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Abstract
This paper studies higher-order nonlinear neutral delay difference equations of the
form

Δ(rm–1
n (Δ(rm–2

n (· · · (Δ(r1n(Δ(xn + pnxn–τ ))
γ1))

γ2 · · · )γm–2))
γm–1)

= f (n, xn–τ1 , . . . , xn–τs ).

Using Krasnoselskii’s fixed point theorem, we obtain the existence of uncountably
many bounded positive solutions to the considered problem.

Keywords: nonlinear difference equation; neutral type; Krasnoselskii’s fixed point
theorem

1 Introduction and preliminaries
In mathematical models in diverse areas such as economy, biology, computer science, dif-
ference equations appear in a natural way; see, for example, [, ]. In the past thirty years,
oscillation, nonoscillation, the asymptotic behavior and existence of bounded solutions to
many types of difference equation have been widely examined. For the second order, see,
for example, [–], and for higher orders, [–], and references therein.

Liu et al. [] discussed the existence of uncountably many bounded positive solutions
to

Δ
(
rnΔ(xn + bnxn–τ – cn)

)
+ f

(
n, x

(
f(n)

)
, . . . , x

(
fk(n)

))
= dn

with respect (bn). Using techniques of the measures of noncompactness, Galewski et al.
[] considered

Δ
(
rn

(
Δ(xn + pnxn–τ )

)γ )
+ qnxα

n + anf (xn+) = .

Migda and Schmeidel [] studied the following equation:

Δ
(
rm–

n Δ
(
rm–

n · · ·Δ(
r

nΔ(xn + pnxn–τ )
) · · · )) = anf (xn–σ ) + bn.
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They established sufficient conditions under which for every real constant, there exists a
solution to the studied problem convergent to this constant.

In this paper, we study higher-order nonlinear neutral delay difference equations of the
form

Δ
(
rm–

n
(
Δ

(
rm–

n
(· · · (Δ(

r
n
(
Δ(xn + pnxn–τ )

)γ))γ · · · )γm–))γm–)

= f (n, xn–τ , . . . , xn–τs ) ()

under the following general settings:

(H) m ≥ , γ, . . . ,γm– ≤  are ratios of odd positive integers, τ ∈ N, τ, . . . , τs ∈ Z, (pn) ⊂
R, ri = (ri

n) ⊂R \ {}, i = , . . . , m – , and f : N×R
s →R.

Additional conditions will be added to obtain the existence of uncountably many positive
(nonoscillatory) solutions to equation (). Krasnoselskii’s fixed point theorem will be used
to prove our results. To illustrate them, three examples are included.

Throughout this paper, we assume that Δ is the forward difference operator. By a so-
lution to equation () we mean a sequence x : N → R that satisfies () for every n ≥ k for
some k ≥ max{τ , τ, . . . , τs}.

We consider the Banach space l∞ of all real bounded sequences x : N → R equipped
with the standard supremum norm, that is, for x = (xn) ∈ l∞,

‖x‖ = sup
n∈N

|xn|.

Definition  ([]) A subset A of l∞ is said to be uniformly Cauchy if for every ε > , there
exists n ∈ N such that |xi – xj| < ε for any i, j ≥ n and x = (xn) ∈ A.

Theorem  ([]) A bounded, uniformly Cauchy subset of l∞ is relatively compact.

We shall use Krasnoselskii’s fixed point theorem in the following form.

Theorem  ([], .B, p.) Let X be a Banach space, B be a bounded closed convex
subset of X, and S, G : B → X be mappings such that Sx + Gy ∈ B for any x, y ∈ B. If S is a
contraction and G is a compact, then the equation

Sx + Gx = x

has a solution in B.

2 Main results
For any nonnegative sequence y = (yn) and n ∈N, we use the notation

W(n, y) =
∞∑

l=n

yl ;

W(n, y) =
∞∑

l=n

(∣∣
∣∣


rm–

l

∣∣
∣∣

∞∑

l=l

yl

)γ –
m–

=
∞∑

l=n

(
W(l, y)
|rm–

l |
)γ –

m–
;

. . . ;
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Wk(n, y) =
∞∑

lk =n

(
Wk–(lk , y)
|rm–k+

lk |
)γ –

m–k+
, k = , . . . , m.

By [, M]s we denote the set [, M] × · · · × [, M] ⊂R
s.

Now we are in position to formulate and prove the main theorem.

Theorem  Suppose that (H) is satisfied. Assume further that

(H) supn∈N |pn| = p� < /;
(H) there exists M >  such that for any n ∈ N, the function f (n, ·) is a Lipschitz function

on [, M]s with Lipschitz constant P(n, M) satisfying

∞∑

lm=

∣
∣∣
∣


r

lm

∣
∣∣
∣

γ –
 ∞∑

lm–=lm

∣
∣∣
∣


r

lm–

∣
∣∣
∣

γ –
 · · ·

∞∑

l=l

∣
∣∣
∣


rm–

l

∣
∣∣
∣

γ –
m– ∞∑

l=l

P(l, M) < ∞;

(H) Wm(, |f (·, Rs )|) < ∞.

Then, equation () possesses uncountably many bounded positive solutions lying in
[M/, M].

Proof Let M >  be a constant fulfilling assumption (H). It is easy to see that (H) implies
that

∞∑

l=

P(l, M) < ∞ ()

and

∞∑

lk =

∣∣
∣∣


rm–k+

lk

∣∣
∣∣

γ –
m–k+ · · ·

∞∑

l=l

∣∣
∣∣


rm–

l

∣∣
∣∣

γ –
m– ∞∑

l=l

P(l, M) < ∞, k = , . . . , m – . ()

From (H) it is clear that

∞∑

n=

∣∣f (n, Rs )
∣∣ < ∞, Wk

(
,

∣∣f (·, Rs )
∣∣) < ∞, k = , . . . , m. ()

Now we claim that (H) and () imply that

Wk
(
, P(·, M)

)
< ∞, k = , . . . , m. ()

Indeed, from () we get that there exists n such that for any n ≥ n, we have
∑∞

l=n P(l,
M) < ; hence, since γm– ≤ , we get that for any n ≥ n,

( ∞∑

l=n

P(l, M)

)γ –
m–

≤
∞∑

l=n

P(l, M).
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Thus, for any n ≥ n, we have

W
(
n, P(·, M)

)
=

∞∑

l=n

∣∣
∣∣
∣


rm–

l

∞∑

l=l

P(l, M)

∣∣
∣∣
∣

γ –
m–

≤
∞∑

l=n

∣
∣∣
∣


rm–

l

∣
∣∣
∣

γ –
m– ∞∑

l=l

P(l, M).

To prove that W(, P(·, M)) < ∞, we use the classical inequality

(a + b)α ≤ α–(aα + bα
)

for α ≥ , a, b > , ()

which gives

W
(
, P(·, M)

) ≤ W
(
n, P(·, M)

)
+

n–∑

l=

∣∣
∣∣
W(l, P(·, M))

rm–
l

∣∣
∣∣

γ –
m–

≤ W
(
n, P(·, M)

)

+
n–∑

l=

γ –
m––

|rm–
l |γ –

m–

((n–∑

l=l

P(l, M)

)γ –
m–

+

( ∞∑

l=n

P(l, M)

)γ –
m–

)

< ∞.

In an analogous way, we prove the remaining conditions in (). We now claim that

∞∑

n=

(
Wk(n, M

√
sP(·, M) + |f (·, Rs )|)
|rm–k

n |
)γ –

m–k
< ∞, k = , . . . , m – . ()

We give the proof of () for the case k =  and m = ; the other cases are analogous and
are left to the reader. Indeed, using (), we have

∞∑

l=

(
W(l, M

√
sP(·, M) + |f (·, Rs )|)

|r
l |

)γ –


=
∞∑

l=

(


|r
l |

∞∑

l=l

(
W(l, M

√
sP(·, M))

|r
l |

+
W(l, |f (·, Rs )|)

|r
l |

)γ –


)γ –


≤ (γ –
 –)γ –



∞∑

l=

(


|r
l |

( ∞∑

l=l

(
W(l, M

√
sP(·, M))

|r
l |

)γ –


+
∞∑

l=l

(
W(l, |f (·, Rs )|)

|r
l |

)γ –


))γ –


≤ (γ –
 –)γ –

 +γ –
 – ·

( ∞∑

l=

(
W(l, M

√
sP(·, M))

|r
l |

)γ –


+
∞∑

l=

(
W(l, |f (·, Rs )|)

|r
l |

)γ –


)

= (γ –
 –)γ –

 +γ –
 – · ((M

√
s)γ

–
 γ –

 W
(
, P(·, M)

)
+ W

(
,

∣
∣f (·, Rs )

∣
∣)) < ∞.
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Once the claim proved, observe that we may find n ≥ max{τ , τ, . . . , τs} such that

Wm
(
n, M

√
sP(·, M) +

∣∣f (·, Rs )
∣∣) < M

(



– p�

)
. ()

We consider a subset of l∞ of the form

An =
{

x = (xn) ∈ l∞ : xn = M/, n < n ∧ |xn – M/| ≤ M/, n ≥ n
}

.

Observe that An is a nonempty, bounded, convex, and closed subset of l∞.
Let us denote

ux
 (n) =

∞∑

l=n

f (l, xl–τ , . . . , xl–τs ), x = (xn), xn ∈ [, M], n ≥ max{τ, . . . , τs}.

The following takes care of showing that ux
 is well defined and bounded above. By (H),

for any x = (x, . . . , xs) ∈ [, M]s and for any n ∈N, we have

∣∣f (n, x)
∣∣ ≤ P(n, M)‖x‖Rs +

∣∣f (n, Rs )
∣∣ ≤ M

√
sP(n, M) +

∣∣f (n, Rs )
∣∣, ()

where ‖ · ‖Rs denotes the Euclidean norm in R
s. Thus, for any x = (xn) ∈ An and n ≥

max{τ, . . . , τs},

∣∣ux
 (n)

∣∣ ≤ W
(
n, M

√
sP(·, M) +

∣∣f (·, Rs )
∣∣). ()

Denote, for any x = (xn) ∈ An and n ≥ max{τ, . . . , τs},

ux
(n) =

∞∑

l=n

(
ux

 (l)
rm–

l

)γ –
m–

.

Thus, for any x = (xn) ∈ An and n ≥ max{τ, . . . , τs},

∣∣ux
(n)

∣∣ ≤ W
(
n, M

√
sP(·, M) +

∣∣f (·, Rs )
∣∣). ()

In an analogous way, for any x = (xn) ∈ An and n ≥ max{τ, . . . , τs}, we denote

ux
k(n) =

∞∑

l=n

(
ux

k–(l)
rm–k+

l

)γ –
m–k+

, k = , . . . , m.

Thus, for any k = , . . . , m, x = (xn) ∈ An , and n ≥ max{τ, . . . , τs},

∣
∣ux

k(n)
∣
∣ ≤ Wk

(
n, M

√
sP(·, M) +

∣
∣f (·, Rs )

∣
∣). ()

Define two mappings T, T : An → l∞ as follows:

(Tx)n =

⎧
⎨

⎩
 for  ≤ n < n,

–pnxn–τ for n ≥ n;
()
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(Tx)n =

⎧
⎨

⎩
M/ for  ≤ n < n,

M/ + (–)mux
m(n) for n ≥ n.

()

Our next goal is to check the assumptions of Theorem  (Krasnoselskii’s fixed point the-
orem). Firstly, we show that Tx + Ty ∈ An for x, y ∈ An . Let x, y ∈ An . For n < n,
(Tx + Ty)n = M/. For n ≥ n, from assumption (H), (), and () we get

∣∣(Tx + Ty)n – M/
∣∣ ≤ |pnxn–τ | +

∣∣ux
m(n)

∣∣ ≤ p�M + M
(
/ – p�

)
= M/.

It is easy to see that

‖Tx – Ty‖ ≤ p�‖x – y‖ for x, y ∈ An ,

so that T is a contraction.
To prove the continuity of T, notice that from () we get

∣
∣ux

m–(n)
∣
∣ ≤ Wm–

(
, M

√
sP(·, M) +

∣
∣f (·, Rs )

∣
∣) =: dm–

for any x = (xn) ∈ An and n ≥ max{τ, . . . , τs}. From the Lipschitz continuity of the function
x �→ xγ –

 on [, dm–] with constant Lγ , say, we have

∣
∣(Tx – Ty)n

∣
∣ ≤

∞∑

lm=n

∣∣
∣∣


r

lm

∣∣
∣∣

γ –


Lγ

∣
∣ux

m–(n) – uy
m–(n)

∣
∣

for any x, y ∈ An and n ≥ n. In an analogous way, by (), for any k = , . . . , m, we get
intervals [, dk] on which the function x �→ xγ –

k is Lipschitz continuous, say, with constant
Lγk > . Hence, for any x, y ∈ An and n ≥ n, we have

∣∣(Tx – Ty)n
∣∣ ≤ Lγ · . . . · Lγm– ·

∞∑

lm=n

∣
∣∣
∣


r

m

∣
∣∣
∣

γ –
 · · ·

∞∑

lk =lk+

∣
∣∣
∣


rm–k+

lk

∣
∣∣
∣

γ –
m–k+ · · ·

∞∑

l=l

∣
∣∣
∣


rm–

l

∣
∣∣
∣

γ –
m–

×
∞∑

l=l

∣
∣f (k, xk–τ , . . . , xk–τs ) – f (k, yk–τ , . . . , yk–τs )

∣
∣

≤ √
s ·

m–∏

j=

Lγj ·
( ∞∑

lm=n

∣∣
∣∣


r

m

∣∣
∣∣

γ –
 · · ·

∞∑

l=l

∣∣
∣∣


rm–

l

∣∣
∣∣

γ –
m– ∞∑

l=l

P(l, M)

)

‖x – y‖,

which, combined with (H), means that T is continuous on An .
Now we show that T(An ) is uniformly Cauchy. Let ε > . From () we get the existence

of nε ∈ N such that nε ≥ n and

Wm
(
nε , M

√
sP(·, M) +

∣∣f (·, Rs )
∣∣) < ε.

From () we have, for k, n ≥ nε ≥ n and for x = (xn) ∈ An ,

∣∣(Tx)n – (Tx)k
∣∣ ≤ 

∣∣ux
m(nε)

∣∣ ≤ Wm
(
nε , M

√
sP(·, M) +

∣∣f (·, Rs )
∣∣) < ε.
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Since T(An ) is uniformly Cauchy and bounded, by Theorem , T(An ) is relatively com-
pact in l∞, which means that T is a compact operator.

From Theorem  we get that there exists a fixed point x = (xn) of T + T on An . Hence,

xn + pnxn–τ = (–)mux
m(n) + M/

for n ≥ n. Applying the operator Δ to both sides of the last equation, raising to the power
γ (recalling that it is the ratio of odd positive integers), and multiplying by r

n, we get

r
n
(
Δ(xn + pnxn–τ )

)γ = (–)m–ux
m–(n)

for n ≥ n. Repeating this procedure m –  times, we get that x = (xn) is a solution to
equation () for n ≥ n with xn ∈ [M, M].

Now we prove the existence of uncountably many solutions to () lying in [M/, M].
Let M, M be such that M/ < M < M < M. It is easy to see that the assumptions of the
theorem are fulfilled for M, M. So there exist n, n ≥ max{τ , τ, . . . , τs} and x = (x

n) and
x = (x

n), each a fixed point of the operator Ti
 + Ti

 in Ani , respectively, where

(
Ti

x
)

n =

⎧
⎨

⎩
 for  ≤ n < ni,

–pnxn–τ for n ≥ ni;

(
Ti

x
)

n =

⎧
⎨

⎩
Mi/ for  ≤ n < ni,

Mi/ + (–)mux
m(n) for n ≥ ni.

Thus, xi are solutions to () for n ≥ max{n, n}. By () there exists n ∈ N, n ≥
max{n, n}, such that

∣
∣ux

m (n)
∣
∣ +

∣
∣ux

m (n)
∣
∣ ≤ /(M – M) for n ≥ n.

From this we get that, for n ≥ n,

∣∣x
n – x

n + pn
(
x

n–τ – x
n–τ

)∣∣ ≥ /(M – M) –
(∣∣ux

m (n)
∣∣ +

∣∣ux
m (n)

∣∣) > ,

which means that x and x are different solutions to () lying in [M/, M]. �

Remark  It is obvious that condition (H) in Theorem  can be replaced by the condition

(H′
) Wm(, |f (·, x)|) < ∞ for some x ∈ [, M]s.

3 Examples
Now, we present examples of equations for which our method can be applied.

Example  Let us consider the second-order nonlinear neutral delay difference equation

Δ
(√

nΔ(xn + pnxn–τ )
)

=
x

n–τ

(n – )(n + )
, ()
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where τ ∈N, τ ∈ Z, γ = , and (pn) is any sequence of real numbers such that supn∈N |pn| <
/. Moreover, r

n =
√

n, and f (n, u) = u

(n–)(n+) for n ∈N and u ∈R.
Since f (n, ·) ∈ C(R) for any n ∈ N, it follows that, for any n ∈ N, f (n, ·) is a locally Lips-

chitz function on R. Hence, for any n ∈N, f (n, ·) is a Lipschitz function on [, M] for any
M > . It is easy to calculate that P(n, M) = M

(n–)(n+) and

∞∑

l=


r

l

∞∑

l=l

P(l, M) =
∞∑

l=

√
l

∞∑

l=l

M
(l – )(l + )

=
∞∑

l=

M

√

l(l – )
< ∞,

so that assumption (H) of Theorem  is satisfied. To see that assumption (H) of The-
orem  is fulfilled, notice that f (n, ) = , n ∈ N. Hence, there exist uncountably many
solutions to () in any interval [M/, M] for any M > . On the other hand, Theorem .
in [] is inapplicable because

∞∑

l=


r

l

l–∑

l=

P(l, M) =
∞∑

l=

√
l

l–∑

l=

M
(l – )(l + )

=
∞∑

l=

M(l – )√
l(l – )

= ∞.

Example  Consider the third-order nonlinear neutral delay difference equation

Δ

(
n
[
Δ

(√
n + 

[
Δ

(
xn +

 + (–)n


xn–τ

)]/)]/)

=
(–)n sin(xn–τ ) – nx

n–τ

(n + n + )(x
n–τ + x

n–τ + )
, ()

where τ ∈ N, τ, τ ∈ Z, γ = /, γ = /. Moreover, pn = +(–)n

 , r
n =

√
n + , r

n = n, and
f (n, u, v) = (–)n sin(u)–nv

(n+n+)(u+v+) for any n ∈N and u, v ∈R.
Because f (n, ·) ∈ C(R) for any n ∈ N, f (n, ·) is a Lipschitz function on [, M] for any

M > . It is easy to calculate that there exists D(M) >  such that P(n, M) ≤ D(M)n

n+n+ for
sufficiently large n and

∞∑

l=

D(M)l


l
 + l

 + 
< ∞,

∞∑

l=


l


∞∑

l=l

D(M)l


l
 + l

 + 
< ∞,

and

∞∑

l=

√
l + 

∞∑

l=l


l


∞∑

l=l

D(M)l


l
 + l

 + 
< ∞.

Moreover, f (n, , ) = , n ∈ N. This means that the assumptions of Theorem  are satis-
fied. Hence, there exist uncountably many solutions to () in any interval [M/, M] for
any M > .

Example  Let us consider a nonlinear neutral delay difference equation of the form

Δ
((

Δ
(· · · (Δ(

Δ(xn + pnxn–τ )
)γ)γ · · · )γm–)γm–) =

x
n–τ

n , ()
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where m ∈ N, τ ∈ N, τ ∈ Z, and γ, . . . ,γm– are the ratios of odd positive integers. More-
over, (pn)n∈N is any sequence of real numbers such that supn∈N |pn| < /, r

n = · · · = rm–
n = ,

and f (n, u) = u

n for any n ∈N and u ∈R.
In an analogous way to Example , we have to check only assumption (H) of Theorem .

We have that f (n, ·) ∈ C(R) for any n ∈ N, and it is easy to calculate that P(n, M) = M

n

and

∞∑

lm=

∞∑

lm–=lm

· · ·
∞∑

l=l

∞∑

l=l

M

l
= M

(



)m

< ∞.

Hence, there exist uncountably many solutions to () in any interval [M/, M] for any
M > .
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