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Abstract
In this paper, stability results for the linear degenerate fractional differential system
with constant coefficients are presented. First of all, the explicit representation of
solution of the system is established based on the algebraic approach. Then stability
criteria for the system are given, which are straightforward and suitable for
application. Finally, some examples are provided to illustrate the application of the
results.
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1 Introduction
Recently, fractional differential equations have become more and more important due to
their varying applications in various fields of applied sciences and engineering, such as
the charge transport in amorphous semiconductors, the spread of contaminants in un-
derground water, the diffusion of pollution in the atmosphere, network traffic, etc. For
details, see [–] and references therein.

As in classical calculus, stability analysis plays a key role in control theory. Stability anal-
ysis of linear fractional differential equations has been carried out by various researchers
[–]. In [], Matignon provided famous stability results for finite-dimensional linear
fractional differential systems with constant coefficient matrix A. The main qualitative re-
sult is that the stability results are guaranteed iff the roots of the eigenfunction of the sys-
tem lie outside the closed angular sector | arg(λ(A))| ≤ πα

 , which generalized the results
for the integer case α = . Chen [] studied the stability of one-dimensional fractional
systems with retarded time by using Lambert function.

Many years later, Matignon’s stability results were promoted by many scholars such as
Deng, etc. In [], by using the Laplace transform, Deng generalized the system to a linear
fractional differential system with multi-orders and multiple delays and discovered that
the linear system is Lyapunov globally asymptotical stable if all roots of the characteris-
tic equation have negative parts. In , Odibat [] described the issues of existence,
uniqueness, and stability of the solutions for two classes of linear fractional differential
systems with Caputo derivative. In [], Qian established stability theorems for fractional
differential systems with Riemann-Liouville derivative. In [], one studied basic stability
properties of linear fractional differential systems with Riemann-Liouville derivative and
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one derived stability regions for special discretizations of the studied fractional differential
systems including a precise description of their asymptotics.

Meanwhile, Li [, ] was first to study the stability of fractional order nonlinear sys-
tems by applying the Lyapunov direct method with the introductions of Mittag-Leffler
stability. Some valuable results have been derived on the stability of nonlinear fractional
differential systems; see [–] and references therein. The stability of fractional differ-
ential systems has been fully studied. There is no doubt that the Lyapunov direct method
provides a very effective approach to analyzing the stability of nonlinear systems. How-
ever, it is not easy to find such a suitable Lyapunov function. There are still many works
that need to be improved.

As is well known, many systems are most naturally modeled by degenerate differen-
tial equations such as multibody mechanics, electrical circuits, prescribed path control,
chemical engineering, etc.; see [–] and the references therein. Degenerate differen-
tial equations can describe more complex dynamical models than state-space systems, due
to the fact that a degenerate differential system model includes not only dynamic equa-
tions but also static equations. Recently, more and more research has been devoted to
the study of degenerate fractional systems. For example, in [], the constant variation
formulas for degenerate fractional differential systems with delay were presented. In [],
the exponential estimation of the degenerate fractional differential system with delay and
sufficient conditions for the finite time stability of the system are obtained. In , by
using linear matrix inequalities, N’Doye [] derived sufficient conditions for the robust
asymptotical stabilization of uncertain degenerate fractional systems with the fractional
order α, satisfying  < α < .

However, there are very limited works that focus on the stability of degenerate fractional
linear differential systems with Riemann-Liouville derivative. Motivated by [–], in
this paper, we present the explicit representation of a solution for the degenerate fractional
linear system with Riemann-Liouville derivative and derive the stability criteria for the
system. The results show that the stability criterion is easy to verify.

The paper is organized as follows. In Section , we review basic notions and results
from the theory of fractional calculus and degenerate differential system. In Section , we
discuss the existence and uniqueness of solution for the linear degenerate fractional differ-
ential system and give the explicit representation of solutions for the system. In addition,
we analyze the stability of the linear degenerate fractional differential system and achieve
sufficient conditions to provide the asymptotically stability of the system. In Section ,
some examples are presented to illustrate the main results. Finally, concluding remarks
are given.

2 Preliminaries
In this section, we present some related definitions and some fundamental theories as
follows.

Definition . The Riemann-Liouville fractional integral operator of order α >  of f (t)
is defined as

Iα
a,t f (t) =


�(α)

∫ t

a
(t – s)α–f (s) ds, α > , t > a, ()
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and the Riemann-Liouville fractional derivative is defined as

Dα
a,t f (t) =


�(n – α)

(
d
dt

)n ∫ t

a
(t – ξ )n–α–f (ξ ) dξ (n –  ≤ α < n), ()

where �(·) is the gamma function. The initial time a is often set to be .

The Laplace transform of the Riemann-Liouville fractional derivative Dα
,tx(t) is

∫ ∞


e–stDα

,tx(t) dt = sαX(s) –
n–∑
k=o

sk[Dα–k–
,t x(t)

]
t= (n –  ≤ α < n).

Definition . The one parameter Mittag-Leffler function Eα(z) and the two parameter
Mittag-Leffler function Eα,β (z) are defined as

Eα(z) =
∞∑
j=

zj

�(αj + )
, α > , z ∈ C, ()

Eα,β (z) =
∞∑
j=

zj

�(αj + β)
, α,β > , z ∈ C. ()

Their kth derivatives, for k = , , , , . . . , are given by

Ek
α(z) =

∞∑
j=

(j + k)!zj

j!�(αj + αk + )
, ()

Ek
α,β (z) =

∞∑
j=

(j + k)!zj

j!�(αj + αk + β)
. ()

It can be noted that Eα,(z) = Eα(z) and E,(z) = ez . The Mittag-Leffler functions Eα(z) and
Eα,β (z) are entire functions for α,β > . According to E,(z) = ez , the Mittag-Leffler func-
tion Eα,β(z) is a generalization of the exponential function ez and the exponential function
is a particular case of the Mittag-Leffler function. The Mittag-Leffler function plays a very
important role in the theory of fractional differential equations, which is similar to the
exponential function frequently used in the solutions of integer-order systems. The prop-
erties of the Mittag-Leffler functions can be found in [, ] and the references therein.
Moreover, the Laplace transforms of the Mittag-Leffler functions are given by

L
{

tαk+β–E(k)
α,β

(
–λtα

)}
=

k!sα–β

(sα + λ)k+ , Res(s) > |λ| 
α ,

where λ ∈ C, Ek
α,β (z) = dk

dzk Eα,β (z), Res(s) denotes the real part of s. t and s are the variables
in the time domain and Laplace domain, respectively.

Lemma . ([]) If  < α < , β is an arbitrary complex number and μ is an arbitrary real
number, satisfying

πα


< μ < min[π ,πα],



Zhang et al. Advances in Difference Equations  (2016) 2016:216 Page 4 of 17

then, for an arbitrary integer N ≥ , the following expansion holds:
()

Eα,β(z) =

α

z
–β
α exp

(
z


α
)

–
N∑

k=


�(β – αk)


zk + O

(


|z|N+

)
,

with |z| → ∞, | arg(z)| ≤ μ, and
()

Eα,β(z) = –
N∑

k=


�(β – αk)


zk + O

(


|z|N+

)
,

with |z| → ∞,μ ≤ | arg(z)| ≤ π .

Remark . In Lemma ., if α = β and N ≥ , then the following expansion holds:

Eα,α(z) =

α

z
–α
α exp

(
z


α
)

–
N∑

k=


�(α( – k))


zk + O

(


|z|N+

)
,

with |z| → ∞, | arg(z)| ≤ μ;

Eα,α(z) = –
N∑

k=


�(α( – k))


zk + O

(


|z|N+

)
,

with |z| → ∞,μ ≤ | arg(z)| ≤ π .

Consider the following linear fractional differential system:

{
EDα

,tx(t) = Ax(t),
Dα–

,t x(t)|t= = x,
()

where x(t) ∈ Rn is the state vector, E, A ∈ Rn×n, rank E < n, x ∈ Rn, Dα
,t denotes an αth

order Riemann-Liouville derivative of x(t), and  < α < .

Definition . The system () is said to be:
(a) stable iff for any x, there exists an ε >  such that ‖x(t)‖ ≤ ε for t ≥ ;
(b) asymptotically stable iff limt→+∞ ‖x(t)‖ = .

Definition . For any given two matrices E, A ∈ Rn×n, the matrix pair (E, A) is called
regular if det(λE – A) �≡ , where λ ∈ C . If (E, A) is regular, we call system () is regular.

Definition . Let Q be a square matrix. The index of Q is the least nonnegative integer
k such that rank(Qk+) = rank(Qk). The Drazin inverse of Q is the unique matrix Qd which
satisfies

QdQQd = Qd, QQd = QdQ, Qk+Qd = Qk .
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Lemma . [] Suppose that E, A ∈ Rn×n are such that there exists a λ so that (λE – A)–

exists. Let Êλ = (λE – A)–E, Âλ = (λE – A)–A. For all λ �= λ for which (λiE – A)–, i = , ,
exist, the following statements are true:

λÊλ = I + Âλ, ÊλÂλ = ÂλÊλ,

Êd
λ Âλ = Êd

λ Âλ , Êd
λ Êλ = Êd

λ Êλ , Êλ Êd
λ = Êλ Êd

λ ,

where Êd
λ is the Drazin inverse of Êλ and I is the n × n identity matrix.

3 Main results
3.1 The existence and uniqueness of the solution for linear degenerate fractional

differential system
In this section, we consider the solvability of the following system:

{
EDα

,tx(t) = Ax(t),
Dα–

,t x(t)|t= = x,
()

where x(t) ∈ Rn is the state vector, A, E ∈ Rn×n, rank E < n, x ∈ Rn, Dα
,t denotes an αth

order Riemann-Liouville derivative, and  < α < .

Theorem . If the system () is regular, then the system () has a unique solution on
[, +∞) and the solution is given by

x(t) = eÊd
λ Âλt

α ÊλÊd
λx(),

where eÊd
λ Âλt

α = tα– ∑∞
k=(Êd

λÂλ)k tkα

�[(k+)α] , Êλ = (λE – A)–E, Âλ = (λE – A)–A, x() satisfies
x() = ÊλÊd

λx(). E and A are the coefficient matrices of the system (), and λ is constant.

Proof Since the system is regular, there exists a λ so that (λE – A)– exists. Let Êλ = (λE –
A)–E, Âλ = (λE – A)–A. From Lemma . and [], there exists an invertible matrix T
such that

Êλ = T–

(
C 
 N

)
T , ()

where C ∈ Rp×p is invertible matrix, N ∈ Rq×q is nilpotent, and q + p = n.
Then

Âλ = λÊλ – I = T–

(
λC – I 

 λN – I

)
T . ()

Premultiplying (λE – A)– on both sides of the formula EDαx(t) = Ax(t), then

ÊλDαx(t) = Âλx(t). ()



Zhang et al. Advances in Difference Equations  (2016) 2016:216 Page 6 of 17

From () and (), we get

T–

(
C 
 N

)
TDαx(t) = T–

(
λC – I 

 λN – I

)
Tx(t). ()

Taking the transform as ξ (t) =
( ξ(t)

ξ(t)
)

= Tx(t), ξ(t) ∈ Rp, ξ(t) ∈ Rq, and ξ () =
( ξ()

ξ()
)

=
Tx() such that () is r.s.e. to

CDαξ(t) = (λC – I)ξ(t), ()

NDαξ(t) = (λN – I)ξ(t). ()

First we discuss the first subsystem (). Since C is an invertible matrix, () can be
rewritten as

Dαξ(t) = C–(λC – I)ξ(t). ()

From the theory of fractional calculus [], a unique solution for subsystem () exists,
which may be expressed by

ξ(t) = eC–(λC–I)t
α ξ(). ()

Next, we study the second subsystem () as follows.
Let ind(N) = k, that is, Nk– �= , Nk = , k is the index of the matrix pair (E, A). Premul-

tiplying Nk– on both sides of equation (), then

DαNkξ(t) = λNkξ(t) – Nk–ξ(t).

Since Nk = , we get Nk–ξ(t) = .
Premultiplying Nk– on both sides of equation (), then Nk–ξ(t) = . In the same way,

we can get

Nk–ξ(t) = , Nk–ξ(t) = , . . . , N ξ(t) = , ξ(t) = .

Then we can get ξ(t) ≡ .
From the above discussion, the unique solution of the system () and () is given by

{
ξ(t) = eC–(λC–I)t

α ξ(),
ξ(t) = .

()

Applying x(t) = T–ξ (t), the solution of () is given by

x(t) = T–ξ (t) = T–

(
eC–(λC–I)t
α ξ()



)

= T–

(
eC–(λC–I)t
α 

 

)
TT–

(
I 
 

)
TT–

(
ξ()
ξ()

)
. ()
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From [], Lemma ., one can get

Êd
λ = T–

(
C– 
 

)
T . ()

Then

ÊλÊd
λ = T–

(
C 
 N

)
TT–

(
C– 
 

)
T = T–

(
I 
 

)
T ,

eÊd
λ Âλt

α = e

{
T–

(
C– 

 

)
TT–

( (λC–I) 
 (λN–I)

)
Tt

}
α

= e

{
T–

(
C–(λC–I) 

 

)
Tt

}
α

= T–

(
eC–(λC–I)t
α 

 

)
T ,

x() =

(
x()
x()

)
= T–

(
ξ()
ξ()

)
.

Then

x(t) = eÊd
λ Âλt

α ÊλÊd
λx(),

where x() satisfies x() = ÊλÊd
λx(). According to Lemma ., we know that Êd

λÂλ, ÊλÊd
λ

are independent from λ. Hence, the system () has a unique solution x(t) = eÊd
λ Âλt

α ÊλÊd
λx().

The proof is completed. �

Remark . From Lemma ., one shows that Êd
λÂλ, ÊλÊd

λ are independent from λ. There-
fore, we can drop the subscript λ whenever the terms Êd

λÂλ and ÊλÊd
λ appear. Hence, the

solution of the system () can be given by

x(t) = eÊdÂt
α ÊÊdx(),

where eÊdÂt
α = tα– ∑∞

k=(ÊdÂ)k tkα

�[(k+)α] , Ê = Êλ = (λE – A)–E, Â = Âλ = (λE – A)–A, and x()
satisfies x() = ÊÊdx(). E and A are the coefficient matrices of the system (), and λ is
constant.

3.2 Stability results for linear degenerate fractional differential system
In this section, we derive the conditions for the asymptotically stable of the system ().

Theorem . If the system () is regular, the algebraic and geometric multiplicities are the
same for the zero eigenvalues of ÊdÂ and all the non-zero eigenvalues satisfy

∣∣arg
(
λ
(
ÊdÂ

))∣∣ >
απ


,

then the system () is asymptotically stable.
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Proof From Theorem . and Remark ., we know that the solution of the system () is
given by

x(t) = eÊdÂt
α ÊÊdx() = tα–Eα,α

(
ÊdÂtα

)
ÊÊdx().

Applying () and (), one gets

ÊdÂ = T–

(
C–(λC – I) 

 

)
T , ()

where λ is constant, (λE – A) is invertible and C–(λC – I) ∈ Rp×p.
Then there exists an invertible matrix H such that

H–ÊdÂH = diag(J, J, . . . , Jr , ), ()

where Ji,  ≤ i ≤ r, are Jordan canonical forms and  is a zero matrix with corresponding
dimension.

Without loss of generality, assume that the numbers of non-zero eigenvalues and zero
eigenvalues are p and q for ÊdÂ, separately. For the situation of non-zero eigenvalues, we
discuss the problem in two cases.

Case (i): Assuming the matrix ÊdÂ is diagonalizable, and λ,λ, . . . ,λp, are its non-zero
eigenvalues, then () can be shown to obey

∧ = H–ÊdÂH = diag
(
λ,λ, . . . ,λp, , . . . , ︸ ︷︷ ︸

q

)
.

Hence,

Eα,α
(
ÊdÂtα

)
= HEα,α

(∧tα
)
H–

= H diag

[
Eα,α

(
λtα

)
, . . . , Eα,α

(
λptα

)
,


�(α)

, . . . ,


�(α)︸ ︷︷ ︸
q

]
H–.

From Lemma . and the conditions of Theorem ., we get

Eα,α
(
λitα

)
= –

N∑
k=


�(α( – k))


(λitα)k + O

(


|λitα|N+

)
→ , t → +∞,

where  ≤ i ≤ p.
Hence,

∥∥tα–Eα,α
(
ÊdÂtα

)∥∥ =
∥∥∥∥diag

[
tα–Eα,α

(
λtα

)
, . . . , tα–Eα,α

(
λptα

)
,

tα– 
�(α)

, . . . , tα– 
�(α)︸ ︷︷ ︸

q

]∥∥∥∥ → , t → +∞.

Thus, the conclusion proved.
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Case (ii): Assume EdÂ is similar to a Jordan canonical form as ().
Let Ji,  ≤ i ≤ r, have the form

Ji =

⎛
⎜⎜⎜⎜⎜⎝

λi 

λi
. . .
. . . 

λi

⎞
⎟⎟⎟⎟⎟⎠

ni×ni

,  ≤ i ≤ r,
r∑

i=

ni = p,

then

Eα,α
(
ÊdÂtα

)
= H diag

[
Eα,α

(
Jtα

)
, . . . , Eα,α

(
Jrtα

)
,


�(α)

, . . . ,


�(α)︸ ︷︷ ︸
q

]
H–.

We can get the following results by calculation:

Eα,α
(
Jitα

)

=
∞∑

k=

tkαJk
i

�(α(k + ))

=
∞∑

k=

tkα

�(α(k + ))

⎛
⎜⎜⎜⎜⎜⎝

λk
i C

kλ
k–
i Cni–

k λ
k–ni+
i

λk
i

. . .

. . . C
kλ

k–
i

λk
i

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

∑∞
k=

tkα

�(α(k+))λ
k
i

∑∞
k=

tkα

�(α(k+)) C
kλ

k–
i

∑∞
k=ni–

tkα

�(α(k+)) Cni–
k λ

k–ni+
i∑∞

k=
tkα

�(α(k+))λ
k
i

. . .

. . . ∑∞
k=

tkα

�(α(k+)) C
kλ

k–
i∑∞

k=
tkα

�(α(k+))λ
k
i

⎞
⎟⎟⎟⎟⎟⎟⎠

,

()

Eα,α
(
Jitα

)

=

⎛
⎜⎜⎜⎜⎜⎝

Eα,α(λitα) 
!

∂
∂λi

Eα,α(λitα) 
(ni–)! (

∂
∂λi

)ni–Eα,α(λitα)

Eα,α(λitα)
. . .
. . . 

!
∂

∂λi
Eα,α(λitα)

Eα,α(λitα)

⎞
⎟⎟⎟⎟⎟⎠

ni×ni

. ()

Under the conditions of Theorem ., we can get

Eα,α
(
λitα

)

= –
N∑

k=


�(α( – k))


(λitα)k + O

(


|λitα|N+

)
→ , t → +∞,
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also, under the condition of | arg(λi)| > απ
 and from Theorem  in [], we have


(l–)! (

∂
∂λi

)l–Eα,α(λitα) →  as t → +∞, which is derived from


(l – )!

(
∂

∂λi

)l–

Eα,α
(
λitα

)

= t–α

(
tlα–

∞∑
k=

Cl–
l–+k

(λitα)k

�(α(k + l))

)
∼ α(–λi)––lt–α

�( – α)
,

where  ≤ l ≤ ni and  ≤ i ≤ r.
Hence,

∥∥tα–Eα,α
(
ÊdÂtα

)∥∥ =
∥∥∥∥diag

[
tα–Eα,α

(
Jtα

)
, . . . , tα–Eα,α

(
Jrtα

)
,


�(α)

tα–, . . . ,


�(α)
tα–

︸ ︷︷ ︸
q

]∥∥∥∥ → , t → +∞.

From the discussion of the above two cases, we get

lim
t→+∞

∥∥x(t)
∥∥ = lim

t→+∞
∥∥eÊdÂt

α ÊÊdx()
∥∥

= lim
t→+∞

∥∥tα–Eα,α
(
ÊdÂtα

)
ÊÊdx()

∥∥ = .

The proof is completed. �

Theorem . If the system () is regular, the zero eigenvalues of ÊdÂ are such that their
algebraic multiplicities are larger than their geometric multiplicities, n̆α < , in which, n̆ is
the max dimension value for the Jordan canonical blocks of zero eigenvalues, and all the
non-zero eigenvalues satisfy

∣∣arg
(
λ
(
ÊdÂ

))∣∣ >
απ


,

then the system () is asymptotically stable.

Proof According to Theorem ., there exists an invertible matrix H , such that

J = H–ÊdÂH = diag(J, J, . . . , Jr , ), ()

where Ji, is a Jordan canonical form,  ≤ i ≤ r, and  is a zero matrix with corresponding
dimension.

Let Jn̆ be the zero eigenvalues of ÊdÂ corresponding to the following Jordan canonical
form with order n̆:

Jn̆ =

⎛
⎜⎜⎜⎜⎜⎝

 


. . .
. . . 



⎞
⎟⎟⎟⎟⎟⎠

n̆×n̆

.



Zhang et al. Advances in Difference Equations  (2016) 2016:216 Page 11 of 17

Applying (), we get

Eα,α
(
Jn̆tα

)
λn̆= =

⎛
⎜⎜⎜⎜⎜⎜⎝


�(α)

tkα

�(α)
t(n̆–)α

�(n̆α)


�(α)

. . .

. . . tkα

�(α)


�(α)

⎞
⎟⎟⎟⎟⎟⎟⎠

, ()

tα–Eα,α
(
Jn̆tα

)
λn̆= =

⎛
⎜⎜⎜⎜⎜⎜⎝

tα–

�(α)
tα–

�(α)
t(n̆α–)

�(n̆α)

tα–

�(α)
. . .
. . . tα–

�(α)
tα–

�(α)

⎞
⎟⎟⎟⎟⎟⎟⎠

, ()

from () and the condition n̆α < , we get

tα–Eα,α
(
Jn̆tα

)
λn̆= → , t → +∞.

The result is also satisfied for Jordan canonical blocks of zero eigenvalues, with lower
dimension than Jn̆. Other Jordan canonical forms in (), corresponding to all the non-
zero eigenvalues of ÊdÂ, can be treated as the same method conducted in Theorem ..
The proof is completed. �

Theorem . If the system () is regular, the algebraic and geometric multiplicities are the
same for the zero eigenvalues of ÊdÂ and all the non-zero eigenvalues satisfy

∣∣arg
(
λ
(
ÊdÂ

))∣∣ ≥ απ


,

moreover, the algebraic and geometric multiplicities are the same for the critical eigenval-
ues, satisfying | arg(λ(ÊdÂ))| = απ

 , then the system () is stable.

Proof According to Theorem ., there exists an invertible matrix H , such that

J = H–ÊdÂH = diag(J, J, . . . , Jr , ), ()

where Ji, is a Jordan canonical form,  ≤ i ≤ r, and  is a zero matrix with corresponding
dimension.

From the conditions of Theorem ., without loss of generality, we suppose that the
eigenvalue λs satisfies | arg(λ(ÊdÂ))| = απ

 with algebraic and geometric multiplicity both
equal to , as well as λs = Js,  ≤ s ≤ r, λs = r(cos( απ

 ) + i sin( απ
 )) = re απ

 i , (i) = –.
Then

Eα,α
(
ÊdÂtα

)
= H diag

[
Eα,α

(
Jtα

)
, . . . , Eα,α

(
Js–tα

)
, Eα,α

(
λstα

)
,

Eα,α
(
Js+tα

)
, . . . , Eα,α

(
Jrtα

)
,


�(α)

, . . . ,


�(α)

]
H–. ()
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Applying Lemma ., we get

Eα,α
(
λstα

)
=


α

(
λstα

) –α
α exp

((
λstα

) 
α
)

–
N∑

k=


�(α( – k))


(λstα)k + O

(


|λstα|N+

)

=

α

(
r

–α
α

 t–αe
(–α)π

 i
)

exp
(
r


α
 e

π
 i t

)

–
N∑

k=


�(α( – k))



rk
e

(kα)π
 i tkα

+ O
(


|rtα|N+

)

=

α

(
r

–α
α

 t–αe
απ
 i

)
exp

(
r


α
 ti

)

–
N∑

k=


�(α( – k))



rk
e

(kα)π
 i tkα

+ O
(


|rtα|N+

)
.

Then

tα–Eα,α
(
λstα

)
=


α

(
r

–α
α

 e
απ
 i

)
exp

(
r


α
 ti

)

–
N∑

k=


�(α( – k))



rk
e

(kα)π
 i t(k–)α+

+ O
(


|r|N+|tαN+|

)
,

when t → +∞, we get

∣∣∣∣ 
α

(
r

–α
α

 e
απ
 i

)
exp

(
r


α
 ti

)∣∣∣∣ ≤ 
α

r
–α
α

 ,

–
N∑

k=


�(α( – k))



rk
e

(kα)π
 i t(k–)α+

+ O
(


|r|N+|tαN+|

)
→ .

From the above discussion, we can see that tα–Eα,α(λstα) is stable as t → +∞. Other
Jordan canonical forms in () can be treated by the same method as used in Theorem ..
Hence, the system () is stable. The proof is completed. �

Theorem . If the system () is regular, the zero eigenvalues of ÊdÂ are such that their
algebraic multiplicities are larger than their geometric multiplicities, n̆α < , in which n̆ is
the max dimension value for the Jordan canonical blocks of zero eigenvalues, and all the
non-zero eigenvalues satisfy

∣∣arg
(
λ
(
ÊdÂ

))∣∣ ≥ απ


,

moreover, the algebraic and geometric multiplicities are the same for the critical eigenval-
ues, satisfying | arg(λ(ÊdÂ))| = απ

 , then the system () is stable.

Proof According to Lemma . and the conditions of Theorem ., the following proof is
similar to Theorems ., . and will be omitted. �
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Theorem . For the system (), if all the roots of the characteristic equation |sαE – A| = 
have negative real parts, then the system is asymptotically stable.

Proof Taking the Laplace transform on both sides of system (), we get the characteristic
equation of system () as follows:

∣∣sαE – A
∣∣ = . ()

Let λ = sα , then

|λE – A| = . ()

Next, we prove that the characteristic equations, |λE – A| =  and |λI – ÊdÂ| = , have
the same non-zero eigenvalues.

In fact, from () in Theorem ., there exist a ρ and an invertible matrix T such that

ÊdÂ = T–

(
C–(ρC – I) 

 

)
T , ()

where ρ is constant, (ρE – A) is invertible, and C–(ρC – I) ∈ Rp×p.
Then

∣∣λI – ÊdÂ
∣∣ =

∣∣T–∣∣
∣∣∣∣∣
λI – C–(ρC – I) 

 λI

∣∣∣∣∣ |T |

=
∣∣λI – C–(ρC – I)

∣∣|λI|. ()

Premultiplying |(ρE – A)–| on both sides of |λE – A| =  and applying (), (), we have

 = |λE – A| =
∣∣(ρE – A)–∣∣|λE – A|

=
∣∣(ρE – A)–(λE – A)

∣∣
= |λÊ – Â|

=

∣∣∣∣∣
λC – (ρC – I) 

 (λ – ρ)N + I

∣∣∣∣∣
=

∣∣C–∣∣∣∣λI – C–(ρC – I)
∣∣∣∣(λ – ρ)N + I

∣∣. ()

Since N is nilpotent, we get

∣∣(λ – ρ)N + I
∣∣ = .

Hence,

 = |λE – A| =
∣∣C–∣∣∣∣λI – C–(ρC – I)

∣∣. ()

From () and (), we can see that the characteristic equations, |λE – A| =  and |λI –
ÊdÂ| = , have the same non-zero eigenvalues.
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According to the conditions of Theorem ., assume λ,λ, . . . ,λm are all non-zero roots
of |λE – A| = . ni is the multiplicity of λi,  ≤ i ≤ m, and n + n + · · · + nm < n. From the
above discussion, we know that λ,λ, . . . ,λm are all non-zero roots of |λI – ÊdÂ| =  and
they are also all non-zero roots of |λI – C–(ρC – I)| = .

Two cases, whether there are multiple roots among λ,λ, . . . ,λm or not, will be dis-
cussed.

First, suppose that the matrix C–(ρC – I) is diagonalizable, i.e., there exists an invertible
matrix P such that

C–(ρC – I) = P–

⎛
⎜⎜⎝

λ 
. . .

 λm

⎞
⎟⎟⎠P.

From (), let H = T
( P 

 I

)
, then

ÊdÂ = H–

⎛
⎜⎜⎜⎜⎜⎝

⎛
⎝

λ 

. . .
 λm

⎞
⎠ 

. . .
 

⎞
⎟⎟⎟⎟⎟⎠

H .

Hence,

Eα,α
(
ÊdÂtα

)
= H diag

[
Eα,α

(
λtα

)
, . . . , Eα,α

(
λmtα

)
,


�(α)

, . . . ,


�(α)︸ ︷︷ ︸
n–m

]
H–.

Due to λ = sα , | arg(λ)| = | arg(sα)| > πα
 when | arg(s)| > π

 . From the proof of Theorem .,
we see that system () is asymptotically stable.

Second, suppose that the matrix C–(ρC – I) is similar to a Jordan canonical form, i.e.,
there exists an invertible matrix P such that

C–(ρC – I) = P– diag(J, J, . . . , Jm)P. ()

Let Ji,  ≤ i ≤ m, have the form

Ji =

⎛
⎜⎜⎜⎜⎜⎝

λi 

λi
. . .
. . . 

λi

⎞
⎟⎟⎟⎟⎟⎠

ni×ni

,  ≤ i ≤ m.

The following proof is similar to case (ii) in Theorem . and will be omitted. The proof
is completed. �

4 Illustrative examples
In this section, we present some examples to illustrate the application of our results.
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Example  Consider the following system:

ED

 x(t) = Ax(t), ()

where E =
(   –

–  
  

)
, A =

(  – –
  

– – –

)
, x(t) =

( x(t)
x(t)
x(t)

)
.

Since E – A is invertible, we have

Ê = (E – A)–E =

⎛
⎜⎝

– – 
 – 


 

 – 


– 





⎞
⎟⎠ , Â = (E – A)–A =

⎛
⎜⎝

– – 
 – 


 

 – 


– 





⎞
⎟⎠ ,

Êd =
( – – 

 – 


 





– – 
 – 



)
, and the initial condition x() satisfies

(
I – ÊÊd)x() = , i.e., x() + x() + x() = .

Hence, we get the explicit representation of the solution for the example:

x(t) = t– 
 E 

 , 


(
ÊdÂt



)
x().

Example  Consider the following system:

ED

 x(t) = Ax(t), ()

where E =
(  

 

)
, A =

( – 

 –

)
, x(t) =

( x(t)
x(t)

)
.

Since E – A is invertible, we have

Ê = (E – A)–E =

(

 

 

)
, Â = (E – A)–A =

(
– 

 

 –

)
,

Êd =

(
 

 

)
, ÊdÂ =

(
– 
– 

 

)
, ÊÊd =

(
 

 

)
,

and the initial condition x() satisfies

(
I – ÊÊd)x() = , i.e., x() – x() = .

The eigenvalues of the matrix ÊdÂ are λ = –,λ = , therefore the system is asymptoti-
cally stable.

Verifying it in another way, the solution of the system is

x(t) = t– 
 E 

 , 


(
–t



)
x(), x(t) =




x(t).

From [], when t → +∞, there exists a constant M > , such that

∣∣E 
 , 



(
–t



)∣∣ ≤ M

∣∣e–t∣∣.
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When t → +∞, we can get x(t) →  and x(t) → . Thus, the system () is asymptoti-
cally stable.

5 Conclusions
In this paper, we obtain the existence and uniqueness theorem for the initial value problem
of the linear degenerate fractional differential system and derive an explicit representation
of the solution for the system. The stability of linear degenerate fractional differential sys-
tems under the Riemann-Liouville derivative is investigated and some stability criteria for
the system are given, which can be verified easily. We derive the relationship between the
stability and the distribution of the zero eigenvalues of system as well as the distribution
of the eigenvalues λ(EdÂ) satisfying | arg(λ(ÊdÂ))| = απ

 . Since the considered systems are
degenerate fractional systems, the theorems obtained in this paper can also be widely ap-
plied to many practical systems and generalize the results which are derived in [, ].
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