
Zhang et al. Advances in Difference Equations  (2016) 2016:218 
DOI 10.1186/s13662-016-0944-x

R E S E A R C H Open Access

Impact of impulsive detoxication on the
spread of computer virus
Xianxiu Zhang1,2* , Chuandong Li1 and Tingwen Huang3

*Correspondence:
zxx1234567@sina.com
1Chongqing Key Laboratory of
Nonlinear Circuits and Intelligent
Information Processing, College of
Electronic and Information
Engineering, Southwest University,
Chongqing, 400715, China
2Department of Mathematics,
Liupanshui Normal University,
Liupanshui, Guizhou 553001, China
Full list of author information is
available at the end of the article

Abstract
We discuss the dynamical properties of a SIRS computer virus propagation model
with impulsive detoxication and saturation effect. By the Internet, new antivirus
software can be released immediately and take effect quickly after it is running. This
leads to the circumstance that many infected computers can be cured in a short time.
So impulsive detoxication is a vitally important way for prohibiting the spread of
network viruses. The theoretical results show that: (a) the virus-free equilibrium is
globally stable when the basic reproduction ratio (BRR) is less than unity, (b) the
system is uniformly permanent when BRR exceeds unity, and (c) a supercritical
bifurcation occurs when BRR equals unity. Several numerical examples also clearly
display the results obtained. Finally, some feasible strategies of eradicating electronic
viruses are advised.
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1 Introduction
While the popularized communication networks have brought great convenience to our
daily work and life, they also provide a fast channel for the spread of computer viruses.
During the last decades, massive outbreaks of network viruses have caused enormous fi-
nancial losses.

For the purpose of effectively controlling virus diffusion, it is of practical importance
to understand the way that malicious codes propagate over the Internet. Due to the com-
pelling analogy between electronic viruses and their biological counterparts [, ], a multi-
tude of computer virus epidemic models, ranging from SIS models [, ], SIR models [, ],
SIRS models [], SEIR models [], SEIRS model [], SLBS models [–], SLAS model
[], SIPS model [], to delayed models [, ] and stochastic models [, ], have been
proposed. In our opinion, these models can help us better understand how the viruses
diffuse on networks.

In the classical epidemic models, the incidence rate β , which is the probability of trans-
mission per contact, is assumed to be bilinear with respect to the numbers of susceptible
and infected individuals []. To the best of our knowledge, in most of previous computer
virus models, the incidence rate β is also simply supposed to be unvaried [, ]. How-
ever, in reality, when the population are aware of the existence of computer viruses on
networks, they will reduce the number of communication contacts per unit time to avoid
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being infected, the more infectious computers being reported, the less contact with other
computers, which is called the saturation effect. In an attempt to capture the saturation
effect, Yuan et al. [] proposed a nonlinear incidence rate. As the transmission details
of computer infections are quite complicated, their results have only limited applications.
Recently, Yang and Yang [] also suggested a nonlinear incidence rate. However, its de-
scription of saturation effect is not clear. Based on a large number of numerical examples,
we use /( + αI(t)) (α is a positive constant and I(t) represents the percentage of infected
internal computers at time t, respectively) to denote the saturation effect [], namely, use

β

+αI(t) to replace β . This seems reasonable.
In the prevalence of infectious diseases, it is impossible to rapidly disseminate the new

remedy to a great many patients, and it often takes a lot of time to finish one or several
courses of the remedy [–]. On the contrary, as new antivirus software can be re-
leased immediately via the Internet and takes effect quickly after it started running, many
of the infected computers can be cured in a short time []. To understand how impul-
sive detoxication [] and saturation effects prohibit virus spread on networks, a novel
impulsive computer virus propagation model is established in this paper. We theoretically
analyze that the virus-free equilibrium is globally asymptotically stable when BRR is less
than unity. It is shown that the system is uniformly permanent when BRR exceeds unity.
In addition, by bifurcation theory we see that a supercritical bifurcation occurs when BRR
equals unity. Both theoretical predictions and numerical examples show that impulsive
detoxication can control virus diffusion effectively. Finally, considering the influence of
varying model parameters on BRR, we propose some feasible strategies of deracinating
malicious viruses. One should emphasize that there are few computer virus propagation
models in the literature that consider the combined impact of impulsive detoxication and
saturation effects.

The remainder of this paper is organized as follows: the new model is elaborated in Sec-
tion ; it is theoretically studied in Sections , , and ; the influence of model parameters
is discussed in Section ; finally, this work is summarized in Section .

2 Model formulation
In this section, we will formulate a computer virus propagation model with impulsive
detoxication and saturation effects. As usual, we shall simply assume that every com-
puter is in one of three states: susceptible, infected, and recovered. Both susceptible com-
puters and recovered computers are uninfected, however, the former has no immunity,
while the latter has temporary immunity. Let S(t), I(t), and R(t) denote the percentages
of susceptible, infected, and recovered internal computers at time t, respectively, then
S(t) + I(t) + R(t) ≡ .

For simplicity, in this paper, we do not consider the situation where the susceptible com-
puters get recovered.

Considering the above discussions, we establish a mathematical model with the follow-
ing assumptions:

(H) All newly accessed computer are susceptible. Furthermore, susceptible computers
are accessed to the Internet at the constant rate μ > . And every computer on the
Internet leaves the network with constant probability μ > .

(H) By contact with infected internal computers, at time t, every susceptible internal
computer gets infected with probability βI(t)

+αI(t) , where β >  and α >  are
constants.
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(H) By running of previous antivirus software, every infected internal computer gets
recovered with constant probability γ > .

(H) Every recovered internal computer loses immunity with constant probability δ > .
Moreover, the following additional hypotheses are raised.
(H) The latest antivirus software is disseminated at t = kT , k ∈N, where

N = {, , , . . .}, T > , is a constant.
(H) For dissemination of the latest antivirus software, a q fraction of infected internal

computers get recovered at time instant kT , where  < q < , and q is a constant.
From these assumptions, one has a novel computer virus propagation model, which can

be represented by means of the impulsive differential equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt = μ – βS(t)I(t)

+αI(t) – μS(t) + δR(t),
dI(t)

dt = βS(t)I(t)
+αI(t) – (μ + γ )I(t),

dR(t)
dt = γ I(t) – (μ + δ)R(t),

⎫
⎪⎪⎬

⎪⎪⎭

t �= kT ,

S(t+) = S(t),
I(t+) = ( – q)I(t),
R(t+) = R(t) + qI(t),

⎫
⎪⎬

⎪⎭
t = kT ,

()

with initial condition (S(+), I(+), R(+)) ∈ {(S, I, R) ∈ R
+ : S + I + R = }.

Since S(t) + I(t) + R(t) ≡ , system () can be rewritten as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dI(t)
dt = β(–I(t)–R(t))I(t)

+αI(t) – (μ + γ )I(t),
dR(t)

dt = γ I(t) – (μ + δ)R(t),

}

t �= kT ,

I(t+) = ( – q)I(t),
R(t+) = R(t) + qI(t),

}

t = kT ,
()

with initial condition (S(+), I(+)) ∈ �, where

� =
{

(x, y) ∈ R
+ : x + y ≤ 

}
.

Obviously, � is positively invariant for system (). The right-hand side of system () en-
sures the existence, uniqueness, and piecewise continuity of its solution [].

3 Virus-free equilibrium and its stability
In this section, we shall prove the existence and global stability of the infection-free equi-
librium under certain conditions.

First, we show the existence of the infection-free equilibrium, in which infectious com-
puters are entirely absent from the internal computers permanently, i.e., I(t) ≡ , t ≥ . In
this situation, the growth of the removed computers R(t) simplifies to

{
dR(t)

dt = –(μ + δ)R(t), t �= kT , k ∈N,
R(t+) = R(t), t = kT .

()

Solving system (), we get R(t) = R() exp(–(μ + δ)t). Obviously, R(t) ≥  for t ≥ , and
limt→+∞ R(t) = . So we have the following.

Theorem  System () has a unique virus-free equilibrium (, ).
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Clearly, we have the following.

Theorem  System () has a unique virus-free equilibrium (, , ).

Next, we explore the global asymptotically stability of the virus-free equilibrium to sys-
tem (). Let us define

	 =
βT

(μ + γ )T – ln( – q)
. ()

Theorem  If 	 < , the virus-free equilibrium (, ) of system () is locally asymptotically
stable.

Proof The linearized system of system () at (, ) is

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dx(t)
dt = (β – μ – γ )x(t),

dy(t)
dt = γ x(t) – (μ + δ)y(t),

}

t �= kT ,

x(t+) = ( – q)x(t),
y(t+) = qx(t) + y(t),

}

t = kT .
()

Denote

A(t) =

(
β – μ – γ 

γ –μ – δ

)

,

B =

(
 – q 

q 

)

.

We get the monodromy matrix M of the linearized equation:

M = B exp

(∫ T


A(t) dt

)

=

(
( – q) exp((β – μ – γ )T) 

∗ exp(–(μ + δ)T)

)

,

it is not necessary to calculate the exact form of (∗). Then the eigenvalues of (M), denoted
by λ and λ, are the following:

λ = exp
(
–(μ + δ)T

)
< , λ = ( – q) exp

(
(β – μ – γ )T

)
,

λ <  if 	 < . According to Floquet theory [], it is easy to see that (, ) is locally
asymptotically stable if 	 < . The proof is thus completed. �

To prove the main result of this section, we first show a lemma.

Lemma  Consider the following impulsive differential equation:

{
dg(t)

dt = γ m – (μ + δ)g(t), t �= kT , k ∈N,
g(t+) = g(t) + qm, t = kT ,

()
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where m is a positive constant. Then there exists a unique positive periodic solution of sys-
tem ()

ḡ(t) =
γ m
μ + δ

+
qm exp(–(μ + δ)(t – kT))

 – exp(–(μ + δ)T)
, kT < t ≤ (k + )T , ()

which is globally asymptotically stable.

Proof Let us solve the first equation in system (), then

g(t) =
γ m
μ + δ

+
(

g
(
kT+)

–
γ m
μ + δ

)

exp
(
–(μ + δ)(t – kT)

)
, kT < t ≤ (k + )T . ()

Let gk = g(kT+), we get the stroboscopic mapping F for system () as follows:

gk+ = F(gk) = qm +
γ m
μ + δ

+
(

gk –
γ m
μ + δ

)

exp
(
–(μ + δ)T

)
. ()

Obviously, the mapping F has only one (positive) fixed point

g∗ =
γ m
μ + δ

+
qm

 – exp(–(μ + δ)T)
,

which implies that ḡ(t) is unique T-period solution to system (). As

gk – g∗ = exp
(
–(μ + δ)T

)
(gk– – g∗) = exp

(
–k(μ + δ)T

)
(g – g∗),

g∗ is globally asymptotically stable for equation (). The global asymptotical stability of
ḡ(t) holds without doubt. �

Theorem  The virus-free equilibrium (, ) of system () is globally asymptotically stable
if 	 < .

Proof Let (I(t), R(t)) be a solution to system (). By Theorem , it suffices to prove that

lim
t→+∞ I(t) = , lim

t→+∞ R(t) = ,

	 <  can be rewritten as

( – q) exp
(
(β – μ – γ )T

)
< ,

let σ = ( – q) exp((β – μ – γ )T), then 	 < , equivalently, σ < .
Via system (), we have

{
dI(t)

dt ≤ (β – μ – γ )I(t), t �= kT , k ∈N,
I(t+) = ( – q)I(t), t = kT .

()

Let us consider the comparison system

{
dv(t)

dt = (β – μ – γ )v(t), t �= kT , k ∈N,
v(t+) = ( – q)v(t), t = kT ,

()
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with initial condition v(+) = I(+). Then v(T+) = I(+)σ , v(nT+) = I(+)σ n, which implies
that limn→∞ v(nT+) = . Moreover, if nT < t ≤ (n + )T , then

v(t) = v
(
nT+)

exp

(∫ t

nT

(

β – μ – γ +

T

ln( – q)
)

dt
)

≤ v
(
nT+)

,

implying that limt→+∞ v(t) = . By the comparison theorem in impulsive differential equa-
tions [], we get limt→+∞ I(t) = . Thus, there is T >  such that I(t) < ε for t ≥ T. Sub-
stituting this equation into system (), we have

{
dR(t)

dt ≤ γ ε – (μ + δ)R(t), t �= kT , t ≥ T,
R(t+) ≤ R(t) + qε, t = kT , t ≥ T.

()

Let N = [ T
T ], we assume for the comparison system:

{
dw(t)

dt = γ ε – (μ + δ)w(t), t �= kT , t ≥ T,
w(t+) = w(t) + qε, t = kT , t ≥ T,

()

with initial condition w(NT+) = R(NT+). According to Lemma , it has a globally stable
periodic solution

w̄(t) =
γ ε

μ + δ
+

qε exp(–(μ + δ)(t – kT))
 – exp(–(μ + δ)T)

, kT < t ≤ (k + )T , k > N.

By the comparison theorem [], there exists T > T such that

R(t) ≤ w(t) < w̄(t) + ε, t ≥ T.

Considering the arbitrariness of ε, R(t) ≥ , and noting that limε→+ w̄(t) = , we get
limt→+∞ R(t) = . The proof is complete. �

Via Theorem , we have the following.

Theorem  The virus-free equilibrium (, , ) of system () is globally asymptotically sta-
ble if 	 < .

Example  Consider system () with the parameter values (μ,β ,γ , δ,α, q, T) = (., .,
., ., ., ., ), we have 	 = . < . Figure  depicts three typical orbits.

Example  For system () with the parameter values (μ,β ,γ , δ,α, q, T) = (., ., .,
., ., ., ), we get 	 = . < . Figure  displays three typical orbits.

From Figures  and , we can see that the state of system () is approaching the virus-free
equilibrium, as fits the theoretical prediction. In other words, the computer viruses will
be eradicated in these situations.
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Figure 1 Phase portrait for the system given in Example 1.

Figure 2 Phase portrait for the system given in Example 2.

4 Permanence
In the following, we study uniform permanence of system () and system (). First we give
two definitions.

Definition  System () is said to be virus permanent in �, if for every solution (I(t), R(t))
to system () with I(+) > , there is m >  such that I(t) ≥ m for all large t.

Definition  System () is said to be uniformly permanent in �, if there is a constant c > 
(independent of the initial data), such that every solution (I(t), R(t)) with initial condition
(I(+), R(+)) ∈ � of system () satisfies

min
{

lim
t→∞ inf I(t), lim

t→∞ inf R(t)
}

≥ c.
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Theorem  If 	 > , then there exists a positive constant m, such that any positive solu-
tion of system () satisfies I(t) ≥ m, for t large enough. That is, system () is virus perma-
nent.

Proof As 	 > , we can say that there exist a small m ( < m < ) and ε >  (sufficiently
small), such that

σ = ( – q) exp

(∫ T



(
β

 + αm

(
 – m – ū(t) – ε

)
– μ – γ

)

dt
)

> ,

for the exact form of ū(t), we can see ().
We claim that for any t > , I(t) < m, is impossible for all t ≥ t. In contrast, there exists

a t > , such that I(t) < m for t ≥ t. Then we have
{

dR(t)
dt ≤ γ m – (μ + δ)R(t), t �= kT , t ≥ t,

R(t+) ≤ R(t) + qm, t = kT , t ≥ t.
()

Assume for the comparison system
{

du(t)
dt = γ m – (μ + δ)u(t), t �= kT , t ≥ t,

u(t+) = u(t) + qm, t = kT , t ≥ t,
()

with initial condition u(+) = R(+). Via Lemma , it has a globally stable periodic solution

ū(t) =
γ m

μ + δ
+

qm exp(–(μ + δ)(t – kT))
 – exp(–(μ + δ)T)

, kT < t ≤ (k + )T , t ≥ t. ()

According to the comparison theorem [], there is t ≥ t such that

R(t) ≤ u(t) < ū(t) + ε, t ≥ t. ()

Plugging into system (), we get
{

dI(t)
dt ≤ ( β

+αm
( – m – ū(t) – ε) – μ – γ )I(t), t �= kT , t ≥ t,

I(t+) = ( – q)I(t), t = kT , t ≥ t.
()

Letting N = [ t
T ], integrating the first equation in system () on (kT , (k + )T], k ≥ N,

and noting I(kT+) = ( – q)I(kT), we get

I
(
(k + )T

) ≥ I(kT)( – q) exp

{∫ (k+)T

kT

[
β

 + αm

(
 – m – ū(t) – ε

)
– μ – γ

]

dt
}

= I(kT)σ .

Hence, I(kT) ≥ I(NT)σ k–N for k ≥ N. Noting that I(NT) > , we have limk→+∞ I(kT) =
+∞. It contradicts the fact that I(t) ≤ . So there exists a t > t, such that I(t) ≥ m.

If I(t) ≥ m for all t ≥ t, the claimed result has been obtained. Now, assume I(t) < m

for some t > t. Let

t = inf
t>t

{
t : I(t) < m

}
.

There are two cases here.
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Case . t = kT , without loss of generality, let t = KT (K is a positive integer). Then
I(t) ≥ m for t ∈ [t, t), and I(t) is continuous, so we have I(t) = m, and I(t+

 ) = ( –
q)I(t) < m. By induction, we claim that there exists a t ∈ (KT , (K + )T], such that
I(t) ≥ m, otherwise, I(t) < m for t ∈ (KT , (K + )T], evidently, () and () holds on
this interval. So we get I((K + )T) ≥ I(KT)σ > m, which is a contradiction. Let

t = inf
t>t

{
t : I(t) ≥ m

}
.

Then t ∈ (KT , (K + )T], I(t) = m, and I(t) < m for t ∈ (t, t).
From the first equation and the third equation of system (), we have

{
dI(t)

dt ≥ –( βm
+αm

+ μ + γ )I(t), t �= kT , t < t ≤ t,
I(t+) = ( – q)I(t), t = kT .

()

Repeatedly integrating the first equation in system () and plugging the second equation
in system () into the resulting equation, we get, for all t < t < t,

I(t) ≥ I(t)( – q) exp

(

–
(

βm

 + αm
+ μ + γ

)

(t – t)
)

≥ m( – q) exp

(

–
(

βm

 + αm
+ μ + γ

)

T
)

= m.

Via alternatively repeating arguments similar to the previous discussions, we get I(t) ≥ m

for all t > t.
Case . t �= kT . Then I(t) ≥ m for t ∈ [t, t), and I(t) is continuous, I(t) = m. Now,

without loss of generality, assume t ∈ (KT , (K + )T] (K is a positive integer), let

K =
[ ( βm

+αm
+ μ + γ )T
lnσ

]

+ .

By induction, we claim that there is a t ∈ (t, (K + K + )T], such that I(t) ≥ m, other-
wise, I(t) < m for t ∈ (t, (K + K + )T], obviously, () and () hold on this interval. So
we have

I
(
(K + K + )T

) ≥ I
(
(K + )T

)
σ K

≥ I(t) exp

(

–
(

βm

 + αm
+ μ + γ

)

T
)

exp

((
βm

 + αm
+ μ + γ

)

T
)

= m.

A contradiction occurs. Let

t = inf
t>t

{
t : I(t) ≥ m

}
.

Then I(t) = m, and I(t) < m for t ∈ (t, t). By () and the previous discussions, we get,
for all t < t < t,

I(t) ≥ I(t)( – q)K exp

(

–(K + )
(

βm

 + αm
+ μ + γ

)

T
)

= m.
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Again, via alternatively repeating the discussions, we get I(t) ≥ m for all t > t. Evidently,
m > m.

By the above discussions, we have I(t) ≥ m for all t > t. The proof is complete. �

From Theorem , we get the following.

Corollary  System () is virus permanent if 	 > .

Theorem  System () is uniformly permanent if 	 > .

Proof From the second equation and the fourth equation of system (), we get

{
dR(t)

dt ≤ γ m – (μ + δ)R(t), t �= kT , t ≥ t,
R(t+) ≤ R(t) + qm, t = kT , t ≥ t.

()

Then we consider the comparison system

{
dh(t)

dt = γ m – (μ + δ)h(t), t �= kT , t ≥ t,
h(t+) = h(t) + qm, t = kT , t ≥ t,

()

with initial condition h(t) = R(t). Via Lemma , for system () there exists a positive
unique periodic solution

h̄(t) =
γ m

μ + δ
+

qm exp(–(μ + δ)(t – kT))
 – exp(–(μ + δ)T)

, kT < t ≤ (k + )T , t > t,

which is globally asymptotically stable.
According to the comparison theorem [], there is t ≥ t such that

R(t) ≥ h̄(t) – ε ≥ γ m

μ + δ
+

qm exp(–(μ + δ)T)
 – exp(–(μ + δ)T)

– ε = m, t ≥ t. ()

Let c = min{m, m}. From Theorem  and the above discussion, system () is uniformly
permanent. �

As a direct consequence of Corollary  and Theorem , we have the following.

Corollary  If 	 > , any positive solution of system () satisfies I(t) ≥ m and R(t) ≥ m,
for t large enough.

From the first equation and the fourth equation of system () and using Corollary , we
have dS(t)

dt > μ + δm – (μ + β)S(t), t ≥ t; furthermore, we get limt→∞ S(t) ≥ μ+δm
μ+β

. For a
sufficiently small ε > , let m = μ+δm

μ+β
– ε > , there exists a t′ > t, such that S(t) > m

for t > t′.
By combining Corollary  and the above discussions, we get the following.

Theorem  System () is uniformly permanent if 	 > .

Example  For system () with the parameter values (μ,β ,γ , δ,α, q, T) = (., ., .,
., ., ., ), we have 	 = . > . Figures - demonstrate the time plots of S(t),
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Figure 3 Time plot of S(t) for the system given in Example 3.

Figure 4 Time plot of I(t) for the system given in Example 3.

I(t), and R(t) and the phase portrait for the system with initial condition (S(), I(), R()) =
(., ., .), respectively. We can see without difficulty that it conforms to the theoretical
prediction. In other words, the computer viruses cannot be eradicated in this situation.

Example  Consider system () with the parameter values (μ,β ,γ , δ,α, q, T) = (., .,
., ., ., ., ). Then 	 = . > . Figures  and  display the time plots
of I(t) and the phase portrait for the system with initial condition (S(), I(), R()) =
(., ., .), respectively, again it meets the theoretical prediction. In fact, the viral preva-
lence is quite high in this situation.

One can easily find the limit cycle in Figures  and , respectively.
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Figure 5 Time plot of R(t) for the system given in Example 3.

Figure 6 Phase portrait for the system given in Example 3.

Based on many numerical examples, we speculate that system () has a stable viral pe-
riodic solution if 	 > .

5 Bifurcation analysis
Now, we investigate the existence of a viral periodic solution by means of the impulsive
bifurcation theory in []. First, we present it as follows.

Consider the system

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dx(t)
dt = f(x(t), x(t)),

dx(t)
dt = f(x(t), x(t)),

}

t �= kT ,

x(t+) = θ(x(t), x(t)),
x(t+) = θ(x(t), x(t)),

}

t = kT ,
()
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Figure 7 Time plot of I(t) for the system given in Example 4.

Figure 8 Phase portrait for the system given in Example 4.

where f, f, θ, and θ are sufficiently smooth, f(x(t), ) ≡ θ(x(t), ) ≡ . Suppose

{
dx(t)

dt = g(x(t)) = f(x(t), ), t �= kT ,
x(t+) = θ (x(t)) = θ(x(t), ), t = kT ,

()

has a stable T-periodic solution denoted xe(t). Thus, ζ (t) = (xe(t), )T is a trivial periodic
solution to system (). We will use bifurcation theory [] to discuss the existence of viral
periodic solution to system (). Let �(t) = (φ(t),φ(t)) be the flow associated with system
(). We get X(t) = (x(t), x(t))T = �(t, X),  < t ≤ T , where X = X().

We list the following notations []:

d =  –
(

∂θ

∂x

∂φ

∂x

)

(T ,x)
,



Zhang et al. Advances in Difference Equations  (2016) 2016:218 Page 14 of 18

a =  –
(

∂θ

∂x

∂φ

∂x

)

(T ,x)
,

b = –
(

∂θ

∂x

∂φ

∂x
+

∂θ

∂x

∂φ

∂x

)

(T ,x)
,

∂φ(T , x)
∂t

=
dxe(T)

dt
,

∂φ(T , x)
∂x

= exp

(∫ T



∂f(ζ (r))
∂x

dr
)

,

∂φ(T , x)
∂x

= exp

(∫ T



∂f(ζ (r))
∂x

dr
)

,

∂φ(T , x)
∂x

=
∫ T


exp

(∫ T

u

∂f(ζ (r))
∂x

dr
)(

∂f(ζ (u))
∂x

)

× exp

(∫ u



∂f(ζ (r))
∂x

dr
)

du,

∂φ(T , x)
∂x∂x

=
∫ T


exp

(∫ T

u

∂f(ζ (r))
∂x

dr
)(

∂f(ζ (u))
∂x∂x

)

× exp

(∫ u



∂f(ζ (r))
∂x

dr
)

du,

∂φ(T , x)
∂x


=

∫ T


exp

(∫ T

u

∂f(ζ (r))
∂x

dr
)(

∂f(ζ (u))
∂x



)

× exp

(∫ u



∂f(ζ (r))
∂x

dr
)

du +
∫ T



{

exp

(∫ T

u

∂f(ζ (r))
∂x

dr
)

×
(

∂f(ζ (u))
∂x ∂x

)}{∫ u


exp

(∫ u

p

∂f(ζ (r))
∂x

dr
)

×
(

∂f(ζ (p))
∂x

)

exp

(∫ p



∂f(ζ (r))
∂x

dr
)

dp
}

du,

∂φ(T , x)
∂t ∂x

=
∂f(ζ (T))

∂x
exp

(∫ T



∂f(ζ (r))
∂x

dr
)

,

B = –
∂θ

∂x ∂x

(
∂φ(T , x)

∂t
+

∂φ(T , x)
∂x


a

∂θ

∂x

∂φ(T , x)
∂t

)
∂φ(T , x)

∂x

–
∂θ

∂x

(
∂φ(T , x)

∂t ∂x
+

∂φ(T , x)
∂x ∂x


a

∂θ

∂x

∂φ(T , x)
∂t

)

,

C = –
∂θ

∂x ∂x

(

–
b

a

∂φ(T , x)
∂x

+
∂φ(T , x)

∂x

)
∂φ(T , x)

∂x

–
∂θ

∂x


(
∂φ(T , x)

∂x

)

+ 
∂θ

∂x

b

a

∂φ(T , x)
∂x ∂x

–
∂θ

∂x

∂φ(T , x)
∂x


.

In the following, we quote without proof an important result from [], which is indis-
pensable for the proof of Theorem .

Lemma  Consider system () with  < a < .
(a) If BC < , a supercritical bifurcation occurs at d = .
(b) If BC > , a subcritical bifurcation occurs at d = .



Zhang et al. Advances in Difference Equations  (2016) 2016:218 Page 15 of 18

(c) If BC = , there is an undetermined case.

Theorem  For system (), a supercritical bifurcation occurs at 	 = . System () has
a stable viral periodic solution which bifurcates from the virus-free equilibrium when 	

increasingly goes across unity.

Proof Consider system (). We change R(t), I(t) into (x(t), x(t)), respectively, thus

f
(
x(t), x(t)

)
= γ x(t) – (μ + δ)x(t),

f
(
x(t), x(t)

)
=

β( – x(t) – x(t))x(t)
 + αx(t)

– (μ + γ )x(t),

θ
(
x(t), x(t)

)
= x(t) + qx(t),

θ
(
x(t), x(t)

)
= ( – q)x(t),

ζ (t) =
(
xe(t), 

)T = (, )T ,

where xe(t) =  can be looked upon as a trivial periodic solution of system ().
Direct calculations yield

d =  – ( – q) exp
[
(β – μ – γ )T

]
,

a =  – exp
(
–(μ + γ )T

)
> ,

b < ,
∂φ(T , x)

∂t
=

dxe(T)
dt

= ,

∂φ(T , x)
∂x

> ,
∂φ(T , x)

∂x
> ,

∂φ(T , x)
∂x

> ,
∂φ(T , x)

∂x∂x
< ,

∂φ(T , x)
∂x


< ,

∂φ(T , x)
∂t∂x

= (β – μ – γ ) exp
[
(β – μ – γ )T

]
.

Since

∂θ

∂x
= ,

∂θ

∂x
= ( – q),

∂θ

∂x ∂x
= ,

∂θ

∂x


= ,

we have

B = –( – q)(β – μ – γ ) exp
[
(β – μ – γ )T

]
,

C = –( – q)
b

a
βT exp

[
(β – μ – γ )T

]
– ( – q)

∂φ(T , x)
∂x


> .

	 =  implies d =  and β – μ – γ > , so we get B < , then BC < . Clearly,  < a < .
Therefore, the claimed result follows from Lemma . �
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6 Discussions
By the previous discussions, some practicable and effective strategies should be followed
to lower 	 below unity for deracinating network viruses. For that purpose, in the follow-
ing, we study the effects of the changing model parameters on 	.

Theorem  	 drops with increasing μ, γ and q, and 	 rises with increasing β and T .

One can easily see this result from ().

Remark  In the real situations, β , μ, and γ can be looked upon as constants, while T
and q are easily manipulated. We consider the following two situations:

Case . β < μ + γ . Then 	 <  via (), the computer viruses can also be deracinated
without impulsive detoxication.

Case . β ≥ μ + γ . By (), we have 	 <  if


T

ln


 – q
> β – (μ + γ ). ()

So we must manipulate T and q to meet () for eradicating computer viruses in this
situation.

Remark  We notice that δ and α are not in (), yet we know that they have significant
impact on the spread of computer viruses. It ought to be considered as a demerit of the
model, and we shall improve the model in the next research.

On the basis of the previous analysis, some practical and effective measures for contain-
ing the virus prevalence is presented below.

() Strengthening the research of antivirus software and shortening the development
cycle are conducive to reduce the impulsive detoxication period T and to enhance
the impulsive detoxication rate q and the recovery rate γ .

() The people must be often reminded to install antivirus software, so that the
impulsive detoxication rate q and the recovery rate γ are raised.

() Let your computer leave the Internet when unnecessary, so that the recruitment rate
μ is increased, the incidence rate β is minimized.

7 Conclusions
Taking into account impulsive detoxication and saturation effects in the conventional SIRS
model, a novel computer viruses propagation model has been established. The dynamical
properties of this model have been investigated theoretically, and the results obtained have
also been demonstrated by several numerical examples. Based on an analysis of the impact
of varying model parameters on BRR, some effective measures for controlling electronic
virus diffusion have been advised.

Recently, Yang et al. [, ] analyzed the impact of the structure of the propagation net-
work on the spread of computer virus, and they proposed a node-based epidemic model,
which can help us better understand how the electronic viruses diffuse on networks. The
final goal is not only to understand epidemic processes and predict their behavior, but
also to control their dynamics []. Our future work is to research the impact of impulsive
detoxication on the spread of computer viruses in different structures of the propagation
network.
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