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Abstract
In this paper, we obtain the forced oscillation of solutions for certain fractional partial
difference equations with two different types of boundary conditions. Our results are
based on discrete Gaussian formula and some basic theories of discrete fractional
calculus.
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1 Introduction
In , Diaz and Osler [] presented a discrete fractional difference operator based on
an infinite series. In , Miller and Ross [] introduced the definitions of noninteger-
order differences and sums. Since then, the theory of fractional difference equations has
been studied by several scholars. In recent years, some papers [–] on discrete fractional
calculus were published, which helped to build up the theory of fractional difference equa-
tions. For example, Atici and Eloe [] discussed the properties of the generalized falling
function, the corresponding power rule for fractional delta operators, and the commuta-
tivity of fractional sums.

Very recently, the oscillation theory as a part of the qualitative theory of fractional dif-
ferential equations and fractional difference equations has been developed. We refer the
reader to [–] and the references therein. In particular, we notice that a few papers
[–] studied the oscillation of fractional partial differential equations that involve the
Riemann-Liouville fractional partial derivatives.

Motivated by the papers [–], we investigate the forced oscillation of the fractional
partial difference equation of the form

�α
nu(m, n) = a(n)Lu(m, n) – q(m, n)u(m, n) + h(m, n), (m, n) ∈ � ×Na, ()

where m = (m, m, . . . , m�), � is a convex connected solid net (for the definition of a con-
vex connected solid net, we refer to []), and

� = N(, N) ×N(, N) × · · · ×N(, N�), ()
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N(, Ni) = {, , . . . Ni}, i = , , . . . ,�, L is the discrete Laplacian on � defined as

Lu(m, n) =
�∑

i=

�
mi

u
(
(m, . . . , mi–, mi – , mi+, . . . , m�), n

)
, ()

�α
nu(m, n) is the Riemann-Liouville fractional difference operator of order α of u with

respect to n, α ∈ (, ) is a constant, Na = {a, a + , a + , . . .}, and a ≥  is a real number.
Throughout this paper, we always assume that
(A) a(n) ≥ , n ∈Na; q(m, n) ≥ , q(n) = minm∈� q(m, n), (m, n) ∈ � ×Na; and

h : � ×Na →R.
Consider one of the two following boundary conditions:

(B) �N u(m – , n) + g(m, n)u(m, n) = , (m, n) ∈ ∂� ×Na,

or

(B) �N u(m – , n) = φ(m, n), (m, n) ∈ ∂� ×Na,

where

∂� =
�⋃

i=

{
(m, . . . , mi–, , mi+, . . . , m�), (m, . . . , mi–,

Ni + , mi+, . . . , m�)
}

, mi ∈N(, Ni),  ≤ i ≤ �, ()

�N u(m – , n) is the normal difference at (m, n) ∈ ∂� ×Na defined by

�N u(m – , n) =
∑

all m± /∈�

(
�m

(
u(m, n)

)
– �mu(m – , n)

)
=

∑

all m± /∈�

�
mu(m, n),

N is the unit exterior normal vector to ∂�, m +  := {m + , m, . . . , m�} ∪ · · · ∪ {m, . . . ,
m�–, m� + }, m –  := {m – , m, . . . , m�} ∪ · · · ∪ {m, . . . , m�–, m� – }, and g(m, n) ≥
,φ(m, n) ≥ , (m, n) ∈ ∂� × Na. For the details on ∂� and �N u(m – , n), we refer to
the monograph [] and paper [], respectively.

The function u(m, n) is said to be a solution of problem ()-(B) (or ()-(B)) if it satisfies
() for (m, n) ∈ � ×Na and satisfies (B) (or (B)) for (m, n) ∈ ∂� ×Na.

The solution u(m, n) of problem ()-(B) (or ()-(B)) is said to be oscillatory in � ×Na

if it is neither eventually positive nor eventually negative; otherwise, it is nonoscillatory.

2 Preliminaries
In this section, we present some preliminary results of discrete fractional calculus and
partial differences.

Definition . ([]) Let  < ν < . The νth fractional sum of f is defined by

�–ν
a f (t) =


	(ν)

t–ν∑

s=a
(t – s – )(ν–)f (s), ()
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where f is defined for s ∈ Na, �–ν
a f is defined for s ∈ Na+ν = {a + ν, a + ν + , a + ν + , . . .},

	 is the gamma function, and

t(ν) =
	(t + )

	(t +  – ν)
.

Definition . Let  < ν < . The νth fractional sum with respect to n of u(m, n) is defined
by

�–ν
n u(m, n) =


	(ν)

n–ν∑

s=a
(n – s – )(ν–)u(m, s). ()

Definition . ([]) Let μ >  and k – < μ < k, where k denotes a positive integer, k = �μ�.
Set ν = k – μ. The μth fractional difference is defined as

�μf (t) = �k–ν f (t) = �k�–ν f (t), ()

where �μ� is the ceiling function of μ.

Definition . Let  < μ <  and ν =  – μ. The μth fractional partial difference with
respect to n of a function u(m, n) is defined as

�μ
n u(m, n) = �–ν

n u(m, n) = �n�
–ν
n u(m, n). ()

Lemma . ([]) Let f be a real-valued function defined on Na, and let μ,ν > . Then the
following equalities hold:

�–ν
[
�–μf (t)

]
= �–(μ+ν)f (t) = �–μ

[
�–ν f (t)

]
; ()

�–ν�f (t) = ��–ν f (t) –
(t – a)(ν–)

	(ν)
f (a). ()

Lemma . For n ∈ Na, let

E(n) =
n–+α∑

s=n

(n – s – )(–α)x(n), n ∈Na,α ∈ (, ). ()

Then

�E(n) = 	( – α)�αx(n). ()

Proof By Definition ., from () we have

E(n) =
n–+α∑

s=n

(n – s – )(–α)x(s) =
n–(–α)∑

s=n

(n – s – )((–α)–)x(s)

= 	( – α)�–(–α)x(n). ()
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Using Definition ., from () it follows that

�E(n) = 	( – α)��–(–α)x(n) = 	( – α)�αx(n).

The proof of Lemma . is complete. �

Lemma . (Discrete Gaussian formula []) Let � be a convex connected solid net. Then

∑

m∈�

Ly(m, n) =
∑

m∈∂�

�N y(m – , n). ()

Lemma . ([]) For ε > ,

lim
t→∞

	(t)tε

	(t + ε)
= . ()

For convenience, we introduce the following notations:

U(n) =
∑

m∈�

u(m, n), H(n) =
∑

m∈�

h(m, n), �(n) =
∑

m∈∂�

φ(m, n). ()

3 Oscillation of problem (1)-(B1)
Theorem . For n ∈Na, if

lim inf
n→∞

n–∑

s=n

H(s) = –∞, ()

and

lim sup
n→∞

n–∑

s=n

H(s) = +∞, ()

where H(n) is defined as in (), then every solution u(m, n) of problem ()-(B) is oscillatory
in � ×Na.

Proof Suppose to the contrary that there is a nonoscillatory solution u(m, n) of problem
()-(B) that has no zero in � × Na for some n∗ ≥ a. Then u(m, n) >  or u(m, n) <  for
n ≥ n∗.

Case . u(m, n) > , n ≥ n∗. Summing equation () over �, we have

∑

m∈�

�α
nu(m, n) = a(n)

∑

m∈�

Lu(m, n) –
∑

m∈�

q(m, n)u(m, n)

+
∑

m∈�

h(m, n), n ∈Na. ()

The discrete Gaussian formula and (B) yield

∑

m∈�

Lu(m, n) =
∑

m∈∂�

�N u(m – , n) =
∑

m∈∂�

–g(m, n)u(m, n) ≤ , n ∈Na. ()
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From assumption (A) we have

∑

m∈�

q(m, n)u(m, n) ≥ q(n)
∑

m∈�

u(m, n), n ∈Na. ()

Combining ()-(), we obtain

�αU(n) + q(n)U(n) ≤ H(n), n ∈Na, ()

where U(n) is defined as in (). It follows from () that

�αU(n) ≤ H(n), n ∈Na. ()

Using Lemma ., from () we have

�G(n) ≤ 	( – α)H(n), ()

where

G(n) =
n–+α∑

s=n∗
(n – s – )(–α)U(n), n ∈ Na.

Summing both sides of () from n∗ to n – , we obtain

G(n) ≤ G
(
n∗) + 	( – α)

n–∑

s=n∗
H(s). ()

Taking n → ∞ in (), we have

lim inf
n→∞ G(n) = –∞,

which contradicts with G(n) > .
Case . u(m, n) < , n ≥ n∗. As in the proof of Case , we obtain (). The discrete Gaus-

sian formula and (B) yield

∑

m∈�

Lu(m, n) =
∑

m∈∂�

�N u(m – , n) =
∑

m∈∂�

–g(m, n)u(m, n) ≥ , n ∈Na. ()

From assumption (A) we have

∑

m∈�

q(m, n)u(m, n) ≤ q(n)
∑

m∈�

u(m, n), n ∈Na. ()

Combining (), (), and (), we obtain

�αU(n) + q(n)U(n) ≥ H(n), n ∈Na. ()
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Then we have

�αU(n) ≥ H(n), n ∈Na. ()

Using the above-mentioned method in Case , we easily obtain a contradiction. This com-
pletes the proof of Theorem .. �

Theorem . If

lim inf
n→∞ (n – a)–α

{n–α∑

s=a
(n – s – )(α–)H(s)

}
= –∞ ()

and

lim sup
n→∞

(n – a)–α

{n–α∑

s=a
(n – s – )(α–)H(s)

}
= +∞, ()

where H(n) is defined as in (), then every solution u(m, n) of problem ()-(B) is oscillatory
in � ×Na.

Proof Suppose to the contrary that there is a nonoscillatory solution u(m, n) of problem
()-(B) that has no zero in � × Na for some n∗ ≥ a. Then u(m, n) >  or u(m, n) <  for
n ≥ n∗.

Case . u(m, n) > , n ≥ n∗. As in the proof of Theorem ., we obtain (). Applying the
operator �–α to inequality (), we have

�–α�α
nU(n) ≤ �–αH(n). ()

By Lemma . it follows from the left-hand side of () that

�–α�α
nU(n) = �–α��–(–α)U(n)

= ��–α�–(–α)U(n) –
(n – a)(α–)

	(α)
�–(–α)U(a)

= U(n) –
C

	(α)
(n – a)(α–), ()

where �–(–α)U(a) = �–(–α)U(n)|n=a = C is a constant. Applying Definition . to the
right-hand side of (), we have

�–αH(n) =


	(α)

n–α∑

s=a
(n – s – )(α–)H(s). ()

Combining ()-(), we get

U(n) ≤ C

	(α)
(n – a)(α–) +


	(α)

n–α∑

s=a
(n – s – )(α–)H(s). ()
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It follows from () that

	(α)(n – a)–αU(n) ≤ C(n – a)(α–)(n – a)–α

+ (n – a)–α

n–α∑

s=a
(n – s – )(α–)H(s). ()

Using Lemma ., we obtain

lim
n→∞(n – a)–α(n – a)(α–)

= lim
n→∞(n – a)–α 	(n – a + )

	(n – a +  + ( – α))

= lim
n→∞(n – a)–α (n – a)	(n – a)

(n – a +  – α)	(n – a + ( – α))

= lim
n→∞

n – a
n – a +  – α

	(n – a)(n – a)–α

	(n – a + ( – α))

= . ()

Noting () and taking n → ∞ in (), we have

lim inf
n→∞

{
(n – a)–αU(n)

} ≤ –∞,

which contradicts with U(n) > .
Case . u(m, n) < , n ≥ n. As in the proof of Theorem ., we obtain the fractional

difference inequality (). Then using the above-mentioned method, we easily obtain a
contradiction. This completes the proof of Theorem .. �

4 Oscillation of problem (1)-(B2)
Theorem . For n ∈Na, if

lim inf
n→∞

n–∑

s=n

(
�(s) + H(s)

)
= –∞ ()

and

lim sup
n→∞

n–∑

s=n

(
�(s) + H(s)

)
= +∞, ()

where �(n) and H(n) are defined as in (), then every solution u(m, n) of problem ()-(B)
is oscillatory in � ×Na.

Proof Suppose to the contrary that there is a nonoscillatory solution u(m, n) of problem
()-(B) that has no zero in � × Na for some n∗ ≥ a. Then u(m, n) >  or u(m, n) <  for
n ≥ n∗.

Case . u(m, n) > , n ≥ n∗. As in the proof of Theorem ., we obtain (). Using the
discrete Gaussian formula and noting the boundary condition (B), it follows from ()
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that

∑

m∈�

Lu(m, n) =
∑

m∈∂�

�N u(m – , n) =
∑

m∈∂�

φ(m, n), n ∈ Na. ()

Combing (), (), and (), we have

�αU(n) + q(n)U(n) ≤ �(n) + H(n), n ∈Na. ()

The remainder of the proof is similar to that of Case  in Theorem .. We omit it here.
Case . u(m, n) < , n ≥ n∗. In this case, we easily obtain (), (), and (). Then we

have

�αU(n) + q(n)U(n) ≥ �(n) + H(n), n ∈Na. ()

The remainder of the proof is similar to that of Case  in Theorem .. We omit it here,
too. The proof of Theorem . is complete. �

Theorem . If

lim inf
n→∞ (n – a)–α

{n–α∑

s=a
(n – s – )(α–)(�(s) + H(s)

)
}

= –∞ ()

and

lim sup
n→∞

(n – a)–α

{n–α∑

s=a
(n – s – )(α–)(�(s) + H(s)

)
}

= +∞, ()

where �(n) and H(n) are defined as in (), then every solution u(m, n) of problem ()-(B)
is oscillatory in � ×Na.

5 Examples
Example . Consider the fractional partial difference equation

�


n u(m, n) = nLu(m, n) –

n
m

u(m, n)

+
{

m


+


[
(–)n+en+ – (–)nen – 

]}
, (m, n) ∈ N(, ) ×N, ()

with boundary condition

�N u(, n) = �N u(, n) = , n ∈N. ()

Here α = 
 , a(n) = n, q(m, n) = n

m , h(m, n) = m
 + 

 [(–)n+en+ – (–)nen – ]. It is easy
to see that q(n) = 

 n and

H(n) =
∑

m∈N(,)

h(m, n) = (–)n+en+ – (–)nen.
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Therefore,

n–∑

s=n

H(s) =
n–∑

s=n

{
(–)s+es+ – (–)ses} = (–)nen – (–)n en , n ∈ N. ()

It follows from () that

lim inf
n→∞

n–∑

s=n

H(s) = –∞

and

lim sup
n→∞

n–∑

s=n

H(s) = +∞.

Using Theorem ., we obtain that every solution of problem ()-() is oscillatory in
N(, ) ×N.

Example . Consider the fractional partial difference equation

�


n u(m, n) = 	(n)Lu(m, n) –

	(n + 
 )

m	(n)
u(m, n)

+



	

(



)
m +

n


, (m, n) ∈N(, ) ×N, ()

with boundary condition

�N u(, n) = �N u(, n) = , n ∈N. ()

Here α = 
 , a(n) = 	(n), q(m, n) = 	(n+ 

 )
m	(n) , h(m, n) = 

	( 
 )m + n

 . It is easy to see that

q(n) =
	(n + 

 )
	(n)

, H(n) =
∑

m∈N(,)

h(m, n) =



	

(



)
+ n.

Therefore,

n–α∑

s=

(n – s – )(α–)H(s) =
n– 

∑

s=

(n – s – )(– 
 )

(



	

(



)
+ s

)
> , n ∈N, ()

which shows that condition () of Theorem . does not hold. Indeed, u(m, n) = mn( 
 ) is

a nonoscillatory solution of problem ()-().

Example . Consider the fractional partial difference equation

�


n u(m, n) =




Lu(m, n) –
	( 

 )	(n + 
 )

n	(n)
u(m, n)

+ 	

(



)
m –

n	(n)
	(n + 

 )
, (m, n) ∈N(, ) ×N, ()
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with boundary condition

�N u(, n) = �N u(, n) =
n	(n)
	(n + 

 )
, n ∈N. ()

Here α = 
 , a(n) = 

 , q(m, n) = 	( 
 )	(n+ 

 )
n	(n) , h(m, n) = 	( 

 )m – n	(n)
	(n+ 

 )
,φ(m, n) = n	(n)

	(n+ 
 )

.
Therefore,

q(n) =
	( 

 )	(n + 
 )

n	(n)
, H(n) =

∑

m∈N(,)

h(m, n) = 	

(



)
–

n	(n)
	(n + 

 )
,

�(n) =
∑

m∈{,}
φ(m, n) =

n	(n)
	(n + 

 )
.

It is easy to see that

n–∑

s=

[
�(s) + H(s)

]
=

n–∑

s=

[
	

(



)
+

s	(s)
	(s + 

 )

]
> , n ∈N. ()

Thus, this time, condition () of Theorem . is false. Indeed, we easily see that u(m, n) =
mn( 

 ) is a nonoscillatory solution of the problem ()-().

Example . Consider the fractional partial difference equation

�


n u(m, n) = nLu(m, n) –

n
m

u(m, n)

+
{

m


+


[
(–)n+en+ – (–)nen – 

]}
, (m, n) ∈N(, ) ×N, ()

with boundary condition

�N u(, n) = �N u(, n) =



[
(–)n+en+ – (–)nen], n ∈ N. ()

Here α = 
 , a(n) = n, q(m, n) = n

m , h(m, n) = m
 + 

 [(–)n+en+ – (–)nen – ], and
φ(m, n) = 

 [(–)n+en+ – (–)nen]. It is easy to see that q(n) = n
 ,

H(n) =
∑

m∈N(,)

h(m, n) = (–)n+en+ – (–)nen,

and

�(n) =
∑

m∈{,}
=



[
(–)n+en+ – (–)nen].

Therefore,

n–∑

s=n

(
H(s) + �(s)

)
=




n–∑

s=n

{
(–)s+es+ – (–)ses}

=


{

(–)nen – (–)n en
}

, n ∈N. ()
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It follows from () that

lim inf
n→∞

n–∑

s=n

(
H(s) + �(s)

)
= –∞

and

lim sup
n→∞

n–∑

s=n

(
H(s) + �(s)

)
= +∞.

We easily see that the conditions of Theorem . are satisfied. Then every solution of
problem ()-() is oscillatory in N(, ) ×N.
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