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Abstract
In this paper, the fuzzy H∞ output-feedback control problem is investigated for a class
of discrete-time T-S fuzzy systems with channel fadings, sector nonlinearities,
randomly occurring interval delays (ROIDs) and randomly occurring nonlinearities
(RONs). A series of variables of the randomly occurring phenomena obeying the
Bernoulli distribution is used to govern ROIDs and RONs. Meanwhile, the
measurement outputs are subject to the sector nonlinearities (i.e. the sensor
saturations) and we assume the system output is y(k) = 0, k ∈ {–l, . . . , 0}. The Lth-order
Rice model is utilized to describe the phenomenon of channel fadings by setting
different values of the channel coefficients. The aim of this work is to deal with the
problem of designing a full-order dynamic fuzzy H∞ output-feedback controller such
that the fuzzy closed-loop system is exponentially mean-square stable and the H∞
performance constraint is satisfied, by means of a combination of Lyapunov stability
theory and stochastic analysis along with LMI methods. The proposed fuzzy controller
parameters are derived by solving a convex optimization problem via the
semidefinite programming technique. Finally, a numerical simulation is given to
illustrate the feasibility and effectiveness of the proposed design technique.

Keywords: Takagi-Sugeno (T-S) fuzzy system; fuzzy H∞ output-feedback control;
channel fadings; sector nonlinearities; randomly occurring interval delays (ROIDs);
randomly occurring nonlinearities (RONs)

1 Introduction
It is well known that the complexity and nonlinearity of the models are considered as ubiq-
uitous in practical systems. The emergence of this fuzzy modeling approach is based on the
Takagi-Sugeno (T-S) fuzzy system (see []), which provides a powerful tool for modeling
complex nonlinear systems. The H∞ output-feedback control problem for the T-S fuzzy
system has received considerable attention (see [–]). Nevertheless, the nonlinearity of
the T-S fuzzy subsystem is inevitable in practical applications, along with the fact, that the
T-S fuzzy model has been successfully used in complex nonlinear systems (see [–]). The
authors of [] assumed the nonlinear function in the T-S fuzzy cellular neural networks
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satisfied the -Lipschitz condition and researched the global exponential stability problem
for T-S fuzzy cellular neural networks.

In the past decade, networked control systems (NCSs) have played an important role
in many engineering applications such as remote militarization, remote medical service,
and so on (see [–]). However, there are some unavoidable phenomena for the NCSs
which may cause poor performance of the controlled systems, for instance, the signal is
often transmitted through networks which might be subjected to the occurrence of the
phenomenon of incomplete information. The considered incomplete information mainly
includes the ROIDs (see []), RONs (see []), channel fadings (see [, ]), and sector
nonlinearities (see [, ]). The nonlinear output-feedback controller design for poly-
nomial system has been studied (see [, ]). A full-order dynamic H∞ output-feedback
controller was designed by [] for the time-varying delays case when all state variables are
not available for the feedback. Further, the author of [] has researched the H∞ output-
feedback controller design problem for networked systems with random communication
delays by using a linear matrix inequality (LMI) approach. The H∞ output-feedback con-
trol problem for a class of discrete-time systems with RONs has been investigated in [],
where random variables are adopted to characterize the RONs and satisfy the binary distri-
bution. The designing H∞ output-feedback controller problems for the T-S fuzzy system
with randomly occurring phenomena have been studied in [, ]. However, in the case
when ROIDs and RONs appear simultaneously in a controlled system, the designing of the
fuzzy H∞ output-feedback control problem has received little attention by researchers.

In practical applications, the phenomena of the channel fadings and sector nonlinear-
ities based on unreliable communication networks could occur, which should not be ig-
nored. Considering the situation of signal transmission in fading channels, the H∞ output-
feedback control problem with channel fadings has been studied (see []). The channel
fading has been modeled as a time-varying stochastic model which can describe the trans-
mitted signal’s change in both the amplitude and the phase. The channel fadings with ex-
ogenous input disturbance in wireless mobile communications has not been researched
extensively (see [, ]). On the other hand, the sector nonlinearities of the sensors are
usually in order in practical industrial control systems, and this is the main factor that gives
rise to the nonlinearity of control systems (see []). Since the sensor nonlinearity cannot
be neglected and often leads to bad performance of the discrete-time control system, it
has attracted the attention of researchers (see [–]).

In [], the H∞ output-feedback control problem for a class of discrete-time systems
with channel fadings and sector nonlinearities has been studied, and the existence of the
desired controllers has been derived via using a combination of the stochastic analysis and
Lyapunov function approach. The design of H∞ fuzzy controller problem for the fuzzy
system with the probabilistic infinite-distributed delay and the channel fadings also has
been investigated in [], where the channel fading model can better reflect the reality
of measurement transmission especially through a wireless sensor network. So far, to the
best of the authors’ knowledge, the fuzzy H∞ output-feedback control problem for a class
of discrete-time T-S fuzzy system with channel fadings, sector nonlinearities, ROIDs and
RONs have not been investigated yet, and the main purpose of this paper is to bridge such
a gap.

The main contributions of this paper are summarized as follows. () Both the proba-
bilistic interval time-varying delays and the randomly occurring nonlinearities are used
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for describing the discrete-time fuzzy model. () Moreover, a newly fuzzy control system
as well as measurement model is put forward which can account for the randomly occur-
ring incomplete information phenomena of the sensor saturation and the channel fadings.
() A new fuzzy H∞ output-feedback controller has been designed.

Motivated by the above discussion, this paper intends to study the fuzzy H∞ output-
feedback control problem for a class of discrete-time Takagi-Sugeno (T-S) fuzzy model
system with channel fadings, sector nonlinearities, ROIDs, and RONs. The rest of this pa-
per is organized as follows. In the next section, the problem descriptions of the discrete-
time T-S fuzzy system with ROIDs, RONs, sector nonlinearities, and channel fadings are
stated, and the necessary definitions and relevant lemmas are recalled. Section  presents
the main results of this paper. Illustrative examples are provided in Section . Finally, con-
clusions are drawn in Section .

2 Model description and preliminaries
In this paper, we consider the following discrete-time fuzzy system with RONs and ROIDs
is described by the following fuzzy IF-THEN rules:

Plant Rule i: IF θ(k) is Mi and θ(k) is Mi, . . . , and θr(k) is Mir , THEN

⎧
⎪⎨

⎪⎩

x(k + ) = Aix(k) + Ai
∑h

m βm(k)x(k – τm(k)) + Biu(k) + Diω(k) + r(k)f (x(k)),
z(k) = Eix(k) + Diω(k),
x(s) = φ(s), s = –h, –h + , . . . , , ,

()

where i = , . . . , r, the system () is equivalent to a fuzzy combination of r subsystems. Mij

is the fuzzy set, θ (k) = [θ(k), θ(k), . . . , θr(k)] is the premise variable vector. x(k) ∈ R
n is

the state vector with x() = φ(), u(k) ∈ R
r is the control input vector, z(k) ∈ R

q is the
controlled output vector, ω(k) ∈ l([, +∞),Rn) is the exogenous disturbance input. φ(s)
is the initial state. Ai, Ai, Bi, Di, Ei, and Di are known real matrices with appropriate
dimensions.

To characterize the phenomena of randomly occurring interval delays and randomly
occurring nonlinearities, we employ the stochastic variables βm(k) (m = , . . . , h) and r(k)
in (), which are mutually independent Bernoulli-distributed white sequences with the
following probability distribution:

Prob
{
βm(k) = 

}
= E

{
βm(k)

}
= β̄m,

Prob
{
βm(k) = 

}
=  – β̄m,

Prob
{

r(k) = 
}

= E
{

r(k)
}

= r̄,

Prob
{

r(k) = 
}

=  – r̄.

The variable τm(k) (m = , , . . . , h) means the time-varying delays satisfying

dm ≤ τm(k) ≤ d̄m, ()

where dm and d̄m are real positive integers representing the lower bounds and the upper
bounds on the communication delay, respectively.
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Assumption  The nonlinear vector-valued function f (x(k)) : Rn → R
n with f () =  is

seen as continuous and satisfies the following sector-bounded condition:

∥
∥f

(
x(k)

)∥
∥ ≤ λ

∥
∥Gx(k)

∥
∥ ()

for all k ∈ [, N], where λ >  is a known positive scalar and G is a known real matrix.

Remark  In model (), the stochastic variables r(k) is used for characterizing the phe-
nomena of RONs. The T-S fuzzy model with RONs includes the fuzzy model with nonlin-
earity in [, ] as a special case where the values of r(k) are . Note that RONs is considered
for the first time for fuzzy output-feedback control problem. On the other hand, the oc-
currence of the ROIDs x(k – τm(k)) is characterized by the random variables βm(k) in a
probabilistic way, which is more suitable for reflecting the network-induced phenomena.
Meanwhile, it is worth of note that there are some results concerned with the continuous
time-varying delays in [, ] and few results for randomly occurring interval delays, es-
pecially when the fuzzy H∞ output-feedback control problem becomes a research focus.

Let us now consider the case when the phenomena of the sector nonlinearities and the
channel fadings may occur in signal transmission, where the system output is subject to
sector-like bounds and the sensor signal sent to the actuator subject to channel fadings
for the control purpose. The signal received by the actuator is modeled in the following:

{
y(k) = g(x(k)),
ξ (k) =

∑	
l= αl(k)y(k – l) + ν(k),

()

where y(k) ∈ R
n represents the system output with y(k) = ,∀k ∈ {–l, . . . , }, g(x(k)) is the

sector nonlinearity of the sensor, ξ (k) ∈ R
n is the signal from the actuator, and ν(k) ∈

l([, +∞),Rn) is an external disturbance. αl(k) ∈R (l = , , . . . ,	) is the channel coefficient
which is independent and conform Gaussian random variables distributed with mean ᾱl

and variance α̃
l . In practice, the channel coefficients typically take values over the interval

[, ].

Assumption  The nonlinear function g(x(k)) in () represents the sector nonlinearities
satisfying the following sector condition:

(
g
(
x(k)

)
– Mx(k)

)T(
g
(
x(k)

)
– Mx(k)

) ≤ , ()

where M and M (M > M ≥ ) are known real matrices with appropriate dimensions.

Remark  In this paper, the channel fadings and sector nonlinearities of the sensors can
be described simultaneously by the model () in the measurement. In [], this Rice fadings
model can properly describe the phenomena of the channel fadings, time-delay, and date
dropout, therefore the fadings model can be employed in this paper for the design of the
H∞ fuzzy output-feedback controller of the discrete-time fuzzy system.

Remark  The sector nonlinearities of the sensors usually occur in practical network con-
trol systems and cause poor performance of the controlled system. The analysis and syn-
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thesis problems for a series of dynamics systems with sector nonlinearities has been in-
vestigated in [, ]. Particularly, the nonlinear function lies inside the sector [M, M] in
[]. Furthermore, the Lipschitz condition can be concluded by the nonlinear description
as a special case if M =  or M =  in Assumption .

Assumption  ([]) For technical convenience, the nonlinear function g(x(k)) can be
decomposed into a linear and a nonlinear parts as

g
(
x(k)

)
= gs

(
x(k)

)
+ Mx(k), ()

where the nonlinear part gs(x(k)) belongs to the set Gs defined by

Gs =
{

gs
(
x(k)

)
: gT

s
(
x(k)

)(
gs

(
x(k)

)
– Mx(k)

) ≤ 
}

()

with M = M – M > .

In this paper, we adopt a full-order fuzzy output-feedback controller for the discrete-
time system by the fuzzy IF-THEN rules as follows:

Control rule i: IF θ(k) is Mi and θ(k) is Mi, . . . , and θr(k) is Mir , THEN

{
xc(k + ) = Acixc(k) + Bciξ (k),
u(k) = Ccixc(k),

()

where xc(k) ∈ R
n is the state estimate of system (), and Aci, Bci, Cci are appropriately di-

mensioned parameters matrices to be determined.
Set

hi
(
θi(k)

)
=

∏r
j= Mij(θj(k))

∑r
i=

∏r
j= Mij(θj(k))

, ()

where Mij(θj(k)) denotes the grade of membership of θj(k) in Mij. Obviously, hi(θ (k)) ≥ ,
and

∑r
i= hi(θ (k)) = . To ease the presentation, we use hi instead of hi(θ (k)).

Above all, the T-S fuzzy system () model can be constructed as follows:

⎧
⎪⎨

⎪⎩

x(k + ) =
∑r

i= hi{Aix(k) + Ai
∑h

m βm(k)x(k – τm(k)) + Biu(k)
+ Diω(k) + r(k)f (x(k))},

z(k) =
∑r

i= hi{Eix(k) + Diω(k)}.
()

Furthermore, the fuzzy control system can be described by

{
xc(k + ) =

∑r
i= hi{Acixc(k) + Bciξ (k)},

u(k) =
∑r

i= hiCcixc(k).
()
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Combining (), (), (), and (), the fuzzy control system can be represented by

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

η(k + ) =
∑r

i=
∑r

j= hihj{Āijη(k) + Āi
∑h

m= β̄mZη(k – τm(k))
+ Āi

∑h
m= β̃m(k)Zη(k – τm(k)) + Dijω̃(k) + r̄F (η(k)) + r̃(k)F (η(k))

+
∑	

l= ᾱlB̄jZη(k – l) +
∑	

l= α̃l(k)B̄(j)Zη(k – l)
+

∑	
l= ᾱlB̃jgv(Zη(k – l)) +

∑	
l= α̃l(k)B̃jgv(Zη(k – l))},

zk =
∑r

i=
∑r

j= hihj{Eiη(k) + Djω̃(k)},

()

where

η(k) =
(
xT (k), xT

c (k)
)T , ω̃ =

(
ωT (k),νT (k)

)T , F
(
η(k)

)
=

[
f (x(k))



]

,

Āij =

[
Ai BiCcj

ᾱBcjM Acj

]

, Āi =

[
Ai



]

, Z = [In ],

B̄j =

[


BcjM

]

, B̃j =

[


Bcj

]

, Ei = [Ei ],

Dij =

[
Di 
o Bcj

]

, Dj = [Dj ],

with

α̃(k) = α(k) – ᾱ;

β̃m(k) = βm(k) – β̄m;

r̃(k) = r(k) – r̄.

Obviously

E
{
α̃(k)

}
= , E

{
α̃(k)

}
� α̃

l (l = , , . . . ,	);

E
{
β̃m(k)

}
= , E

{
β̃

m(k)
}

= β̄m( – β̄m) � β̃
m (m = , . . . , h);

E
{

r̃(k)
}

= , E
{

r̃(k)
}

= r̄( – r̄) � r̃.

Particularly, we can see from Assumption  that the nonlinear function F (η(k)) satisfies
the following formula:

FT(
η(k)

)
F

(
η(k)

) ≤ ληT (k)GTGη(k), ()

where G = (G, ).
To describe our main result more precisely, we first introduce the following definition

and lemmas.

Definition  (Exponentially mean-square stability []) The T-S fuzzy control system
with channel fadings in () and every initial conditions φ, the zero solution is said to
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be exponentially mean-square stable if, in the case of ω̃(k) = , then exist constants δ > 
and  < � <  such that

E
{∥
∥η(k)

∥
∥} ≤ δ�k sup

i∈K
E

{∥
∥φ(i)

∥
∥}, ∀k ≥ . ()

With Definition , the aim of this paper is to design a robust H∞ output-feedback con-
troller in the form of () such that the fuzzy discrete-time system () is exponentially
mean-square stable and the H∞ performance is satisfied or, more specifically, the follow-
ing two requirements are satisfied simultaneously:

(R) The fuzzy discrete-time system () is exponentially mean-square stable.
(R) Under the zero-initial condition, the controlled output z(k) satisfies

∞∑

k=

E
{∥
∥z(k)

∥
∥} ≤ γ 

∞∑

k=

E
{∥
∥ω̃(k)

∥
∥} ()

for all nonzero ω̃(k), where γ >  is a prescribed scalar.

Lemma  (Schur complement []) We have the linear matrix inequality

S =

[
S S

ST
 S

]

< ,

where S = ST
 and S = ST

 are equivalent to

S < , S – ST
S–

 S < .

Lemma  ([]) For a symmetric positive definite S, and any real matrices X(ijp) with ap-
propriate dimensions, we can get

r∑

i=

r∑

j=

r∑

s=

r∑

t=

hihjhsht(X(ij))T SX(st) ≤
r∑

i=

r∑

j=

hihj(X(ij))T SX(ij).

Lemma  ([]) Given any matrices x, y, a matrix P > , and a positive scalar ε, then we
have

xT y ≤ εxT Px + ε–yT Py.

3 Main result
In this part, the following theorem provides a sufficient condition for the discrete-time
T-S fuzzy system () to be exponentially mean-square stable and the controlled output
zk to satisfy the H∞ disturbance reject requirement in ().

Theorem  Let a scalar γ >  and the controller parameters matrix Acj, Bcj, and Ccj (j =
, . . . , r) be given. The fuzzy closed-loop system () is exponentially men-square stable and
the controlled output z(k) satisfies (), if there exist matrices P > , Qm > , and Rl > 
(m = , . . . , h; l = , , . . . ,	), and a positive scalar ψ >  and ϕ >  satisfying

ϒ 
ii < , ()
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(
ϒ 

ij + ϒ 
ji
)

< , ()

where  ≤ i < j ≤ r (i, j ∈ R)

ϒ 
ij =

⎡

⎢
⎣

Λ
 Ω

ij 
∗ Λ Ω

ii

∗ ∗ Λ


⎤

⎥
⎦ ,

Λ
 = diag{–P, –P	+, –I, –ϕI}, Ps = diag{P, . . . , P

︸ ︷︷ ︸
s

},

Λ
 = diag

{
–P, –Qh, –R	, –ϕI, –ψI, –γ I

}
,

Λ
 = diag{–Ph, –P, –Q̄m, –R	, –ψI	+}, –Q̄m =

h∑

m=

(d̄m – dm + )ZT QmZ,

Ω
ij =

⎡

⎢
⎢
⎢
⎣

PĀij P(�̄ ⊗ Āi) P(�̄ ⊗ B̄j) r̄P P(�̄ ⊗ B̃j) PDij)
  P	+(�̃ ⊗ B̄j)  P	+(�̃ ⊗ B̃j) 
Ei     Dj

ϕ
√

λG     

⎤

⎥
⎥
⎥
⎦

,

Ω
ii =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

  ZT ZT
	 

(�̃ ⊗ ĀT
i)Ph    

    ψMT

 r̃P   
    
    

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

T

,

Qh = diag{Q, . . . , Qh}, R	 = diag{I, R, . . . , R	},
M = diag{M, . . . , M

︸ ︷︷ ︸
	+

}, Is = diag{I, . . . , I
︸ ︷︷ ︸

s

}, Z	 = diag
{

ZT , . . . , ZT
︸ ︷︷ ︸

	+

}T ,

�̄ = (β̄, . . . , β̄h), �̃ = diag{β̃, . . . , β̃h},
�̄ = (, ᾱ, . . . , ᾱ	), �̄ = (ᾱ, ᾱ, . . . , ᾱ	),

�̃ = diag{α̃, α̃, . . . , α̃	}.

Proof We choose the following Lyapunov function:

V
(
x(k)

)
=

∑

i=

Vi
(
x(k)

)
,

where

V(k) = ηT (k)Pη(k),

V(k) =
h∑

m=

k–∑

i=k–τm(k)

ηT (i)ZT QmZη(i), ()
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V(k) =
h∑

m=

–dm∑

n=–d̄m+

k–∑

i=k+n

ηT (i)ZT QmZη(i),

V(k) =
	∑

l=

k–∑

i=k–l

ηT (i)ZTRlZη(i).

The difference of V (x(k)) along the trajectory of the system () is

E
{
�V (k)

}
= E

{
V

(
x(k + )

)
– V

(
x(k)

)}
=

∑

i=

E
{

Vi
(
x(k + )

)
– Vi

(
x(k)

)}
. ()

We have

E
{
�V(k)

}
= E

{
V

(
x(k + )

)
– V

(
x(k)

)}
= E

{
ηT

k+Pηk+ – ηT
k Pηk

}

= E

{ r∑

i=

r∑

j=

r∑

s=

n∑

t=

hihjhsht

[

Āijη(k) + Āi

h∑

m=

β̄mZη
(
k – τm(k)

)

+ Āi

h∑

m=

β̃m(k)Zη
(
k – τm(k)

)
+ Dijω̃(k) + r̄F

(
η(k)

)
+ r̃(k)F

(
η(k)

)

+
	∑

l=

ᾱlB̄jZη(k – l) +
	∑

l=

α̃l(k)B̄(j)Zη(k – l) +
	∑

l=

ᾱlB̃jgv
(
Zη(k – l)

)

+
	∑

l=

α̃l(k)B̃jgv
(
Zη(k – l)

)
]T

P

[

Āstη(k) + Ās

h∑

m=

β̄mZη
(
k – τm(k)

)

+ Ās

h∑

m=

β̃m(k)Zη
(
k – τm(k)

)
+ Dstω̃(k) + r̄F

(
η(k)

)
+ r̃(k)F

(
η(k)

)

+
	∑

l=

ᾱlB̄tZη(k – l) +
	∑

l=

α̃l(k)B̄tZη(k – l) +
	∑

l=

ᾱlB̃tgv
(
Zη(k – l)

)

+
	∑

l=

α̃l(k)B̃tgv
(
Zη(k – l)

)
]

– η(k)T Pη(k)

}

= E

{ r∑

i=

r∑

j=

r∑

s=

n∑

t=

hihjhsht

[

η(k)T ĀT
ijPĀstη(k)

+ η(k)T ĀT
ijPĀs

h∑

m=

β̄mZη
(
k – τm(k)

)

+ η(k)T ĀT
ijPDstω̃(k) + η(k)T ĀT

ijPr̄F
(
η(k)

)

+ η(k)T ĀT
ijP

	∑

l=

ᾱlB̄tZη(k – l) + η(k)T ĀT
ijP

	∑

l=

ᾱlB̃tgv
(
Zη(k – l)

)

+
h∑

m=

β̄mZηT(
k – τm(k)

)
ĀT

iPĀs

h∑

m=

β̄mZη
(
k – τm(k)

)
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+ 
h∑

m=

β̄mZηT(
k – τm(k)

)
ĀT

iPDstω̃(k)

+ 
h∑

m=

β̄mZηT(
k – τm(k)

)
ĀT

iPr̄F
(
η(k)

)

+ 
h∑

m=

β̄mZηT(
k – τm(k)

)
ĀT

iP
	∑

l=

ᾱlB̄tZη(k – l)

+ 
h∑

m=

β̄mZηT(
k – τm(k)

)
ĀT

iP
	∑

l=

ᾱlB̃tgv
(
Zη(k – l)

)

+
h∑

m=

β̄m(k)ZηT(
k – τm(k)

)
ĀT

iPĀs

h∑

m=

β̄m(k)Zη
(
k – τm(k)

)

+ ω̃(k)TDT
ijPDstω̃(k) + ω̃(k)TDT

ijPr̄F
(
η(k)

)

+ ω̃(k)TDT
ijP

	∑

l=

ᾱlB̄tZη(k – l)

+ ω̃(k)TDT
ijP

	∑

l=

ᾱlB̃jgv
(
Zη(k – l)

)
+ r̄FT(

η(k)
)
Pr̄F

(
η(k)

)

+ r̄FT(
η(k)

)
P

	∑

l=

ᾱlB̄tZη(k – l) + r̄FT(
η(k)

)
P

	∑

l=

ᾱlB̃tgv
(
Zη(k – l)

)

+ r̃(k)FT(
η(k)

)
Pr̃(k)F

(
η(k)

)
+

	∑

l=

ᾱlη
T (k – l)ZT B̄T

t P
	∑

l=

ᾱlB̄tZη(k – l)

+ 
	∑

l=

ᾱlη
T (k – l)ZT B̄T

t P
	∑

l=

ᾱlB̃tgv
(
Zη(k – l)

)

+
	∑

l=

α̃l(k)ηT (k – l)ZT B̄T
t P

	∑

l=

α̃l(k)B̄tZη(k – l)

+ 
	∑

l=

α̃l(k)ηT (k – l)ZT B̄T
t P

	∑

l=

α̃l(k)B̃tgv
(
Zη(k – l)

)

+
	∑

l=

α̃l(k)gT
v
(
Zη(k – l)

)
B̃T

t P
	∑

l=

α̃l(k)B̃tgv
(
Zη(k – l)

)
]

– η(k)T Pη(k)

}

.

Considering Lemma  and taking the elementary inequality ab ≤ a + b into consider-
ation, we obtain

E
{
�V(k)

} ≤ E

{ n∑

i=

n∑

j=

hihj

[

η(k)T(
ĀT

ijPĀij – P
)
η(k)

+ η(k)T ĀT
ijPĀi

h∑

m=

β̄mZη
(
k – τm(k)

)
+ η(k)T ĀT

ijPDijω̃(k)

+ η(k)T ĀT
ijPr̄F

(
η(k)

)
+ η(k)T ĀT

ijP
	∑

l=

ᾱlB̄jZη(k – l)
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+ η(k)T ĀT
ijP

	∑

l=

ᾱlB̃jgv
(
Zη(k – l)

)

+

( h∑

m=

β̄mZηT(
k – τm(k)

)
Āi

)T

PĀi

h∑

m=

β̄mZη
(
k – τm(k)

)

+ 

( h∑

m=

β̄mZηT(
k – τm(k)

)
Āi

)T

PDijω̃(k)

+ 

( h∑

m=

β̄mZηT(
k – τm(k)

)
Āi

)T

Pr̄F
(
η(k)

)

+ 

( h∑

m=

β̄mZηT(
k – τm(k)

)
Āi

)T

P
	∑

l=

ᾱlB̄jZη(k – l)

+ 

( h∑

m=

β̄mZηT(
k – τm(k)

)
Āi

)T

P
	∑

l=

ᾱlB̃jgv
(
Zη(k – l)

)

+

( h∑

m=

β̄m(k)ZηT(
k – τm(k)

)
Āi

)T

PĀs

h∑

m=

β̄m(k)Zη
(
k – τm(k)

)

+ ω̃(k)TDT
ijPDijω̃(k) + ω̃(k)TDT

ijPr̄F
(
η(k)

)

+ ω̃(k)TDT
ijP

	∑

l=

ᾱlB̄jZη(k – l) + ω̃(k)TDT
ijP

	∑

l=

ᾱlB̃jgv
(
Zη(k – l)

)

+ r̄FT(
η(k)

)
Pr̄F

(
η(k)

)
+ r̄FT(

η(k)
)
P

	∑

l=

ᾱlB̄jZη(k – l)

+ r̄FT(
η(k)

)
P

	∑

l=

ᾱlB̃jgv
(
Zη(k – l)

)
+ r̃FT(

η(k)
)
PF

(
η(k)

)

+
	∑

l=

ᾱlη
T (k – l)ZT B̄T

j P
	∑

l=

ᾱlB̄jZη(k – l) + 
	∑

l=

ᾱlη
T (k – l)ZT B̄T

j

× P
	∑

l=

ᾱlB̃jgv
(
Zη(k – l)

)
+

	∑

l=

α̃
l η

T (k – l)ZT B̄T
j PB̄jZη(k – l)

+ 
	∑

l=

α̃
l η

T (k – l)ZT B̄T
j PB̃jgv

(
Zη(k – l)

)

+
	∑

l=

α̃
l gT

v
(
Zη(k – l)

)
B̃T

j PB̃jgv
(
Zη(k – l)

)
]}

. ()

Also, it can be seen that

E
{
�V(k)

}
= E

{
V(k + ) – V(k)

}

= E

{ h∑

m=

k∑

i=k+–τm(k)

ηT (i)ZT QmZη(i) –
h∑

m=

k–∑

i=k–τm(k)

ηT (i)ZT QmZη(i)

}
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≤ E

{

ηT (k)ZT QmZη(k) – ηT(
k – τm(k)

)
ZT QmZη

(
k – τm(k)

)

+
k–dm∑

i=k–d̄m+

ηT (i)ZT QmZη(i)

}

, ()

E
{
�V(k)

}
= E

{
V(k + ) – V(k)

}

= E

{ h∑

m=

–dm∑

n=–d̄m+

k∑

i=k+n+

ηT (i)ZT QmZη(i)

–
h∑

m=

–dm∑

n=–d̄m+

k–∑

i=k+n

ηT (i)ZT QmZη(i)

}

≤ E

{ h∑

m=

[

(d̄m – dm)ηT (k)ZT QmZη(k)

–
k–dm∑

i=k–d̄m+

ηT (i)ZT QmZη(i)

]}

, ()

and

E
{
�V(k)

}
= E

{
V(k + ) – V(k)

}

= E

{
	∑

l=

k∑

i=k+–l

ηT (i)ZTRlZη(i) –
	∑

l=

k–∑

i=k–l

ηT (i)ZTRlZη(i)

}

= E

{
	∑

l=

(
ηT (k)ZTRlZη(k) – ηT (k – l)ZTRlZη(k – l)

)
}

. ()

For notational convenience, we have

η(k – τ ) =
[
η
(
k – τ(k)

)T ZT ,η
(
k – τ(k)

)T ZT , . . . ,η
(
k – τm(k)

)T ZT]T ,

η(k)	 =
[
η(k)T ZT ,η(k – )T ZT , . . . ,η(k – 	)T ZT]T ,

G(k)	 =
[
gT

v
(
Zη(k)

)
, gT

v
(
Zη(k – )

)
, . . . , gT

v
(
Zη(k – 	)

)]T ,

η̄(k) =
[
η(k)T ,η(k – τ )T ,η(k)	T ,FT(

η(k)
)
,G(k)	T]T ,

η̃(k) =
[
η(k)T ,η(k – τ )T ,η(k)	T ,FT(

η(k)
)
,G(k)	T , ω̃T (k)

]T .

In the first place, we will prove the exponential stability of the system () with ω̃(k) = ,
considering (), (), Lemma , and Lemma , we can get

E
{
�V (k)

}

≤ E

{ ∑

i=

�Vi(k) – ϕ
[
FT(

η(k)
)
F

(
η(k)

)
– ληT (k)GTGη(k)

]

– ψ
[
G(k)	TG(k)	 – G(k)	T(

I	+ ⊗ MT M
)
η	

k
]
}
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≤ E

{ ∑

i=

�Vi(k) – ϕ
[
FT(

η(k)
)
F

(
η(k)

)
– ληT (k)GTGη(k)

]

– ψG(k)	TG(k)	 + ψη(k)	T(
I	+ ⊗ MT M

)
η(k)	

}

≤ E

{ h∑

i=

h∑

j=

hihjη̄(k)T�ijη̄(k)

}

,

where

�ij =

⎡

⎢
⎢
⎢
⎣

�ij + ϕλGTG �ij �ij �ij �ij
∗ �ii + I �ij �ii �ij
∗ ∗ �jj + ψI	+ ⊗ (MT M) �jj �jj
∗ ∗ ∗ � – ϕI �jj
∗ ∗ ∗ ∗ �jj – ψI

⎤

⎥
⎥
⎥
⎦

, ()

�ij = ĀT
ijPĀij + α̃

ZT ĀT
iPĀiZ +

	∑

l=

ZT RlZT + ZT Z +
h∑

m=

(d̄m – dm + )ZT QmZ – P,

�ij =
(
β̄ĀT

ijPĀi, . . . , β̄hĀT
ijPĀi

)
,

�ij =
(
, ᾱĀT

ijPB̄j, . . . , ᾱ	ĀT
ijPB̄j

)
,

�ij = r̄ĀT
ijP,

�ij =
(
ᾱĀT

ijPB̃j, . . . , ᾱ	ĀT
ijPB̃j

)
,

�ii = (�̄ ⊗ Āi)T P(�̄ ⊗ Āi) + (�̃ ⊗ Āi)TPh(�̃ ⊗ Āi) – Qh,

�ij = (�̄ ⊗ I)T(
, ᾱĀT

iPB̄j, . . . , ᾱ	ĀT
iPB̄j

)
,

�ii =
(
β̄δ̄ĀT

iP, . . . , β̄hδ̄ĀT
iP

)
,

�ij = (�̄ ⊗ I)T(
, ᾱĀT

iPB̃j, . . . , ᾱ	ĀT
iPB̃j

)
,

�jj = (�̄ ⊗ B̄j)T P(�̄ ⊗ B̄j) + (�̃ ⊗ B̄j)TP	+(�̃ ⊗ B̄j) – R	,

�jj =
(
, ᾱδ̄B̄T

j P, . . . , ᾱ	δ̄B̄T
j P

)
,

�jj = (�̄ ⊗ B̄j)T P(�̄ ⊗ B̃j) + (�̃ ⊗ B̄j)TP	+(�̃ ⊗ B̃j),

� = r̄P + r̃P, �jj = (ᾱδ̄PB̃j, ᾱδ̄PB̃j, . . . , ᾱ	δ̄PB̃j),

�jj = (�̄ ⊗ B̃j)T P(�̄ ⊗ B̃j) + (�̃ ⊗ B̃j)TP	+(�̃ ⊗ B̃j).

By utilizing Lemma , we know that () and () implies E{�V (k)} ≤  is true. More-
over, we can draw the conclusion that the nominal control system () with ω̃(k) =  is
exponentially mean-square stable as can be seen in the same way as in [].

Now let us dispose of the H∞ performance for the system (). For this purpose, we
establish a cost function

J(n) = E

n∑

k=

[
zT (k)z(k) – γ ω̃T (k)ω̃(k)

]
. ()

There is no doubt that we can show J(n) <  under the zero-initial condition, which is our
purpose.
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Along the trajectory of the fuzzy discrete-time system () and taking () into consid-
eration, we have

J(n) = E

{ n∑

k=

[
zT (k)z(k) – γ ω̃T (k)ω̃ + �V (k)

]
– V (n + )

}

≤ E

{ n∑

k=

[
zT (k)z(k) – γ ω̃T (k)ω̃(k) + �V (k)

]
}

≤
n∑

k=

E
{
�V (k) +

(
Eiη(k) + Djω̃(k)

)T(
Eiη(k) + Djω̃(k)

)
– γ ω̃T (k)ω̃(k)

}

≤
h∑

i=

h∑

j=

hihj
[
η̃(k)T�ijη̃(k)

]
, ()

where

�ij =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�ij + ϕλGTG + ET
i Ei �ij �ij

∗ �ii + I �ij

∗ ∗ �jj + ψI	+ ⊗ (MT M)
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

�ij �ij �ij

�ii �ij �ij

�jj �jj �ij

� – ϕI �jj �ij

∗ �jj – ψI �ij

∗ ∗ �ij + DT
jDj – γ I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

�ij = ĀT
ijPDij, �ij =

(
β̄DT

ijPĀi, . . . , β̄hDT
ijPĀi

)T ,

�ij =
(
, ᾱDT

ijPB̄j, . . . , ᾱ	DT
ijPB̄j

)T , �ij = r̄PDij,

�ij =
(
ᾱDT

ijPB̃j, . . . , ᾱ	DT
ijPB̃j

)
, �ij = DT

ijPDij.

By using the Schur complement lemma, the conclusion can be drawn from () and ()
that J(n) < . Letting n → ∞, it follows from the above inequality that

∞∑

k

E
{∥
∥z(k)

∥
∥} ≤ γ 

∞∑

k=

∥
∥ω̃(k)

∥
∥,

which completes the proof of Theorem . �

Through the above-mentioned analysis results for the control problem, we will deal with
the problem of designing the desired H∞ fuzzy output-feedback controller in the following
theorem.
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Theorem  Let the H∞ disturbance attenuation level γ >  be given. A desired controller
of the form () exists if there exist matrices S > , T > , Qm >  (m = , . . . , h), Rl > 
(l = , , . . . ,	), matrices Kj, Kj, Kj (j = , . . . , r), and a positive scalar ϕ >  and ψ > 
satisfying

ϒ
ii < , ()


(
ϒ

ij + ϒ
ji
)

< , ()

where  ≤ i < j ≤ r (i, j ∈ R)

ϒ
ij =

⎡

⎢
⎣

Λ
 Ω

ij 
∗ Λ

 Ω
ii

∗ ∗ Λ


⎤

⎥
⎦ ,

Λ
 = diag{P̂, P̂	+, –I, –ϕI},

Λ
 = diag

{
–P̃, –Qh, –R	, –ϕI, –ψI, –γ I

}
,

�
 = diag{–P̃h, –P̃, –Q̄m, –R	, –ψI	+},

Ω
ij =

⎡

⎢
⎢
⎢
⎣

Āij �̄ ⊗ Āi �̄ ⊗ B̄ r̄W̄ �̄ ⊗ B̃ D̄ij

  �̃ ⊗ B̄  �̃ ⊗ B̃ 
Ēi     Dj

ϕ
√

λḠ     

⎤

⎥
⎥
⎥
⎦

,

Ω
ii =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

  ZTQ̄m ZT ⊗ R̄	 
�̃ ⊗ ÃT

i    
    ψMT

 r̃T   
    
    

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

P̂ =

[
T̄ –I
∗ –S

]

, P̃ =

[
T T
∗ S

]

, W̄ =

[
I 
S 

]

,

P̂s = diag{P̂, . . . , P̂
︸ ︷︷ ︸

s

}, P̃s = diag{P̃, . . . , P̃
︸ ︷︷ ︸

s

}, T = diag{T , I},

Ēi =

[
E
E

]

, Ḡ =

[
G 
 G

]

, T̄ = –H – HT + HT TH ,

R̄l = (I, R, . . . , R	),

Āij =

[
Aij + BiKj Aij

SAij + ᾱKjM + Kj SAij + ᾱKjM

]

, Āi =

[
Ai

SAi

]

,

Ãi =

[
TAi

SAi

]

, B̄ =

[


KjM

]

, B̃ =

[


Kj

]

, D̄ij =

[
Dij 

SDij Kj

]

,

the controller parameters in the form of () are given in the following:

Acj = X
{

Kj[T – S]–X – SBiCcj
}

,
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Bcj = X–
 Kj, Ccj = Kj[T – S]–X, ()

where the matrix X derives from the factorization I – ST– = XY T
 < , and then the

fuzzy discrete-time closed-loop system () is exponentially mean-square stable and the
controlled output zk satisfies ().

Proof For the purpose of design desired controller parameters Acj, Bcj, and Ccj from The-
orem , we partition P and P– as

(∗) P =

[
S X

XT
 X

]

, P– =

[
T– Y

Y T
 Y

]

,

where the partitioning of P and P– are appropriately dimensioned to be determined by
Āij, Āi,Dij, and B̄j in ().

Define

W =

[
T– I
Y T

 

]

, W =

[
I S
 XT



]

,

and then we have PW = W and W T
 PW = W T

 W. Now we define the controller param-
eters from () as follows:

Kj = [SBiCcj + XAcj]Y T
T ,

Kj = XBcj, ()

Kj = CcjY T
T .

By applying the congruence transformation

diag{W, W, . . . , W︸ ︷︷ ︸
	+

, I, I, W, Ih, I	+, I, I, I, W, . . . , W︸ ︷︷ ︸
h

, W, I, I	+, I	+}

to () and (), we can have

⎡

⎢
⎣

Λ
 Ω

ij 
∗ Λ

 Ω
ii

∗ ∗ Λ


⎤

⎥
⎦ < , ()

Λ
 = diag{–P̄, –P̄	+, –I, –ϕI},

Λ
 = diag

{
–P̄, –Qh, –R	, –ϕI, –ψI, –γ I

}
,

�
 = diag

{
–P̄h, –P̄, –Q̄–

m , –R–
	 , –ψI	+

}
,

Ω
ij =

⎡

⎢
⎢
⎢
⎣

Ãij �̄ ⊗ Āi �̄ ⊗ B̄ r̄W̄ �̄ ⊗ B̃ D̄ij

  �̃ ⊗ B̄  �̃ ⊗ B̃ 
Ẽi     Dj

ϕ
√

λG̃     

⎤

⎥
⎥
⎥
⎦

,
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Ω
ii =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

  ZT T– ZT T– ⊗ Ī	 
�̃ ⊗ ĀT

i    
    ψMT

 r̃W   
    
    

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

P̄ =

[
T– I
∗ S

]

, P̄s = diag{P̄, . . . , P̄
︸ ︷︷ ︸

s

},

Ēi = [EiT– Ei], Ḡ = [GT– G], Īl = [I, . . . , I
︸ ︷︷ ︸

	+

],

Ãij =

[
(Aij + BiKj)T– Aij

(SAij + ᾱKjM + Kj)T– SAij + ᾱKjM

]

.

On the other hand, it follows from [T– – H]T T[T– – H] ≥  that

–T– ≤ –H – HT + HT TH . ()

Furthermore, again applying the congruence transformation

diag{I, I	+, I, I,T , Ih, I	+, I, I, I,T , . . . ,T
︸ ︷︷ ︸

h

,T , Q̄m, I	+,R	+}

to (), we have

⎡

⎢
⎣

Λ
 Ω

ij 
∗ Λ

 Ω
ii

∗ ∗ Λ


⎤

⎥
⎦ < , ()

where T = diag{T , I}. By combination () and (), if () and () are satisfied, the in-
equality () holds. Therefore the sufficient condition () and () of Theorem  is effec-
tive.

Next, let us calculate the desired controller parameters. We can obtain from PP– = I

I – ST– = XY. ()

By P > , T > , S > , W T
 PW = W T

 W =
[ T– I

I S

]
, and if () and () are feasible, we can

infer I – ST– = XY < . So I – ST– is nonsingular. Hence one can always find square
and nonsingular X and Y satisfying () []. In this case, we can obtain Acj, Bcj, and
Ccj via solving (). Now it can be concluded from Theorem  that the fuzzy closed-loop
system () is exponentially mean-square stable and the controlled output z(k) satisfies
() with the controller parameters given by (). �

Remark  The model considered in this paper is more general than some existing ones
[, , ]. For example, when the model does not take into consideration the randomly
occurring interval delay and randomly occurring nonlinearities, it reduces to the model
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in []. The results derived in this paper also contain the two theorems in [] as special
cases. Moreover, randomly occurring nonlinearities have not been considered in [], and
sector nonlinearities have not been studied in [].

Remark  The design of controller directly affects the stability and H∞ performance of
the discrete-time closed-loop system. Compared with [, , ], it should be pointed out
that the fuzzy controller designing arithmetic in Theorem  has more generality than the
usual controller, that is to say, the controller designing arithmetic in [, ] cannot be
available for the design of fuzzy H∞ output-feedback controller for a class of discrete-
time T-S fuzzy systems with channel fadings, sector nonlinearities, ROIDs, and RONs. To
design the controller and complete the proof of Theorem , P and P– are in the form of (∗),
which can be found in [, ]. The conditions as regards P in [] are more conservative than
ours because one not only needs P > , but also S >  and X > . Therefore, Theorem 
has less conservatism.

Remark  In Theorem , the sufficient conditions involved in the randomly occurring
nonlinearities, the probabilistic interval delays, sector nonlinearities, and channel fad-
ings were first established for the desired fuzzy output-feedback controller. The fuzzy
output-feedback controller is designed such that the discrete-time system () is expo-
nentially mean-square stable and, under the zero-initial condition, the proposed H∞ per-
formance index can be satisfied. Particularly, with the designed of H∞ fuzzy controllers,
the robustness of our developed controller operation algorithms of the discrete-time
fuzzy system includes the traditional controller algorithms. In other words, the tradi-
tional controller algorithms means that we have the membership function hi = , hj = 
(i �= j, j = , . . . i – , i + , . . . , r) in the discrete-time fuzzy system. Obviously, the devel-
oped controller algorithms work better than the traditional algorithms in dealing with the
occurrence probability of randomly occurring nonlinearities, interval delays, sector non-
linearities, and channel fadings, which appropriately avoid the deterioration of the H∞
performance.

4 Numerical example
In this section, we present illustrative examples to show the effectiveness of the proposed
controller design approach.

Consider the following discrete-time T-S fuzzy model from ():

⎧
⎪⎨

⎪⎩

x(k + ) =
∑

i= hi{Aix(k) + Ai
∑

m βm(k)x(k – τm(k)) + Biu(k)
+ Diω(k) + r(k)f (x(k))},

z(k) =
∑

i= hi{Eix(k) + Diω(k)}.

Consider the model parameters as follows:

A =

[
. –.
. –.

]

, A =

[
. –.

. –.

]

,

A =

[
. 

. –.

]

, A =

[
. 
. –.

]

,

B = B = [. .]T ,



Fan et al. Advances in Difference Equations  (2016) 2016:267 Page 19 of 23

D = D = [. .]T ,

D = D = .,

E = E = [–. .],

with the initial value φ(s) = [, ]T (s = , –, –, –, –, –). The nonlinear vector-valued
function h(k) is as follows:

h
(
x(k)

)
=

[ .x(k)
x

(k)+

.x(k) sin(x(k))

]

.

Besides, it can easily be noticed that Assumption  satisfies λ = . and

G =

[
. 

 .

]

,

the sensor nonlinearity is given as

g
(
x(k)

)
=

M + M


x(k) +

M – M


sin

(
x(k)

)
,

where

M =

[
. 
 .

]

, M =

[
. 
 .

]

.

In the meantime, the output measurement is described as follows:

{
y(k) = g(x(k)),
ξ (k) = α(k)y(k) +

∑
l= αl(k)y(k – l) + ν(k).

Here, the order of channel fading is 	 = , the mathematical expectations of the channel
coefficients are ᾱ = ., ᾱ = . and ᾱ = ., and the variances of the channel coefficients
are α̃∗

 = ., α̃∗
 = ., and α̃∗

 = .. Assume that h =  for the time-varying delays, τ(k)
and τ(k) are, respectively, uniformly distributed in the intervals [, ] and [, ], and the
stochastic variables β̄ = ., β̄ = .. Other stochastic variables are r̄ = ., r̃ = ..

To further illustrate the effectiveness of the designed H∞ fuzzy controller, the exogenous
disturbance inputs ν(k),ω(k) are assumed to be

ν(k) =
. sin(k)

k
, ω(k) =

. sin(k)
k

.

The membership functions are shown in Figure . The formulated T-S fuzzy model is
an approximation of the original nonlinear model has been verified in []. In Section ,
we saw that the premise viable space can be divided into two regions from the partition
method, as shown in Figure .
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Figure 1 Membership function.

Figure 2 The states of the system and the fuzzy
controller.

Applying Theorem  and the LMI toolbox, we can obtain the desired controller param-
eter matrices in the form of () such that the fuzzy system () is exponentially mean-
square stable with the H∞ norm bound γ = . as follows:

Ac =

[
. .

–. –.

]

, Ac =

[
. .

–. –.

]

,

Bc =

[
–. –.
. .

]

, Bc =

[
–. –.
. .

]

,

Cc = [. –.], Cc = [. –.].

The simulation results are shown in Figures - where the states of the system and the
fuzzy controller are shown in Figure . We can conclude that although the discrete-time
fuzzy system and the full-order output-feedback controller are subject to RONs, ROIDs,
and channel fadings as well as sector nonlinearities, respectively, the fuzzy controller can
estimate the state well. Moreover, we can conclude that the designed H∞ fuzzy filter en-
sures the exponentially mean-square stable of the filtering error and obtains H∞ distur-
bances rejection level γ . Figure  shows the results of the uncontrolled fuzzy system, which
are clearly unstable. Figure  shows the consequence of the closed-loop fuzzy system,
which is indeed exponentially mean-square stable. All the simulation results have con-
firmed that the designed H∞ fuzzy output-feedback control performs very well.
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Figure 3 State evolution x(k) of uncontrolled
fuzzy system.

Figure 4 State evolution x(k) of controlled fuzzy
system.

5 Conclusions
In this paper, a fuzzy H∞ output-feedback controller has been designed for a class of fuzzy
discrete-time systems with sector nonlinearities, channel fadings, randomly occurring in-
terval delays as well as randomly occurring nonlinearities. A sufficient condition for the
H∞ robust exponential stability of the fuzzy discrete-time system has been obtained by
a Lyapunov stability analysis approach and stochastic analysis theory. Moreover, by using
the LMI technique, a clear expression of the desired H∞ fuzzy output-feedback controller
can be obtained and the proposed H∞-norm bound constraint has been guaranteed. At
last, the developed fuzzy controller design approach has been checked by a numerical
simulation example. Further research topics might include the development of our results
to more complex and more varied cases with sector nonlinearities and channel fadings by
using a stochastic analysis approach, such as multi-agent systems based on the T-S fuzzy
model, descriptor systems, and affine fuzzy systems.
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