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Abstract
We provide a new proof of a classical result by Bressan on the Cauchy problem for
first-order differential inclusions with null initial condition. Our approach allows us to
prove the result directly for kth order differential inclusions, under weaker regularity
assumptions on the involved multifunction. Our result is the following: let a, b,M be
positive real numbers, withM ·max{a,ak} ≤ b, and let B and X be the closed balls in
Rn, centered at the origin with radius b andM, respectively. Let F : [0,a]× Bk → 2X be
a multifunction with nonempty closed values, such that F is
L([0,a])⊗B(Bk)-measurable, and for all t ∈ [0,a] the multifunction F(t, ·) is lower
semicontinuous. Then there exists u ∈Wk,∞([0,a],Rn) such that
u(k)(t) ∈ F(t,u(t),u′(t), . . . ,u(k–1)(t)) a.e. in [0,a], and u(i)(0) = 0Rn for all i = 0, . . . , k – 1.

Keywords: differential inclusions; Cauchy problem; generalized solutions;
discontinuous selections

1 Introduction
The importance of the theory of differential inclusions is well documented in the litera-
ture. Indeed, they play a crucial role in the study of many dynamical problems coming from
economics, social sciences, biology. They also provide a fundamental tool in control the-
ory. Moreover, differential inclusions are very useful when studying differential equations
with discontinuous right-hand side. For a detailed introduction to differential inclusions
and their applications, we refer the reader to [, ].

In the paper [], A. Bressan proved his classical and celebrated result on the Cauchy
problem for first-order differential inclusions, which we now state. In what follows, the
space Rn is considered with its Euclidean norm.

Theorem . (Theorem  of []) Let a > , and let B and X be the closed balls in Rn,
centered at the origin with radius b and M, respectively, with a ≤ b/M. Let F : [, a] × B →
X be a lower semicontinuous multifunction with nonempty closed values.

Then there exists an absolutely continuous u : [, a] → Rn such that u() = Rn and
u′(t) ∈ F(t, u(t)) for a.e. t ∈ [, a].

The aim of this note is simply to propose an alternative proof of Theorem ., completely
independent from the original one. Our approach also allows one to state Theorem . di-
rectly for kth-order differential inclusions, under slightly weaker regularity assumptions
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on F . That is, the joint lower semicontinuity of the multifunction F is replaced by joint
measurability and by the lower semicontinuity of F(t, ·). In this connection, we observe
that the original proof of Theorem . does not work if F is not jointly lower semicontin-
uous (see the Remark at p. of []).

Before stating our result, we fix some notations. If a > , k, n ∈ N and p ∈ [, +∞], we
denote by W k,p([, a], Rn) the set of all u ∈ Ck–([, a], Rn) such that u(k–) is absolutely
continuous in [, a] and u(k) ∈ Lp([, a], Rn). Moreover, we denote by L([, a]) and B(S)
the family of all measurable subsets of [, a] and the Borel family of the topological space
S, respectively. The following is our result.

Theorem . Let a, b, M be three positive real numbers, with M ·max{a, ak} ≤ b. Let X and
B be as in Theorem ., and let F : [, a]×Bk → X be a multifunction with nonempty closed
values. Assume that F is L([, a]) ⊗ B(Bk)-measurable, and that for all t ∈ [, a] the mul-
tifunction F(t, ·) is lower semicontinuous. Then there exists a function u ∈ W k,∞([, a], Rn)
such that

⎧
⎨

⎩

u(k)(t) ∈ F(t, u(t), u′(t), . . . , u(k–)(t)) for a.e. t ∈ [, a],

u(i)() = Rn for all i = , . . . , k – .
()

The proof of Theorem ., which will be given in Section , will follow from a more
general result, Theorem . below. It is mainly based on a recent existence result for dis-
continuous selections and on an existence result for operator inclusions, stated below as
Theorems . and ., respectively. In Section , conversely, we shall give some notations
and recall the results that we shall use in our proofs.

2 Preliminaries
Let n ∈ N. For all i ∈ {, . . . , n}, we shall denote by Pn,i : Rn → R the projection over the
ith axis. The space Rn is considered with its Euclidean norm ‖ · ‖n. If A ⊆ Rn, we denote
by conv(A) the closed convex hull of A. Moreover, we denote by mn the n-dimensional
Lebesgue measure in Rn. If [a, b] is a compact interval, we shall denote by AC([a, b], Rn)
the space of all absolutely continuos functions from [a, b] into Rn.

Let p ∈ [, +∞]. The space Lp([a, b], Rn) is considered with the usual norm

‖u‖Lp([a,b],Rn) :=

⎧
⎨

⎩

(
∫ b

a ‖u(t)‖p
n dt)


p if p < +∞,

esssupt∈[a,b] ‖u(t)‖n if p = +∞.

As usual, we put Lp([a, b]) := Lp([a, b], R). Moreover, if x ∈ Rn and r > , we put

Bn(x, r) :=
{

v ∈ Rn : ‖v – x‖n ≤ r
}

.

Let S, V be topological spaces, let F : S → V be a multifunction, and let x ∈ S. We
recall that the multifunction F is said to be lower semicontinuous at x if for any open set
A ⊆ V , with F(x) ∩ A �= ∅, there exists an open set B ⊆ S such that

x ∈ B ⊆ F–(A) :=
{

x ∈ S : F(x) ∩ A �= ∅}
.
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The multifunction F is said to be lower semicontinuous in S if it is lower semicontinuous
at each point x ∈ S. When the multifunction F is single valued, the above notion of lower
semicontinuity reduces to the usual notion of continuity (for single-valued maps).

If (T ,A) is a measurable space, a multifuncion F : T → V is said to be measurable
(resp., weakly measurable) if for any closed (resp., open) set W ⊆ V one has F–(W ) ∈ A.
For the basic definitions and facts about multifunctions, we refer the reader to [] and
[]. For what concerns measurable multifunctions, we also refer to []. In the following,
we shall make the obvious identification (Rn)k = Rnk whenever it is convenient for simpler
exposition.

For the sake of completeness, we now recall the results that we use in our proofs. We
start with the following very recent selection theorem.

Theorem . (Theorem . of []) Let T and X, X, . . . , Xk be Polish spaces, with k ∈ N,
and let X :=

∏k
j= Xj (endowed with the product topology). Let μ,ψ, . . . ,ψk be positive regu-

lar Borel measures over T , X, X, . . . , Xk , respectively, with μ finite and ψ, . . . ,ψk σ -finite.
Let S be a separable metric space, and let F : T × X → S be a multifunction with

nonempty complete values. Finally, let E ⊆ X be a given set. For all t ∈ T , let Ft : X → S be
the multifunction defined by putting

Ft(x, . . . , xk) := F(t, x, . . . , xk),

and let P∗,i : X → Xi be the projection over Xi. Assume that:
(i) the multifunction F is Tμ ⊗B(X)-measurable (Tμ denoting the completion of the

Borel σ -algebra B(T) of T with respect to the measure μ);
(ii) for a.e. t ∈ T , one has

{
x := (x, . . . , xk) ∈ X : Ft is not lower semicontinuous at x

} ⊆ E.

Then there exist sets Q, . . . , Qk , with

Qi ∈ B(Xi) and ψi(Qi) =  for all i = , . . . , k,

and a function φ : T × X → S such that:
(a) φ(t, x) ∈ F(t, x) for all (t, x) ∈ T × X ;
(b) for all x := (x, x, . . . , xk) ∈ X \ [(

⋃k
i= P–

∗,i(Qi)) ∪ E], the function φ(·, x) is
Tμ-measurable over T ;

(c) for a.e. t ∈ T , one has

{
x := (x, x, . . . , xk) ∈ X : φ(t, ·) is discontinuous at x

}

⊆ E ∪
[( k⋃

i=

P–
∗,i(Qi)

)]

.

We also recall the following proposition.

Proposition . (Proposition . of []) Let ψ : [a, b] × Rn → Rk be a given function,
E ⊆ Rn be a Lebesgue measurable set, with mn(E) = , and let D be a countable dense
subset of Rn, with D ∩ E = ∅. Assume that:
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(i) for all t ∈ [a, b], the function ψ(t, ·) is bounded;
(ii) for all x ∈ D, the function ψ(·, x) is L([a, b])-measurable.
Let G : [a, b] × Rn → Rk be the multifunction defined by setting, for each (t, x) ∈ [a, b] ×

Rn,

G(t, x) =
⋂

m∈N

conv
( ⋃

y∈D
‖y–x‖n≤ 

m

{
ψ(t, y)

}
)

.

Then one has:
(a) G has nonempty closed convex values;
(b) for all x ∈ Rn, the multifunction G(·, x) is L([a, b])-measurable;
(c) for all t ∈ [a, b], the multifunction G(t, ·) has closed graph;
(d) if t ∈ [a, b], and ψ(t, ·)|Rn\E is continuous at x ∈ Rn \ E, then one has

G(t, x) =
{
ψ(t, x)

}
.

The following existence result for operator inclusions is due to Naselli Ricceri and Ric-
ceri.

Theorem . (Theorem  of []) Let (T ,F ,μ) be a finite non-atomic complete measure
space; V a nonempty set; (X,‖ · ‖X), (Y ,‖ · ‖Y ) two separable real Banach spaces, with
Y finite-dimensional; p, q, s ∈ [, +∞], with q < +∞ and q ≤ p ≤ s; � : V → Ls(T , Y ) a
surjective and one-to-one operator; � : V → L(T , X) an operator such that, for every v ∈
Ls(T , Y ) and every sequence {vn} in Ls(T , Y ) weakly converging to v in Lq(T , Y ), the sequence
{�(�–(vn))} converges strongly to �(�–(v)) in L(T , X); ϕ : [, +∞[→ [, +∞] a non-
decreasing function such that

esssup
t∈T

∥
∥�(u)(t)

∥
∥

X ≤ ϕ
(∥
∥�(u)

∥
∥

Lp(T ,Y )

)

for all u ∈ V .
Further, let F : T × X → Y be a multifunction, with nonempty closed convex values,

satisfying the following conditions:
(i) for μ-almost every t ∈ T , the multifunction F(t, ·) has closed graph;

(ii) the set
{

x ∈ X : the multifunction F(·, x) is weakly measurable
}

is dense in X ;
(iii) there exists a number r >  such that the function

t → sup
‖x‖X≤ϕ(r)

d
(
Y , F(t, x)

)

belongs to Ls(T) and its norm in Lp(T) is less or equal to r.
Under such hypotheses, there exists ũ ∈ V such that

�(ũ)(t) ∈ F
(
t,�(ũ)(t)

)
μ-a.e.,

∥
∥�(ũ)(t)

∥
∥

Y ≤ sup
‖x‖X≤ϕ(r)

d
(
Y , F(t, x)

)
μ-a.e. in T .
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The two following results, concerning absolutely continuous functions, will be funda-
mental in the sequel. We recall that a function f : [a, b] → [α,β] is called an N-function if
it maps null sets into null sets.

Theorem . (Theorem  of []) Let f : [a, b] → R be continuous and strictly monotonic.
Then f – is absolutely continuous if and only if f ′ �=  almost everywhere on [a, b].

Theorem . (Theorem . of []) Let f be a continuous function of finite variation
with domain [a, b] ⊆ R and range [α,β] ⊆ R. Then f is an N-function if and only if f is
absolutely continuous.

Finally, we recall the following lemma.

Lemma . (Lemma . of []) Let (T ,D,μ) be a complete finite measure space, X be a
Polish space, Y , Z be two topological spaces, F : T × X → Z and H : T × Y → X be two
multifunctions. Assume that:

(a) F is D ⊗B(X)-measurable;
(b) H is D ⊗B(Y )-measurable and has closed values.
Then the multifunction G defined by G(t, y) = F(t, H(t, y)) for all (t, y) ∈ T × Y is D ⊗

B(Y )-measurable.

3 The result
Theorem . above follows from the following more general result.

Theorem . Let n, k ∈ N, a > , F : [, a] × (Rn)k → Rn a bounded multifunction with
nonempty closed values. Assume that F is L([, a]) ⊗ B((Rn)k)-measurable, and that for
all t ∈ [, a] the multifunction F(t, ·) is lower semicontinuous. Then there exists a solution
u ∈ W k,∞([, a], Rn) of problem ().

Proof Let H := conv(F([, a] × (Rn)k)). We now divide the proof into two steps.
Step . We first of all assume, in addition, that H ⊆ Rn

+ (the positive open orthant of
Rn). Let M >  be such that H ⊆ Bn(Rn , M). By Theorem ., there exist sets C ∈ B(R)
and K ∈ L([, a]), with m(C) = m(K) = , and a function ψ : [, a] × (Rn)k → H , such
that:

(a) ψ(t, ξ ) ∈ F(t, ξ ) for all (t, ξ ) ∈ [, a] × (Rn)k ;
(b) for all ξ ∈ (Rn)k \ [

⋃nk
i= P–

nk,i(C)], the function ψ(·, ξ ) is L([, a])-measurable;
(c) for all t ∈ [, a] \ K, one has

{
ξ ∈ (

Rn)k : ψ(t, ·) is discontinuous at ξ
} ⊆

[ nk⋃

i=

P–
nk,i(C)

]

.

Since mnk(
⋃nk

i= P–
nk,i(C)) = , there exists a countable set

D ⊆ (Rn)k \ [
⋃nk

i= P–
nk,i(C)], which is dense in Rnk .
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Let G : [, a]× (Rn)k → Rn be the multifunction defined by setting, for all (t, ξ ) ∈ [, a]×
(Rn)k ,

G(t, ξ ) :=
⋂

m∈N

conv
( ⋃

η∈D
‖η–ξ‖nk≤ 

m

{
ψ(t,η)

}
)

.

By Proposition . we get:

(a)′ G has nonempty closed convex values;
(b)′ for all ξ ∈ (Rn)k , the multifunction G(·, ξ ) is L([, a])-measurable;
(c)′ for all t ∈ [, a], the multifunction G(t, ·) has closed graph;
(d)′ if t ∈ [, a], and the function ψ(t, ·) is continuous at ξ ∈ (Rn)k , then one has G(t, ξ ) =

{ψ(t, ξ )}.

Moreover, we have G([, a] × (Rn)k) ⊆ H ⊆ Bn(, M).
Now, let φ : L∞([, a], Rn) → AC([, a], Rn) be defined by putting, for all v ∈ L∞([, a],

Rn),

φ(v)(t) =
∫ t


v(s) ds for all t ∈ [, a].

For each j = , . . . , k, let φj : L∞([, a], Rn) → Cj–([, a], Rn) be defined by putting, for all
v ∈ L∞([, a], Rn),

φj(v)(t) =
∫ t


φj–(v)(s) ds for all t ∈ [, a].

Let � : L∞([, a], Rn) → AC([, a], Rnk) be defined by putting, for all v ∈ L∞([, a], Rn),

�(v)(t) =
(
φk(v)(t),φk–(v)(t), . . . ,φ(v)(t)

)

for all t ∈ [, a]. Now we want to apply Theorem ., with T = [, a], s = p = +∞, q = ,
X = Rnk , Y = Rn, V = L∞([, a], Rn), �(v) = v, ϕ ≡ +∞, r = M, F = G and � defined as
above. To this aim, observe what follows.

(a)′′ For every v ∈ L∞([, a], Rn), and every sequence {vm} in L∞([, a], Rn), weakly
converging to v in L([, a], Rn), the sequence {�(vm)} converges strongly to �(v)
in L([, a], Rnk). To see this, let {vm} and v in L∞([, a], Rn) be fixed, with {vm}
weakly convergent to v in L([, a], Rn). It is quite easy to check that the sequence
{φ(vm)} converges pointwise in [, a] to φ(v). That is, for every t ∈ [a, b] one has
limm→∞ ‖φ(vm)(t) – φ(v)(t)‖n = . Since {vm} is weakly convergent in L([, a], Rn),
{vm} is bounded in L([, a], Rn). Consequently, for all m ∈ N and t ∈ [, a] we get

∥
∥φ(vm)(t) – φ(v)(t)

∥
∥

n ≤
∥
∥
∥
∥

∫ t


vm(s) ds

∥
∥
∥
∥

n
+

∥
∥φ(v)(t)

∥
∥

n

≤ ∥
∥φ(v)(t)

∥
∥

n + sup
j∈N

‖vj‖L([,a],Rn).
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By the dominated convergence theorem we get

lim
m→+∞

∫ a



∥
∥φ(vm)(t) – φ(v)(t)

∥
∥

n dt = ,

hence {φ(vm)} converges strongly to φ(v) in L([, a], Rn). Of course, this implies
that {φ(vm)} also converges weakly to φ(v) in L([, a], Rn). Consequently, using ex-
actly the same argument as before, it is immediately seen that {φ(vm)} also converges
strongly to φ(v) in L([, a], Rn). By using recursively the same argument as before,
we get that for each fixed j = , . . . , k, the sequence {φj(vm)} converges strongly to φj(v)
in L([, a], Rn). Of course, this implies that the whole sequence {�(vm)} converges
strongly to �(v) in L([, a], Rnk), as desired.

(b)′′ Let d denote the usual point-to-set distance in Rn, with respect to the norm ‖ · ‖n.
Then he function

ω : t ∈ [a, b] → sup
ξ∈Rnk

d
(
Rn , G(t, ξ )

)

belongs to L∞([, a]) and ‖ω‖L∞([a,b]) ≤ M (as regards the measurability of ω, we refer
to []).

Therefore, all the assumptions of Theorem . are satisfied. Consequently, there exists
a function v̂ ∈ L∞([, a], Rn) and a set K ∈L([, a]), with m(K) = , such that

v̂(t) ∈ G
(
t,�(v̂)(t)

)
for all t ∈ [, a] \ K. ()

In particular, by () and by the above construction we get

v̂(t) ∈ H ⊆ B(Rn , M) for all t ∈ [, a] \ K. ()

Fix i ∈ {, . . . , n}. Since H ⊆ Rn
+, by () we get

v̂i(t) >  for all t ∈ [, a] \ K

(where v̂i denotes the ith component of v̂). Then for a.e. t ∈ [, a] we have

φ(v̂)′i(t) = v̂i(t) > .

In particular, this implies that φ(v̂)i (which is absolutely continuous in [, a]) is strictly
increasing in [, a]. By Theorem ., the function (φ(v̂)i)– is absolutely continuous in
[, a]. Consequently, by Theorem ., the set

Wi, :=
(
φ(v̂)i

)–(C) =
{

t ∈ [, a] : φ(v̂)i(t) ∈ C
}

has null Lebesgue measure. Now, observe that

φ(v̂)′i(t) = φ(v̂)i(t) for all t ∈ [, a],
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hence, in particular,

φ(v̂)′i(t) >  for all t ∈], a].

Consequently, the function φ(v̂)i is strictly increasing in [, a]. Therefore, by Theorem .,
the function

(
φ(v̂)i

)–

is absolutely continuous, hence by Theorem . it maps null-measure sets into null-
measure sets. Therefore, if we put

Wi, :=
(
φ(v̂)i

)–(C) =
{

t ∈ [a, b] : φ(v̂)i(t) ∈ C
}

,

we get m(Wi,) = . Applying recursively the same argument, if for all j = , . . . , k we put

Wi,j :=
(
φj(v̂)i

)–(C) =
{

t ∈ [, a] : φj(v̂)i(t) ∈ C
}

,

we get m(Wi,j) = . Now, put

U := K ∪ K ∪
[ ⋃

i=,...,n
j=,...,k

Wi,j

]

.

Of course, m(U) = . Let t∗ ∈ [, a] \ U be fixed. Since t∗ /∈ ⋃
i=,...,n
j=,...,k

Wi,j, we immediately
get

�(v̂)
(
t∗) ∈ (

Rn)k
∖

[ kn⋃

i=

P–
kn,i(C)

]

,

hence, by (c), the function ψ(t∗, ·) is continuous at �(v̂)(t∗). Therefore, by () and (d)′ we
get

v̂
(
t∗) ∈ G

(
t∗,�(v̂)

(
t∗)) =

{
ψ

(
t∗,�(v̂)

(
t∗))} ⊆ F

(
t∗,�(v̂)

(
t∗)).

Hence, we have proved that

v̂(t) ∈ F
(
t,�(v̂)(t)

)
for all t ∈ [, a] \ U .

Now, take u := φk(v̂) ∈ Ck–([a, b], Rn). By the definition of the functions φi we get

u(j)(t) = φk–j(v̂)(t), ∀t ∈ [, a],∀j = , . . . , k – ,

and

u(k)(t) = v̂(t), for a.e. t ∈ [, a].
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Therefore,

�(v̂)(t) =
(
u(t), u′(t), . . . , u(k–)(t)

)
for all t ∈ [, a],

and the function u satisfies the conclusion.
Step . We now prove the result in its full generality. Fix y ∈ Rn such that y + H ⊆

Rn
+. Let F̂ : [, a] × (Rn)k → Rn be defined by putting, for all t ∈ [, a] and all ξ =

(ξ, ξ, . . . , ξk–) ∈ (Rn)k ,

F̂(t, ξ, ξ, . . . , ξk–) = y + F
(

t, ξ –
y

k!
tk , ξ –

y

(k – )!
tk–, . . . , ξk– –

y

!
t, ξk– – yt

)

.

Of course, for every fixed t ∈ [, a] the multifunction F̂(t, ·) is lower semicontinuous in
(Rn)k . Moreover, by Lemma ., F̂ is L([, a]) ⊗B((Rn)k)-measurable.

By the first part of the proof, there exists u ∈ W k,∞([, a], Rn) such that

⎧
⎨

⎩

u(k)(t) ∈ F̂(t, u(t), u′(t), . . . , u(k–)(t)) for a.e. t ∈ [, a],

u(i)() = Rn for all i = , . . . , k – .

It is immediate to check that the function v(t) = u(t) – y
k! tk satisfies the conclusion. �

Proof of Theorem . Let F∗ : [, a] × (Rn)k → X be defined by setting

F∗(t, ξ ) =

⎧
⎨

⎩

F(t, ξ ) if ξ ∈ Bk ,

X if ξ /∈ Bk .

Of course, F∗ is L([, a]) ⊗ B((Rn)k)-measurable, and for all t ∈ [, a] the multifunction
F∗(t, ·) is lower semicontinuous in (Rn)k . By Theorem ., there exists u ∈ W k,∞([, a], Rn)
such that

⎧
⎨

⎩

u(k)(t) ∈ F∗(t, u(t), u′(t), . . . , u(k–)(t)) for a.e. t ∈ [, a],

u(i)() = Rn for all i = , . . . , k – .

It is immediate to check that (u(t), u′(t), . . . , u(k–)(t)) ∈ Bk for all t ∈ [, a]. Consequently,
by the definition of F∗, the function u solves problem (). �

Remark . It is quite easy to construct examples of applications of Theorem ., where
the multifunction F is not jointly lower semicontinuous. For instance, one can take a = /,
b = , M = , n = k = , F : [, a] × [–, ] → R defined by F(t, x) = h(t) · G(x), where

h(t) =

⎧
⎨

⎩

 if t ∈ [, a] \ Q,

 if t ∈ [, a] ∩ Q,

and G(x) = [x + , x + ]. It is routine matter to check that all the assumptions of Theo-
rem . are satisfied (see [, ]), and that the multifunction F is not jointly lower semicon-
tinuous. Therefore, Theorem . applies, while Theorem . does not.
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