ξ  +
μT
λ

J. ()

Moreover, since Jj, j = , . . . , n, are non-positive, we have

lim sup
ξ−→+

∫ T


T


Q(t, ξ ) dt

ξ  ≥ lim sup
ξ−→+

∫ T


T


F(t, ξ ) dt

ξ  . ()

Therefore, from () and (), we obtain

λ ∈ ]ν,ν[⊆
]

(A(α) + T‖a‖∞
 )C

lim sup|ξ |−→+

∫ T


T


F(t,ξ ) dt

ξ

,
C

k lim infξ−→+

∫ T
 sup|x|≤ξ F(t,x) dt

ξ

[

⊆ ]λ,λ[.

We take X, �, � , and Iλ as in the proof of Theorem .. We prove that δ < +∞. For this
purpose, let {ξn} be a sequence of positive numbers such that ξn → + as n → +∞ and

lim
n→∞

∫ T
 sup|x|≤ξn F(t, x) dt

ξ 
n

< +∞.

Put rn = Cξ
n

k for all n ∈N. Let us show that the functional Iλ has no local minimum at zero.
For this purpose, let {γn} be a sequence of positive numbers and τ >  such that γn → +

as n → ∞ and


λ

< τ <

∫ T


T


F(t,γn) dt

(A(α) + T‖a‖∞
 )Cγ 

n
()

for each n ∈N large enough. Let {wn} be a sequence in X defined by (). So, owing to (),
(), and () we obtain

Iλ(wn) = �(wn) – λ�(wn) ≤
(

A(α) +
T‖a‖∞



)
Cγ


n – λ

∫ T


T


F(t,γn) dt

< ( – λτ )
(

A(α) +
T‖a‖∞



)
Cγ


n < 

for every n ∈N large enough. Since Iλ() = ,  is not a local minimum of the functional Iλ.
Hence, the part (c) of Theorem . ensures that there exists a sequence {un} in X of critical
points of Iλ such that ‖un‖a,α →  as n → ∞, and the proof is complete. �
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Remark . Applying Theorem ., results similar to Remark ., and Corollaries .
and . can be obtained.

We end this paper by giving the following example as an application of Theorem ..

Example . Let α = ., T = , n = , t = 
 , t = 

 , a(t) = 
t+ for all t ∈ [, ], f :

[, ] × (R \ {}) −→ R be the function defined by

f(x) = x
(

ln

(
ln

(


x

))
– ln–

(

x

))
sin

(
ln

(
ln

(
ln

(

x

))))

– x ln–
(


x

)
sin

(
ln

(
ln

(
ln

(

x

))))

+ x ln–
(


x

)(
 + ln

(


x

))

and

f (t, x) =

{
etf(x) if (t, x) ∈ [, ] × (R \ {}),
 if (t, x) ∈ [, ] × {},

and let h(x) = �(.)
 arctan x, for all x ∈R, I(x) = – x

 , and I(x) = – x
 for all x ∈R. A direct

calculation shows

F(t, x) =

{
etx ln(ln( 

x )) sin(ln(ln(ln( 
x )))) + x ln–( 

x ), if (t, x) ∈ [, ] × (R \{}),
 if (t, x) ∈ [, ] × {}.

According to the data above we have k = �–(.), L = �(.)
 , C = . > , C = .,

and

lim inf
ξ−→+

∫ 
 sup|x|≤ξ F(t, x) dt

ξ  =  and lim sup
ξ−→+

∫ 





F(t, ξ ) dt

ξ  = +∞.

Hence, using Theorem ., since

J := lim
ξ−→+

sup|x|≤ξ (–J(x) – J(x))
ξ  =




< ∞,

the problem

tD.


(c
D.

t u(t)
)

+
u(t)
t + 

= λf
(
t, u(t)

)
+

�(.)


arctan
(
u(t)

)
,

t �= 


, t �= 


a.e. t ∈ [, ],

�
(

tD–.


(c
D.

t u
))

(



)
= –

μ



(
u
(




))
,

�
(

tD–.


(c
D.

t u
))

(



)
= –

μ



(
u
(




))

u() = u() = ,
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for every (λ,μ) ∈ ], +∞[×[, �(.)
 [ has a sequence of pairwise distinct classical solu-

tions which strongly converges to  in E..
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